Quantitative Abstraction Refinement *

Pavol Cerny

Thomas A. Henzinger

Arjun Radhakrishna

IST Austria

Abstract

We propose a general framework for abstraction with respect
to quantitative properties, such as worst-case execution time, or
power consumption. Our framework provides a systematic way
for counter-example guided abstraction refinement for quantitative
properties. The salient aspect of the framework is that it allows any-
time verification, that is, verification algorithms that can be stopped
at any time (for example, due to exhaustion of memory), and report
approximations that improve monotonically when the algorithms
are given more time.

We instantiate the framework with a number of quantitative ab-
stractions and refinement schemes, which differ in terms of how
much quantitative information they keep from the original system.
We introduce both state-based and trace-based quantitative abstrac-
tions, and we describe conditions that define classes of quantitative
properties for which the abstractions provide over-approximations.
We give algorithms for evaluating the quantitative properties on
the abstract systems. We present algorithms for counter-example
based refinements for quantitative properties for both state-based
and segment-based abstractions. We perform a case study on worst-
case execution time of executables to evaluate the anytime verifica-
tion aspect and the quantitative abstractions we proposed.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification)]

General Terms Theory, Verification

Keywords abstraction, refinement, quantitative analysis

1. Introduction

The quantitative analysis of systems is gaining importance due
to the spread of embedded systems with requirements on re-
source consumption and timeliness of response. Quantitative anal-
yses have been proposed for properties such as worst-case execu-
tion time (see [19] for a survey), power consumption (pioneered
in [17]), and prediction of cache behavior for timing analysis (see,
for example, [9]).

Anytime algorithms (see [1]) are algorithms that generate impre-
cise answers quickly and proceed to construct progressively better

* This research was supported in part by the European Research Council
(ERC) Advanced Investigator Grant QUAREM and by the Austrian Science
Fund (FWF) project S11402-N23.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’13, January 23-25, 2013, Rome, Italy.

Copyright © 2013 ACM 978-1-4503-1832-7/13/01. .. $10.00

approximate solutions over time, eventually finding the correct so-
lution. Anytime algorithms are useful in verification, as they of-
fer a way to deal with the state-space explosion problem — if
the algorithm is terminated early, for example due to memory ex-
haustion, it is still able to report an approximation of the desired
result. The term anytime verification has been proposed [16] re-
cently in the context of verifying boolean properties, as a way to
get (non-quantifiably) better estimates on whether a property holds
for a system. The anytime concept, however, is particularly well-
suited in the context of quantitative verification. In this context,
abstraction gives a quantitative over-approximation of the quantita-
tive answer to a verification question, and it is natural to require the
anytime property: the more time the verification run is given, the
(quantifiably) better the over-approximation of the correct answer
should be. We implement this anytime property for quantitative
verification through an abstraction refinement scheme that mono-
tonically improves the answer. For instance, abstraction refinement
may compute increasingly better approximations of power con-
sumption of a system.

We propose a framework for abstraction and abstraction refine-
ment for quantitative properties that is suitable for anytime verifica-
tion. We explain the motivation and intuition behind the framework
using the following example.

Motivating example.

Consider the problem of a,b,c,i,v: int; input v;
estimating the worst-case if (v == 1)

execution time (WCET) of for (i=0;i<16;i++) read(a);

the program in Figure 1. else if(v == 2)
We assume an idealized for (i=0;i<16;i++)
situation where the perfor- if (1 mod 2 = 0) read(b);

mance is affected mostly else

by the cache behavior. Let ~ for (i=0;i<16;i++)

each program statement if (1 mod 4 = 0) read(c);
have a cost depending on
whether it accesses only
the cache (or no memory
at all), for a cost of 1, or main memory for a cost of 25. we assume
that the program variables i,a,v are mapped to different cache
entries, while b and ¢ are mapped to the same entry (different from
the entries for the other variables). We consider abstractions that
abstract only the cache (not the program). The cache is abstracted
by an abstract cache with a smaller number of entries (accesses to
the entries not tracked in the abstract cache are always considered
to be a cache miss). Let us start the analysis with an abstract cache
of size 2 which caches variables i and v. In the abstract system
(i.e., the original program composed with the abstract cache),
the worst-case trace has v equal to 1, and the program accesses
the (uncached) variable a 16 times. The analysis then uses this
trace to refine the abstraction. The refinement extends the cache
to include the cache entry for a. The worst-case execution then
has v equal to 2, and it has 8 accesses to b. The analysis now
refines the abstraction by extending the cache with an entry for b.

Figure 1: Example 1

The WCET estimate is thus tightened, until either the highest-cost
trace corresponds to a real execution (and thus the WCET estimate
is precise), or the analysis runs out of resources and reports the
computed over-approximation.

Abstraction for quantitative properties. Our model of systems
is weighted transition systems. We provide a way of formalizing
quantitative properties of systems which capture important proper-
ties studied in literature, including limit-average, discounted-sum,
and boolean properties such as safety and liveness. The framework
makes it possible to investigate quantitative versions of the boolean
properties: for instance, for safety one could ask not only if an er-
ror state is reached, but also how often it is reached. We focus on
properties that admit a linear trace that maximizes (or minimizes)
the value of the quantitative property. Such a trace is called the ex-
tremal trace (ext-trace for short).

We present two types of quantitative abstraction schemes. The
first is state-based, that is, the elements of the abstract domain
correspond to sets of states. The second is segment-based, that is,
the elements of the abstract domain correspond to sets of trace
segments.

State-based quantitative abstractions. The abstraction scheme
EzistMazx is state-based. It is a direct extension of predicate
abstraction, where each abstract state corresponds to an equiva-
lence class of concrete states. In addition, with each abstract state,
EzistMaz stores the maximum weight of the corresponding con-
crete states. We give conditions for the class of quantitative proper-
ties for which ExistMax is a monotonic over-approximation (that
is, it provides better estimates as the underlying equivalence rela-
tion on states is refined). This class includes all the quantitative
properties mentioned above. However, we show that there are nat-
urally defined properties for which EzistMax is not a monotonic
over-approximation. This is in contrast to the abstraction refine-
ment of boolean properties (in the boolean case, we do not get less
precise invariants if we add more predicates).

Segment-based quantitative abstractions. We introduce a num-
ber of segment-based abstraction schemes. A segment is a (finite
or infinite) sequence of states that is a consecutive subsequence of
an execution trace. As the quantitative properties we consider ac-
cumulate quantities along (infinite) traces, it is natural, and advan-
tageous, to consider abstract domains whose elements correspond
to sets of segments, not sets of states. This is similar to termination
and liveness analysis using transition predicates [14], and their gen-
eralizations to segment covers [7]. We build upon these approaches
to develop our quantitative abstractions. The PathBound abstrac-
tion scheme stores with each abstract state ¢ (representing a set of
segments) (i) minp(t), the length of a shortest finite segment in
t, (ii) maxp(t), the length of the longest finite segment in ¢, (iii)
hasInfPath(t) a bit that is true if ¢ contains a segment of infi-
nite length, and (iv) val(t), a summary value of the weights of
the states. Defining val(t) as the maximal weight of a state oc-
curring in one of the segments in ¢ makes PathBound a sound
over-approximation for a general class of quantitative properties.
To get better approximations for particular quantitative properties
val(t) can be a different summary of the weights. For instance, we
specialized PathBound to limit average by storing not the max-
imal occurring value, but the maximal average of values along a
segment.

In order to compare state-based and segment-based abstrac-
tions, let us consider the limit-average property applied to a pro-
gram with a simple for loop for which the loop bound is statically
known to be 10. Let us assume that the cost of the operations inside
the loop is much greater than the cost of the operations outside the
loop. Now consider the state-based abstraction EzistMax with an
abstract state ¢ that groups together all states whose control loca-
tion is in the for loop. In the ExistMax abstraction, this abstract

state has a self-loop. Analyzing the abstract system would conclude
that the highest-cost trace is the one which loops forever in ¢. This
would be a very imprecise result, as the concrete traces all leave
the loop after 10 iterations. To correct for this, the loop would have
to be unrolled 10 times, using 10 counterexample-guided refine-
ment steps. On the other hand, consider the PathBound abstrac-
tion, with an abstract state ¢ representing all the segments in the
loop. For t, hasInfPath(t) is false and mazp(t) = 10, allowing
immediately for more precise estimates.

The PathBound abstraction scheme is a sound abstraction in
the sense that the quantitative value we obtain by analyzing the ab-
stract system over-approximates the value for the concrete system.
As in EzxistMaz, this holds for a large class of quantitative proper-
ties. However, we show that PathBound is not a monotonic over-
approximation even for standard quantitative properties such as the
limit-average property in the sense that after refinement of the ab-
stract states, we may get worse estimates. We therefore present a
hierarchical generalization of PathBound called HPathBound.
In PathBound, each abstract state represents a set of segments,
and stores some quantitative characteristics (such as minp, mazp)
of that set. In order to compute better estimates of these quantitative
characteristics, one can perform another level of refinement, within
abstract states. This leads to the idea of a hierarchical abstraction. It
is particularly useful for software, which already has a hierarchical
structure in many cases (e.g., nested loops, function calls). This ap-
proach corresponds to the (multi-level) abstract inductive segment
cover of [7, Section 16.1].

Refinement of state-based abstractions for quantitative proper-
ties. For the state-based abstraction scheme FzistMazx, we give an
algorithm for counterexample-guided abstraction refinement (CE-
GAR) for quantitative properties. The algorithm is based on the
classical CEGAR algorithm [2], which we extend to the quanti-
tative case. In the classical CEGAR loop, the counterexample to
be examined is chosen using heuristics. For quantitative proper-
ties, it is clear that an extremal counterexample trace (the ext-trace)
should be chosen for refinement. The reason is that if the ext-trace
does not correspond to a real trace, then a refinement which does
not eliminate this trace would have the same value as the previous
abstract system.

Refinement of segment-based abstractions for quantitative
properties. We propose a refinement algorithm for the segment-
based abstraction HPathBound. We chose HPathBound be-
cause, as discussed above, it is particularly suitable for software,
and it is a monotonic over-approximation for a large set of quan-
titative properties. An abstract counterexample for HPathBound
is a hierarchical trace. Given an extremal abstract counterexample
which does not correspond to a concrete counterexample, the ab-
stract counterexample is traversed, similarly as in the classical CE-
GAR algorithm, until an abstract segment that provides values that
are too “pessimistic” (e.g., maxp and val values which cannot be
achieved in the concrete system by a concretization of the abstract
counterexample) is found. This abstract segment is then refined.
Note that the fact that the counterexample is hierarchic gives free-
dom to the traversal algorithm — at each step, it can decide whether
or not to descend one level lower and to find a mismatch between a
concrete and abstract execution there.

Experimental results In order to evaluate the proposed abstraction
schemes, both state-based and segment-based, we performed a case
study on worst-case execution time analysis of x86 executables.
We focused on one aspect, the cache behavior analysis, and in
particular, on estimating the rate of cache misses over the course
of the worst-case execution. In order to abstract the cache, we used
the abstractions introduced in [9]. To the best of our knowledge, this
is the first work on automated refinement for these abstractions.

We implemented two abstraction schemes: the state-based

EzistMaz and the segment-based HPathBound. We performed
the case study on our own (small) examples, and on some of the
benchmarks collected in [11]. The experiments show that we ob-
tain more precise quantitative results as the abstraction is refined,
for example, by having a larger abstract cache. Furthermore, we
show that using the segment-based abstraction HPathBound en-
ables scaling up. This is due to the fact that in the presence of
loops, the HPathBound abstraction can quickly obtain good over-
approximations if it can statically over-approximate loop bounds,
whereas the EzistMaz abstraction would have to unroll the loop
many times to get comparable results. Similarly to the ExistMax
case, the experiments show that we obtain more precise quantitative
results as the HPathBound abstraction is (hierarchically) refined
by computing better estimates for loop bounds. The running time
of the analysis was under 35 seconds in all cases.
Related work. The theory of abstractions for programs was intro-
duced in [5]. We build on the transition predicates of [14] and seg-
ment covers of [7] to construct our quantitative abstractions. The
CEGAR algorithm was introduced in [2] and is widely used. Au-
tomated abstraction refinement for transition predicates was pre-
sented in [4]. To the best of our knowledge, CEGAR-like algo-
rithms for quantitative properties have not yet been studied.

However, quantitative abstractions and refinements have been
introduced for stochastic systems [8, 12, 13], where the need
for quantitative reasoning arises because of stochasticity. They are
mainly directed towards the estimation of expected values, and the
algorithms reflect this fact. The probabilistic work does not aim at
handling accumulative properties like the limit-average property.

Abstractions (but not CEGAR-like algorithms) have been pro-
posed for certain quantitative properties of non-probabilistic sys-
tems, such as cache abstractions for WCET analysis [9]. WCET
analysis using interval abstraction was performed in [15].The
power consumption analysis of software based on the costs of sin-
gle instructions were presented in [17]. Our WCET analysis of
executables based on quantitative abstraction refinement could be
adapted for power consumption analysis using these models.

2. Quantitative properties

A weighted transition system (WTS) is defined by a tuple S =
(Q, 0, 0,q.), with a (finite or infinite) set of states @, a transition
set 9 C @ x Q, weight function p : @ — R, and an initial state
g. € Q. Let S denote the set of all WTSs and let S(Q) C S be
the set of all WTSs with a set of states Q such that Q C Q. We
assume that Vg € Q : 3¢’ : (q,q') € J. System S; in Figure 2 is
an example of a WTS.

A trace of a WTS S is an infinite sequence m = qoqi . .. with
go = q,and Vi > 0 : (gi,qi+1) € 9. The set of all traces of S
is denoted by II(.S). We extend the weight function p to traces as
0(qogqi...) = ror1... € R* where r; = p(g;), and to sets of
traces as o(T) ={w | In € T : w = o(m)}.

A trace m = qoqi . . . is memoryless if for all 7, 7 > 0, we have
g = q; — (gi+1 = g;+1). For instance, system S1 in Figure 2 has
two memoryless traces, a trace 7, with o(m1) = (11043111)%,
and a trace 7z with p(7m2) = (11043111 1)“.

A quantitative property f : S — R
is defined using two functions: a frace
value function f; and a system value
function fs. The trace value function
ft : R¥ — R summarizes a single trace
of the system. The system value func-
tions fs : 2% — R summarizes the set
of f; values of all traces of the system.
We then have f(S) = f({f:(r) | Ir €
Figure 2: System S II(S) : o(m) = r}). We extend f; to

28 by letting fi(T) = {f:(r) | 7 € T}. Hence, we have that
f(8) = fs(fi(e(11(5)))).

We present a number of common quantitative properties below.
We also model some classical boolean properties in our framework.
First, we give examples of trace value functions:

Limit-average. The limit-average trace value function measures
the maximal long-term average weight over a trace. The func-
tion limavg : R — R is defined by limavg(rory...) =
liminf; o % . ;:_:10 ri. For the trace m; of Si, the value
limavg(o(m)) = & = 3.

Discounted-sum. The discounted-sum trace value function accumu-
lates the weights over a trace where weights occurring further along
the trace are discounted by a factor A € (0, 1). Formally, the func-
tion discx(ror1...) = >ty A" - Ti.

Safety and quantitative safety. The classical safety property is de-
fined by a set of unsafe states U, and a trace is safe if it never visits
a state in U. To model a safety property, we assign the weight 1
to each state in U and the weight O to all other states. The safety
trace value function is defined as safety(ror1 ...) = sup ri. Now,
for any trace m, we have safety(o(m)) = 0 if and only if 7 is
safe. Note that this modeling of safety is still boolean, because
the trace value can only be either O or 1. In some applications, a
more quantitative view might be useful. Consider safety, defined
by safetyy (rory ...) = limy_ee 3 p—1 A¥ - 75 (discounted sum
of the number of 1’s in the run). For a safe trace 7, we still have that
safety, (o(m)) = 0. However, for an unsafe trace, safety, (o(7))
gives a more fine-grained picture: it measures how early and often
the bad states are visited.

Liveness and quantitative liveness. The liveness property is defined
by a set of Biichi (live) states L, and a trace is live if it visits states in
L infinitely often. To model a liveness property, we assign weight
0 to each state in L and weight 1 to all other states. The trace value
function live(rory ...) = liminf;_, o ;. This function is faithful
to the liveness property, i.e, live(o(m)) = 0 if and only if the trace
is live. As in the safety case, we can get a finer view of liveness
by measuring how often states in L are visited. We do it by letting
live(rory ...) = liminf; o % . Z;B r;.

Second, we give examples of standard system value functions.

o Supremum and Infimum. Intuitively, the supremum and infimum
functions measure the worst-case and best-case traces in the
system.

e Threshold. The threshold function checks if any of the values
in the given set are above or below given thresholds. Formally,
threshold,(R) = 1if 3r € R : v > u, and threshold,(R) =
0 otherwise.

Any combination of a trace value function and a system value
function defines a quantitative property. In this paper, we implicitly
assume that the system value function for any quantitative property
is sup unless otherwise mentioned.

A trace 7 is an extremal counterexample trace (or ext-trace for
short) if f(S) = fo({f:(o(m))}). We restrict ourselves to a class of
quantitative properties that admit memoryless extremal counterex-
ample traces, i.e., every system S has a extremal counterexample
trace that is memoryless. Formally, f is memoryless if and only if
VS € §: 3 € I(S) : f(S) = fs({fe(o(m))}). Note that all
properties mentioned above are memoryless.

3. State-based quantitative abstractions

A quantitative abstraction C' = (S C re, ac) is triple consisting
of a set of abstract systems S, an abstract quantitative property
f€ : 8¢ — R and an abstraction function o : & — S¢. A
quantitative abstraction C' is an over-approximation of f, if for all

S €8, f9a(8)) 2 £(9).

3.1 FEuxistMaz abstraction.

In this section, we present a quantitative abstraction technique
based on state abstractions. In this case, the abstract system is a
WTS whose states are sets of states of the concrete systems. In par-
ticular, our abstraction scheme FEzistMax is a direct extension of
the classical predicate abstraction. Compared to predicate abstrac-
tion, EzistMaz additionally stores, with each abstract state, the
maximum weight occurring in the set of corresponding concrete
states. The name ExistMax refers to transitions abstracted existen-
tially, and that the weights abstracted by maxima.

FEzistMaz is a state based abstraction scheme: a family of quan-
titative abstractions parameterized by equivalence relations on Q.
Given an equivalence relation ~C O x Q, the quantitative ab-
straction EzistMaz~ = (S, f™, aZ™) has (a) S°™ = S(29),
(i.e., abstract states are set of concrete states), (b) f* = f
as the abstract quantitative property, and (c) for a WIS S =
(Q, 0, 0,q.) we have that the abstract system aZ"(S) is a WTS
S(’m — (Q(’m 6(’7’71 Qé’Tﬂ tem) Whe['e

o Q" are equivalence classes of & that contain states from Q;

o (t1,t2) €0°" < Iq1 € t1,q2 € t2: (q1,q2) € 0

* o(t) =sup{d | 3g €t: o(q) = d}; and

e {7 is the equivalence class in Q“™ that contains g, .
Intuitively, a®™(.S) is an existential abstraction and o™ maps an
abstract state to the maximum weight of the corresponding concrete
state.

Example 1. Consider again the system S1 from Figure 2, and the
equivalence relation =, whose two equivalence classes (indicated
by the dashed shapes) are shown in the upper part of Figure 3. The
abstract system S°™ = aZ"(S1) is in the lower part of Figure 3.
We have limavg®™ (aZ"(S°™)) = 10, due to a self-loop on the
abstract node with weight 10.

3.1.1 Over-approximation and monotonicity.

We characterize the quantitative prop-
erties for which FExistMax is an over-
approximation, and for which mono-
tonicity of refinements holds, i.e.,
where refinement of the abstraction
leads to tighter approximations of the
system value.

We borrow the classical notion of
refinement for abstractions. An equiv-
alence relation = is a refinement of an
equivalence relation ~ if and only if
every equivalence class of = is a sub-
. . set of an equivalence class of ~=.

Fig. 3: EzistMaz abs. We deﬁne%he following quasi-orders:
e let <,C R¥ x R“ be defined by: riri ... <, rgri ... if and
only if Vi : r} <r?,and
e let CC 2% x 2F be defined by: for U, U’ C R, we have U C U’
iff supU < supU’.
A quantitative property f is (<, C)-monotonic if Vr,7’ € R¥ :
r <, = fi(r) < fu(r') and VO,U e . UCU =
f(U) < fs(U').

EzistMax is a monotonic over-approximation for a quantitative
property f, if (a) EzistMaz is an over-approximation for f, and
(b) if for all S € S(Q), and for all equivalence relations =
and ~ on Q, such that = is a refinement of ~, we have that

[(@z(9)) < [(a"(5)).
Theorem 2. If f is (<p, C)-monotonic quantitative property, then
EzistMazx is a monotonic over-approximation of f.

Proof. We first prove the monotonicity property of ExistMaz. The
over-approximation property follows naturally as follows. For any

em

system S, we have S = 57" (S) where id is the identity relation.
As id is a refinement of any equivalence relation /2, by monotonic-
ity it follows that f(.S) = f*"(asg'(S)) < f" (aZL™(S)).

Let S be a system in S(Q), and let = and ~ be equivalence
relations on Q. Let a~(S) = (Q', 6,0, ql) and a=(S) =
(Q?,6%, 0%, ¢) be EzistMaz abstractions of S, where = is a re-
finement of ~=. Furthermore, let f defined by f: and fs be (<p, C)-
monotonic. For each equivalence class ¢ of =, let ¢* be the unique
equivalence class of ~ for which ¢ C t*. The class t* is guar-
anteed to exist as = is a refinement of ~. Furthermore, by the
definition of ExistMaz, we have that: (a) o'(t) < 02(t%), and
(b) (t1,t2) € 6* = (t%,1%) € 6% Therefore, for any trace 7 =
toty . .. of a=(S), there exists a trace 7* = t4¢% ... of ax(S) such
that: o' (t0)o' (t1) ... <p 0*(th)o (tu) .. By <,-monotonicity
of fi, we get fi(o(m)) < ft((7h). Hence for each w €
fr(o(Tl(a=(S)))), there exists w* € fi(o(Il(ax(S)))) with w <
w?. This, in turn, gives us f;(o(Il(a=(5)))) C fi(o(Il(a=(S)))).
Hence, by C-monotonicity of fs, we get fs(f:(o(Il(a=(S))))) <
[s(fi(e(I(ax(5))))), or equivalently, f(a=(S5)) < f(ax(9)).
This proves the required theorem. as f = f°™. O

It is easy to show that safety, liveness, limit average, and dis-
counted sum are (<,, C)-monotonic. The following proposition is
a direct consequence.

Proposition 3. EzxistMazx is a monotonic over-approximation for
the limit-average, discounted-sum, safety, and liveness properties.

Example 4. We describe a property for which EzxistMaz is not
a monotonic over-approximation. Let f be defined by fi(r) =
sup; j>o(rs — r5) and fs(U) = supU. The property f can be
used to measure the variance in resource usage (where the usage in
each step is given by the weight) during the execution of a program.
Consider the system in Figure 4 and the ExistMaz abstraction
with abstract states given by the rectangles (the nodes outside the
dotted boxes are each in a separate singleton equivalence classes)
. Property f has value 2 on the abstract system due to the trace
A — B — C having maximal and minimal weights as 5 and
3 (under ExistMaz abstract state A, B, and C have weights 5, 3,
and 3 respectively). Refining the abstraction by completely splitting
state B increases f to 4. Refining further by splitting both states A
and C decreases f to 3 which is the true value of the concrete
system. The sequence of refinements show that for property f, the
FEzistMazx abstraction is neither an over-approximation (as the
first abstract system has value 2 which is less than 3, the value
of the concrete system), nor monotonic (as the sequence of values
2, 4 and 3 obtained through subsequent refinements first increase
and then decrease).

3.1.2 Evaluating quantitative properties on EzistMaz
abstractions.

Recall f¢" = f for EristMaz abstractions. To evaluate f°™
(and obtain an ext-trace for refinement), any algorithm for find-
ing ext-traces for the quantitative property f suffices. Standard al-
gorithms exist when f is one of safety, liveness, discounted-sum,
and limit-average properties. For limit-average, we use the classi-
cal Howard’s policy iteration.

4. Segment-based quantitative abstractions

In this section, we present quantitative abstractions where elements
of the abstract domain correspond to sets of trace segments.

Segments. A segment is a finite or infinite sequence of states in Q.
Let Q™ be the set of all finite segments, Q° the set of all infinite
segments, and let Q**° = Q™ U O be the set of all finite and
infinite segments. Given a segment o, let |o| denote the length of

the segment (the range of |.| is thus NU {co}). Given two segments
o1 and o2 in Q"> we write o102 for their concatenation, with
o102 = 01, if o1 is in @*°. Also, we the notation last(o1) and
first(o2) to represent the last state of a finite segment o1 and the
first state of a segment oa.
We dub a nonempty set of seg-

ments a SegmentSet. We define the A B C
following operations and relations on -

's I I
SegmentSets and sets of SegmentSets. *}5»—}‘;2» : ; 2 o
e For SegmentSets 7 and 75, we :5 il 13 . |
have Ty € Toif Ty C{w | Iz e 1 Ny,
Q*,Jy € Q*° : zwy € T}, that T e+ e
|

!

is, all segments from 7% occur as Lol
sub-segments of segments in 75.

For a set of SegmentSets 7, we
define | 7 to be set of segments
which can be obtained by concatenation of segments con-
tained in SegmentSets in 7. Formally, | 7 = {0001 ...0n |
I, .. Tn : Vi : 0<i<n = o €T)}U
{ooo1...| T, Th...: (Vi:0<i—0; €Ty)}.
A set of SegmentSets 7 covers a
SegmentSet 7" if and only if

= forall T; € T,wehave T; @ T, and

T ClYT.
Note that for a WTS S, the set of all its traces II(S) is a
SegmentSet. We call T a segment cover of a system S if and only
if T covers II(S). For example, the two SegmentSets 77 and 1%
in Figure 5 form a segment cover of the system in Figure 2. It is
easy to see that all traces of S are covered by segments in 77 and
T5. Our notion of segment cover corresponds to the inductive trace
segment cover from [7] with height 1. The notion of the segment
cover plays the same role in segment-based abstractions as the
equivalence relation on states plays in state-based abstractions.

Fig. 4: Non-mono-
tonic refinements

4.1 PathBound abstraction.

PathBound is a segment-based abstraction scheme: a family of
quantitative abstractions parameterized by sets of SegmentSets on
Q. Given a set of SegmentSets 7, the quantitative abstraction
PathBound is defined by (Sg—b, fre, ag—b). We now define each
element of the triple.
Abstract systems S?”. An abstract system in Sg’—b is a tuple
(R, dr, val, minp, maxp, hasInfPath, Ro), where Ris T, dr is a
transition relation, and Ry is the set of initial states. The type of val,
minp and mazp functions is R — R and the type of hasInfPath
is R — B. Their intuitive meaning is given below. The systems in
Sf’rb are called pb-systems.
Abstraction ag—b . The partial abstraction function apr is de-
fined as follows. For a WTS S, if 7 is not a segment cover
of TI(S), then the value of’(S) is undefined. Otherwise, given
S = (Q,8,0.q), let 2*(S) = S* € SP where S** =
(QP®, 6%°, val, minp, mazp, hasInfPath, ng) and

e QP is T

o (T1,Tz) € 6?" if Joy € T1, 09 € Tb, such that oy is a finite

segment in Q*, (last(o1), first(oz2)) € 4.

e val(T) = max{p(q) | 3o € Tandgqoccursino}, ie.,
val(T') is the maximal weight of a state occurring in one of
the segments in 7'
minp(T) = min{|o| | o € T is a finite segment} if 7' con-
tains a finite segment, and is oo otherwise.

e marp(T) = max{|o| | o € T isa finite segment}, if T
contains a finite segment, and is oo otherwise.

hasInfPath(T) = true iff T N Q> # 0, i.e., hasInfPath(T)
is true if and only if 7" contains an infinite segment,

val = 10 val = 1
mazrp = 4 mazp = 4
minp = 4 minp = 3

hasInfPath = false hasInfPath = false

Figure 5: PathBound abstraction of S1

. ng contains a set 7" in 7 iff 7" contains a segment whose first
state is g,. As T is a segment cover of S, we have that ng is
non-empty.

A pb-trace p of a pb-system S is either (a) a finite sequence
ToT: ... T, such that Ty € Qé’b, hasInfPath(T),), and Vi : 0 <
t<n:(T;,Tit1) € &7 or (b) an infinite sequence 7o7 . . . with
To € QP and Vi > 0 : (T3, Tys1) € 67°. The set of all pb-traces
of S is denoted by II??(S%).

Example 5. Recall the system S1 from Figure 2. Consider a seg-
ment cover T = {T1,T>} of I1(S) depicted in Figure 5. T\ and
Ts can now act as abstract states, with the values val, minp, maxp,
and hasInfPath given in Figure 5.

Abstract quantitative property f7°. In order to define the abstract
quantitative property fP°, we will need the following notions.

Let us fix a system S = (Q,9,0,q¢.). Let us also fix a set
T of SegmentSets, such that 7 is a segment cover for S. Let
ag-b(S) = 5% = (Q*, 57, val,minp7mazp,has]anath,ng)
be a PathBound abstraction of S for 7.

We now define a function B that for a given pb-trace p returns
a set of possible sequences of weights that correspond to p. The
function B : TI(S®) — 2% is defined as follows. The set B(p)
contains a sequence:

such that (a) Vi such that 0 < ¢ < n, we have w; = val(T;),
and (b) Vi such that 0 < ¢ < n, we have minp(T;) < n; <
mazp(T;) and 0 < n; # oo.

o wiPw ... inR¥ iff pis an infinite pb-trace ToTy € T17*(S®)
such that (a) Vi > 0 : w; = wal(T;), and (b) Vi > 0 :
minp (1) < ni < maxp(T;) A0 < n; # 0.

Let f be a quantitative property defined by a trace value
function f; and a system value function f;. We are now able
to define the abstract quantitative property f*° by fF*(S®) =

fs(fe((U, e B(0))))-

Example 6. Recall again the system S1 from Figure 2 and the
abstract cover described in Example 5. Consider the abstraction
ag—b(Sl) (the abstract system is depicted in Figure 5). There is only
one pb-trace p of the abstract system, and we have p = (T1T2)".
Let us assume that the quantitative property we are interested in
is the limit average quantitative property. We get that B(p) =
{(10101010 1 1 1 1)¥,(10 10 10 10 1 1 1)*}. We therefore
obtain f** (a4 (S1)) = (10 -4+ 1-3)/(4+3) = £, as the
maximum value is achieved if the execution stays at the more costly
abstract state Th as much as possible (mazp (T4) times), and at the
less costly abstract state T» as little as possible (minp(12) times).

4.1.1 Over-approximation and monotonicity

The following theorem states that the abstraction scheme
PathBound is an over-approximation for a large class of quan-
titative properties.

Theorem 7. PathBound abstraction scheme is an over-
approximation for a quantitative property f if f is (<p,C)-
monotonic.

val =1
1 maxp = 4
minp = 1
val = 10 hasInfPath = false
mazrp =5 I
minp =5 val = 10
hasInfPath = false mazp = 4
pb minp =1
(@) T (S) hasInfPath = false

b
(b) a2 ()
Figure 7: Abstractions of system S2

A set of SegmentSets 77 refines a set of SegmentSets 73 iff for
all T' € T3, there exists a set of SegmentSets 7, such that 7 C 71,
and T covers T

PathBound is a monotonic over-approximation for a quantita-
tive property f, if (a) PathBound is an over-approximation for
f, and (b) if for all S € S(Q), and for all sets 7; and T2 of
SegmentSets such that (a) 71 covers II(S), (b) T2 covers I1(S),
and (c) 72 is a refinement of 71, we have that f””(a% (9)) <
7 (a2 ().

The abstraction PathBound is not a monotonic approxima-
tion in general even for quantitative properties that are (<p, C)-
monotonic. We show this by constructing a counterexample (see
Example 10) for which the abstraction is not a monotonic approxi-
mation for the limit-average property.

4.2 State-equivalence induced segment-based abstraction

Given an equivalence
relation on states,
we can define a set
of SegmentSets. Let
S = (Q7 57 0, qL) be a
WTS, and let =~ be an
equivalence relation
on states in Q. Given
an equivalence class
e of &, we can define
a corresponding Seg-
mentSet T as follows. First, let T be the set of (finite or infinite)
segments o such that all states ¢ that occur in ¢ are in e. Now
we define T, as the set of maximal segments in T.. A segment
o is maximal in T, iff (a) o is in Ty; (b) there is a transition
(gv, first(o)) € 6 suchthat g, ¢ e; and (c) either o € Q°° or there
is a transition (last(o),gys) € 6 such that g5 ¢ e. Let T be a set
of SegmentSets defined by {7 | e is an equivalence class of ~}.

Figure 6: System .S

Example 8. Consider again the system S in Figure 2, and the
equivalence relation = on its states given by the dashed shapes
in Figure 3. The SegmentSets we get from the equivalence classes
are given by the nodes T and T in Figure 5. The set of these
SegmentSets is T~. As calculated in Example 6, the value for
the abstract system (for the limit-average objective) given by
PathBoundT,, is 473. Note that this is better (more precise) than
the value given by the ExistMax abstraction defined by the same
equivalence relation . As calculated in Example 1, the value given
by ExistMaz is 10.

Given an equivalence relation ~ on states, the abstraction
PathBoundT,, gives a better over-approximation for limit-average
objective than the FristMax .

Proposition 9. Let f be a (<p, C)-monotonic quantitative prop-
erty. Let = be an equivalence relation on Q and consider the
two abstraction schemes PathBoundr, = (SP’, f*°, ag—i) and

ExistMazr~ = (S, f°", aZ") parameterized by =. Then, for
all S € 8(Q), [(a7, (5)) < f(aZ"(S)).

We observe that if =3 is a refinement ~, then 7T, is a re-
finement 7~,. However, we show an example system where the
over-approximation computed using the 7~, abstraction is worse
(less precise) than the over-approximation computed using the 7~; .
This means that, in general, PathBound is not a monotonic over-
approximation for (<,, C)-monotonic quantitative properties.

Example 10. Consider the system Sz in Figure 6. Consider an
equivalence relation ~ on states given by the dotted rectangle in
the figure (that is all states except the state I are equivalent to each
other). This equivalence relation defines a set Ti of SegmentSets.
The resulting abstract system ag—i (S) is in Figure 7 (a). Note that
in Figure 7 (a), the node for which the values of maxp, minp, etc.
are given corresponds to the dotted rectangle in Figure 6, the other
node in the abstract system corresponds to the singleton segment
of length one generated from the singleton equivalence class of the
node I of system Ss. Consider now a refinement of ~ where the
equivalence class of the dotted rectangle is split into two equiva-
lence classes given by the dashed rectangles. The new equivalence
relation defines a set T2 of SegmentSets. The abstract system in Fig-
ure 7 (b) results from a refinement where the equivalence class of
the dotted rectangle is split into two equivalence classes given by
the dashed rectangles. The resulting abstract system a?,—l; (S) is in
Figure 7 (b).

Let us now assume that the abstract quantitative objective is
limavg. The value we get for system ch—ﬁ (S)is ((10-5+4-1)/6) =
9. The value we get for its refinement o/f,-i (S)is ((10-44+10-4+

84

4-1)/9) = 5 > 9. This shows that the estimate is worse (less

precise) for the refinement O‘% (S) than for ozg—tl’ (S).

4.3 Specialization of PathBound abstraction for the
limit-average quantitative property

We presented a general definition of the PathBound abstraction

which is an over-approximation for a large class of quantitative

properties. We now specialize the PathBound abstraction for the

limit-average property by introducing sound optimizations.

We define the limit-average PathBound-abstraction (de-
noted by PathBoundLA) scheme as (SP*, f”b“,ag-b’l).
Let S be a system and let SP* = 0/7'9(5) =
(QP?,87° wal, minp, mazp, hasInfPath, ng) be a
PathBound abstraction of S. Furthermore, we fix f to
be the limit-average property, ie., f: = limavg and
fs = sup for the remainder of this subsection. We have that
grba — 0/7’9“(5) = (Q", 67° wal?*®, minp, mazp, hasInfPath)
is a pb-system similar to a’}b (S). In the PathBoundL A abstraction
scheme, we have the following differences:

* val?*(T) = max{sup,¢(rno) 7ZSG‘Z‘Q(S>,
SUP,¢(Tnge) limavg(c)}. Here, we let the value of an
abstract SegmentSet 7' be the supremum of the average
weight of the segments in 7', rather than the maximum
weight occurring in 7. Note that if T C O, we have
val?*(T) = sup(limavg(o(T))).

e The abstract quantitative property f**® is defined in the same
way as fP° (at the beginning of Section 4), except that the
definition of B : II(S*) — 2% we have that:

»wi®wit ... € B(p)ifandonlyif p = ToTi ... withw; =
valP*(T;) A0 < n; < 00 An; € {minp(T3), maxp(t;)}.

" wiwit..owy € B(p)ifand only if VO < ¢ < n :
wi = valP* (TH)AGE <n = 0<n; <ooAn; €
{minp(T3), mazp(t:)}).

The above differences between the PathBoundLA and
PathBound can be summarized as follows: (a) the value summa-
rization function for each SegmentSet can be average instead of
maximum, and (b) more crucially (from a practical point of view),
the evaluation of the abstract property on a pb-system can be done
by considering only the lengths of the longest and shortest finite
paths of an SegmentSet, rather than considering all lengths between
them. This is because limit-average is a memoryless property.

The following theorem states that PathBoundLA provides
a better approximations of the limit-average property than
PathBound.

Theorem 11. Given a system S and an segment cover T of TI(S)
and f being the limit-average property, we have

F(S) < 7 (a5 (S)) < 7 (o (S5))

Example 12. Consider again the system Si from Figure 2, and
the SegmentSets T and T> from Figure 5. In PathBoundLA ab-
straction, we have val(Ty) = (10 + 1+ 4 + 3)/4 = 18/4
(while the other values for T1 are as in Figure 5). For val(T2),
we have val(T>) = (1 + 1+ 1)/3 = 1. The value of the system
is fP"(a7(S1)) = (18 + 3)/7 = 3. Recall that for PathBound
abstraction, the value fP° for Sy was calculated in Example 6 to be
4—73. For PathBoundLA abstraction, we thus get a better approxi-
mation than in the PathBound abstraction.

Evaluating limit-averages on pb-abstract systems. Minimum-
mean cycle algorithms compute the limit-average value for a graph
with weights on edges. Therefore, from a pb-system, we construct
a graph which has weights and lengths on edges, rather than nodes.
Intuitively, we consider the graph with edges of the pb-system
being the nodes. There are two edges between the node (7%, T") and
(T, T>): one of weight mazp(T) X val(T) and length mazp(T),
and another of weight minp(T") X val(T) and length minp(T).
The node (71, T') has the self-loop of weight val(T") and length 1,
if hasInfPath(T) is true. We denote this graph by ST.

Howard’s policy iteration was extended in [3] to compute the
limit-average values in graphs where edges have both weight and
length, as is the case of ST. Howard’s policy iteration works by
picking a policy (that maps states to successors) and improves the
policy as long as possible. Each improvement takes linear time,
but only an exponential upper-bound is known on the number of
improvements required. However, a number of reports state that
only linear number of improvements are required for most cases in
practice [3].

5. Generalizations of PathBound abstractions

In this section, we present two generalizations of the PathBound
abstraction scheme. The first one generalizes PathBound by con-
sidering different summaries of SegmentSets rather than set of
properties {minp, mazp, val, hasInfPath}. The second one gen-
eralizes PathBound by allowing inductive fixed-point style com-
putations of properties.

5.1 Generalized segment-based abstraction

Let S be a WTS, and let 7 be a segment over of II(.S). In the
PathBoundLA abstraction from Section 4.3, we used the values
of mazp, minp, hasInfPath, and val?®® to abstract SegmentSets
in 7. The abstract values are in turn used to compute an over-
approximation of the limit-average property for S. In this subsec-
tion, we provide a generic segment-based abstraction scheme for
any set of properties.

More specifically, let us assume that we have a set P of quan-
titative properties, a set 7 of SegmentSets that is a segment cover
of a segment set 7. We provide a generic technique to answer the

following question: if we know the values of quantitative proper-
ties in P on all SegmentSets in 7, can we compute the values of
quantitative properties in P on SegmentSet 1?7

We need to extend notation in two ways: (a) We will use quan-
titative properties f defined by f; and fs for both finite and infinite
traces. The type of f; will thus be R” UR* — R; and (b) We will
evaluate quantitative properties on a SegmentSet 7' (instead of a
WTS) by letting £(T) = f.({f:(o()) | 7 € T}).

Fix an arbitrary WTS S = (Q, 4, o, q.). Consider an arbitrary
set of SegmentSets 7 = {To,T4,...,Tn}, where all segments
are sequences of states from (). We define the set of valid segments
generated by T as W° T = {00...0n | Vj:0; € UTAV] <n:
(last(oy), first(oj4+1)) € 6}U{o0... |Vj:0; € JTAVj >0:
(last(cy), first(oj+1)) € 0} where first(o) and last(o) denote
the first and last states of a segment. Intuitively, the set L-ijé T is the
set of segments generated by 7 where the transition relation of the
system .S holds at the sub-segment boundaries.

Let 7 = {T1,...,Tn} be a cover of the SegmentSet T" (not
necessarily I1(5)). Note that [)° 7" can be a proper subset of T,
ie., T C T, butly® 7 C T. We call the SegmentSet 7' N [4° T
the strengthening of the SegmentSet T by 7 and §. Our question
thus becomes: provided that we know the values of quantitative
properties in P on all SegmentSets in 7, can we compute the
values of quantitative properties in P on the strengthening of the
SegmentSet 7' by 7 and 6, i.e.on T'N |¢° T 2
Abstract SegmentSet and property domains. Let (SEG, C) be
the set of all SegmentSets partially ordered by the subset rela-
tion, and let (£, =) be a lattice. The lattice serves as an ab-
stract domain for describing SegmentSets. Elements of L can be
for instance syggctical objects, such as formulas in a logic. Let

(SEG, C) #5_) (L, <) be a Galois connection (see [6]). We

call the domain (£, <) the abstract SegmentSet domain and each
element ¢ € L an abstract SegmentSet.

A property set Pis a tuple ((fi,... fL), (fi, ... f%)) where
(a) all f!’s are quantitative properties where fs = mf ; and (b) all

i'’s are quantitative properties where f; = sup. We deﬁne
the corresponding property domain Dp = <(x R™),Cp)
to be the abstract domain where ((a!,...,a)7 (af,..)) C
(@, ...,0%), (Y, ..., bY)) 1fandonly1falla1 > bl andal < b¥.
We wiite P(T) for (f1(T), .., fA(T)), (E(T), ., f2(T))).

Example 13. The property set pLa =
({(minp), (mazp, val?*®, hasInfPath) is a property set.
For example, minp(T) = inf({lo] | o € T}) and
hasInfPath(T) = sup({hasinfPath,(c) | o € T}) where
hasInfPath, (o) is 1 if |o| = oo and 0 otherwise.
P
It is easy to see that a Galois connection (SEG, C) <W:P>

(Dp, Cp) can be defined by letting o™ (T) = P(T) andy” (P) =
U{T | P(T) C P}. Intuitively, ((I1,...,ln), (u1,...,un)) €
‘P(T) represents the largest SegmentSet 7" that respects the lower
and upper bounds placed by P, i.e., f{(T) > l; A f;(T) < u;j. We
call Dp the property bound domain and an individual P € Dp a
property bound.

Let (£ x Dp, <), where < is < X LCp, be the product of
(L£,=) and (Dp,Cp). We call L x Dp the domain of abstract
bound pairs and each element (written as ¢ A P) an abstract bound
pair. Let (SEG, C) <£> (L x Dp, X X LCp) be a Galois
connection naturally defined for the product of abstract domains,
where o(T) = (a*"°(T),a”(T)). and (¢, P) = v*"%(¢) N
~F (P). Intuitively, the element ¢ A P represents a SegmentSet that
is contained in ¢ and respects the property bounds P. We identity
abstract segments ¢ € L with the abstract bound pair in ¢ A T

where T = ((—o0,...,—00), (00, ...
bounds on any of the properties in P.

,00)), i.e., there are no

Example 14. Let L = SEG, i.e., the abstract SegmentSets are

the same as concrete SegmentSets. Note that this assumption is to

simplify the example. It would be more natural to use syntactical
objects (e.g. formulas in some logic) for L. Consider D%A for
the property bound domain defined in Example 13. An example

of an element in L x D is T1 A ((4), (4,28,0)) where T

is from Example 12. Here, ((4), (4, 17?, 0)) represent bounds on

values of properties ((minp), (mazp, val?*®, hasInfPath)). Note
that Ty A ((4), (4, 12,0)) contains exactly the same information
that PathBoundLA stores about a SegmentSet.

Evaluating quantitative properties on abstract SegmentSets.

In what follows, we fix a WTS S, and a segment cover 7 =

{T1,T2,...,T)7} of T = II(S). Let K be the interval [1..|T]].

Given an abstract bound pair domain (£ x Dp, =< x Cp), where f

is a property in PP, we can perform the computation of f (Tﬁtrj(S T)

in the abstract domain. For this computation, the abstract bound

pair domain needs to support the following additional operations.
Let ¢ A P be an abstract bound pair, and ® = {¢1 A

Pi,..., ¢/ N P} be aset of abstract bound pairs. The abstract

bound pairs domain (£ X Dp, = x LCp) is an inductive domain

if it supports the following operations in addition to the standard
lattice operations.

e Transition check. This operation checks for two abstract
SegmentSets, whether a segment from the first can be
validly followed by a segment from the second. Formally,
TrCheck (@i, ¢;) is true if and only if there is validly gen-
erated segment o, i.e., o € y(¢) N {v(¢s) | i € K}, where
o = o'o;050" such that (a) o; € y(di) A o; € v(¢;), and
(b) o’ and ¢” are also validly generated.

Reduce Property Bounds. Given an abstract SegmentSet ¢,
compute (an over-approximation) of the property bounds on ¢.
Formally, ReduceBound(¢) returns ¢ A P* such that (¢ A
P*) 2 (¢).

e Property computation. Given only the bounds P; on ab-
stract SegmentSets ¢; and the values TrChecke (i, d;),
PropComp computes (an over-approximation) of the prop-
erty bounds on the abstract segment ¢ A P. Formally, given
897 = {(4,5) | TrChecky(pi,d;) = truel}, and the values
P; for all 4, the function PropComp(¢,69%°, (Py ... P 7))
outputs ¢* A P* such that ¢* A P* > (¢ A T) A
a(W’{v(¢i A P,) | i € K}). Note that we sometimes abuse
the notation and write PropComp(¢,{¢1 A P1,..., ¢/ A

Py7}) instead of PropComp(¢, 897 (P ... Pirp)i).

Example 15. Continuing from Example 14, i.e., L = SEG and
the system under consideration is S1 from Figure 5.

e TrCheckyysy(T1,T2) can be as precise as the transi-
tion relation of PathBoundLA, ie, (Th,T2) € §rhe o
TrCheckn(sy(T1,T2). Suppose o1 € Ty and oo € To.
We have that o1 can be followed by o2 if and only if
(last(o1), first(o2)) € 0. This is the condition that defines
(Tl, Tg) S 5pb.

o If we take ReduceBound(T%) to be precise (and computa-
tionally expensive) procedure that concretizes abstract states,
it can return To A ((3), (4,1,0)), i.e., it computes (an over-
approximation) of the information stored for the particular
SegmentSetTs.

PropComp(I1(S),{Th N P1,T> N P»}) (where P, =
((4),(4,%2,0)) and P, = ((3),(4,1,0))) computes an over-
approximation of P(I1(S)) by computing on abstract states. If
PropComp is defined using the same approach as the B and

fPb definitions from Section 4.3, it returns ((4), (00, 3,1)).

Here, valP®(T1(S)) is 3, minp = 4, and mazp and
hasInfPath are over-approximated to the largest possible val-
ues.

Remark 16. Note that in the arguments of PropComp, we do not
require P; to be equal to P(qﬁi). In fact, even in the case where P; is
a Cp-over-approximation of P(¢;), the procedure PropComp is
required to produce a valid Cp-over-approximation of the P value
of v(6) N {x(¢i) | i € K}.

We call an abstract bound pair domain effective if: (a) each
of the operations ReduceBound, TrCheck, and PropComyp can
be computed effectively, i.e., by a terminating procedure; and
(b) ReduceBound and PropComp are monotonic, i.e., giving
more precise inputs produces more precise outputs. Formally,
(@ ¢ X ¢ = ReduceBound(p) < ReduceBound(¢');
® (¢ X ¢ AV € K : P CE P A ¢
¢;) = PropComp(¢,{é1 A P1,...,¢71 N Pr})
PropComp(e, {é1 A P,...,é17) A Plyi});and (©) (61 A P}
$1 AP A (S AP < ¢ AP1) = PropComp(e,{¢} A
P ¢ APE,¢a A Ps, ..., ¢17 APi7}) < PropComp(¢, {¢1 A
Pi,¢2 A Pa,..., ¢ A Pi7}).

We can now generalize PathBound abstraction scheme by let-
ting the summaries of SegmentSets be the set of values of properties
from any effectively inductive quantitative property set. Intuitively,
given a WTS S, and a property set P, the PathBound[L X Dp]
abstraction stores with each SegmentSet 7" in the cover of II(.S)
the values o®”“(T') A P(T'). To compute the value of the abstract
system, the procedures Reduce Bound, TrCheck, and PropComp
are used.

Formally, PathBound[L x Dp|lr = (S[L X Dpl,a[l X
Dplr, fI£ X Dp]) is defined as:

® a[‘c X DP]T(S) = <¢7 <¢1, ey ¢\T\>7 5gpb> where (a) ¢ =
a®FA(11(8)); (b) i = 5P (T;); and (c) (4, 5) € 697 if and
only if TrCheck (i, ¢;) returns true.

e f[L£ x Dp] is computed as the value of f in P* where
¢* A P* = PropComp(¢, 59", (ReduceBound (1), .. .,
ReduceBound(¢)71))) A ReduceBound ().

Precise abstractions. In the EzistMax case, if the abstraction
function does not lose any information, i.e., if the equivalence
relation used is the identity relation, the abstract system value is the
same as the concrete system value. We give the conditions when an
segment-based abstraction does not lose any information either.

Intuitively, we want the property computation for a Seg-
mentSet 7" from a cover T = {T1,...T,} to be accurate when
T is exactly covered by T, i.e, T = [¢° 7.

An quantitative property set is precisely inductive if there ex-

ists a PropComp procedure which produces the output (¢, P(¢))
when the following hold: (a) P; = P(v(¢:)), and (b) v(¢p) =
W (o) | i € K.
Example 17. The limit-average property is not precisely inductive,
i.e., by knowing only the limit-average value of the subsegments of
a segment, we cannot estimate the limit-average accurately without
knowing the length of the subsegments. However, strengthening it
to the property set {{minp), (mazp, limavg, hasInfPath)) makes
it precisely inductive.

ININATA

5.2 Hierarchical segment-based abstraction

Effective abstract bound pair domains allow computation of prop-
erty bounds for a whole set of properties on a SegmentSet from
the property bounds on each element of the cover. For example,
if T covers T, the four properties minp, mazp, val, hasInfPath
of SegmentSets in 7 are used to compute not only the limavg, but
also the mazp, minp, and hasInfPath values of the SegmentSet T’

too. This leads to the possibility of computing these properties hi-
erarchically for a multi-level trace segment cover.

An inductive trace segment cover [7] C is a finite rooted-tree
where the nodes are labelled with abstract bound pairs such that
for every non-leaf node labelled with SegmentSet ¢ A P, and
@1 A Pi, ..., ¢n A Py, the set of labels of its children, {~v(¢1 A
Py),...,v(énAPp)}isasegment cover of y(¢A P). An inductive
trace segment cover C inductively covers a SegmentSet T if T C
~(root(C)). Similarly, C inductively covers a system S if II(.S) C
~(root(C)).

We can now introduce an abstraction scheme
HPathBound[L x Dple = (S"*[L x Dpl,a"’[L x
Dplc, f"P°[L x Dp]) parameterized by an abstract bound pair
domain £ X Dp, and an abstract inductive trace segment cover
C. Intuitively, HPathBound stores for each internal node a of C,
a PathBound[L x Dp|r(a) abstraction (label(a),T (a),59").
The abstract trace segment cover 7 (a) for this abstraction is the
labels of the set children(a).

Abstract hierarchical traces. We fix an abstract bound pair
domain £ X Pp. An abstract hierarchical trace ¥ = ((qbo A
Py)(¢1 APy) ..., suby) consists of (a) a finite or infinite sequence
of abstract bound pairs; and (b) a partial function sub, from N to
hierarchical traces.

The concrete traces (1) corresponding to a given abstract trace
= ((po APo)(¢1 AP1) ..., suby) are defined as {oooy ... |Vi :
i € Y(pi A Py) Asuby(i) # L = o7 € y(suby(i))}.
Intuitively, a concrete trace of an abstract hierarchical trace i is
made of segments o; from ¢; A P;, with the additional condition
that o; € suby (2) if suby (¢) is defined.

Given a property set P, an effective abstract bound pair domain,
and an inductive trace segment cover C of system .S, we inductively
compute property bounds (and hence, abstract system values) using
Algorithm 1. The algorithm is based on the inductive proof method
presented in [7]. It can be rewritten as a fixed-point computation in

Algorithm 1 Inductive Property Computation (InductiveCompute)

Input: WTS S,
Effective abstract bound pair domain £ x Dp,
Abstract Inductive Segment Cover C (labelled from £ x Dp),
Output: abstract bound pair ¢* A P* such that (¢* A P*) >
P(label(root(C)))

1: (¢ A P) « label(root(C))

2: if root(C) has no children then

3: return (¢ A P) A (ReduceBound(¢ A P))

4: else

5. subTrees < top level sub-trees of C

6: return (¢ N P) A PropComp(¢p A

P, {InductiveCompute(C') | C' € subTrees})

the lattice C — £ x Dp of maps from nodes(C) to L x Dp (the
lattice ordered point-wise by (<, Ep)). At the final line in Algo-
rithm 1, the value of C will be the least fixed-point of the function
which replaces each node in C with a best approximation obtained
from among the current value of the node, and (a) ReduceBound
applied on the node if it is a leaf node, or (b) PropComp applied
on the node and its children if it is an internal node.
Monotonicity. We define refinements of HPathBound abstrac-
tions using refinement steps. Let C be an inductive trace segment
cover and let a be a non-root node in C, b be its parent, C(a) be the
sub-tree of C rooted at b, and ¢ A P and ¢° A PP the labels of a and
b. A one-step refinement of C is one of the following:
¢ Horizontal refinement. Let ¢1 and ¢2 be such that y(¢ A P) =
Y(p1 A Pl) U ’y((ﬁz A P>). Let C(a)[label(a) — o1 A Pl]
and C(a)[label(a) < ¢2 A P,] be the tree C(a) with ¢ A P

replaced by ¢1 A P1 and ¢2 A Pa, respectively. Let the tree
C' be obtained by detaching C(a) from p and then attaching
C(a)[label(a) < ¢1 A P1] and C(a)[label(a) < ¢p2 A Ps] to
p. Then C' is a one-step horizontal refinement of C.

Vertical splitting refinement. Suppose {y(¢1 A P1),...7(édn A
P,)} cover ¢ A P and that a does not have any children.
Suppose C’ is obtained from C by adding the children with
labels ¢1 AP, ..., ¢n AP, toa. Then, C' is a one-step vertical
splitting refinement of C.

Vertical joining refinement. Suppose that b has no grandchil-
dren, and let (¢® A P?) < PropComp(¢ A P, children(b), d)
and Ve € children(b) : ¢) < ReduceBound(c)). If C’ is the
tree obtained by removing all the children of b in C, then C’ is a
one-step vertical joining refinement of C.

. Downward strengthening refinement. Sup-

pose 7(¢) C (@) and ¢ A PP C

W v (¥) | ¥ € ((children(b) \ {$ A P})U{g' A P'})}.

Let C' be the tree obtained by replacing C(a) by

C(a)[label(a) <+ ¢ A P']. Then, C' is a one-step down-

ward strengthening refinement of C.

e Upward strengthening refinement. Suppose that ¢’ A P’ is such

that (J° {7 (v)) | ¢ € children(b)} C ¥(¢/AP") C v("AP).

If C’ is obtained from C by replacing ¢° A P® with ¢’ A P’, then

C’ is a one-step upward strengthening refinement of C.

A C,, is a refinement of Cy if there exists a sequence C1, Co, ...,
Cpn—1 such that C; is a one-step refinement of C;_1 for all ¢ such
that n > 7 > 0.

HPathBound|[L x Dp] is monotonic if for all systems S and
abstract inductive trace segment covers C and C’ of S, if C’ is
a refinement of C, then abstract value f"*°[L x Dp](a"*°[L x
Drler(S)) < F[L x Dp)(@"*[£ X Dple(S)).

Theorem 18. If f is a property such that fs = sup, and the
inductive property set P contains f, and L X Dp is effectively
inductive, HPathBound[L X Dp) is monotonic for f.

Intuitively, the theorem holds as every one-step refinement pre-
serves the information about the property-bounds of nodes from the
previous iteration. For all one-step refinements other than the ver-
tical joining refinements, the monotonicity follows from the mono-
tonicity of PropComp and ReduceBound. For vertical splitting
one-step refinements, the monotonicity holds as all the information
that can be generated from the deleted children is already present
in the parent node.

5.3 HPathBound abstractions for control-flow graphs

A control-flow graph of a program written in a high-level language
is contains many structures like loops and function calls. The traces
of transition systems produced from such programs are structured.
This opens the possibility of using hierarchical segment-based ab-
stractions to analyze them.

Control-flow graphs and Programs. Following, e.g., [4], we ab-
stract away from the syntax of a concrete programming language,
and model programs as graphs whose nodes correspond to program
locations. Here we assume simple programs with inlined function
calls (this implies that there are no recursive functions).

Let V be a set of variables and let D(V') be the combined
range of variables in V. A control-flow graph (CFG) is a tuple of
(L, V,A ¢ : A — 2D(V)XD(V)> where L is a finite set of control
locations, A is a transition relation, V' is a set of variables, and ¥ is
a function from A to assertions over program variables V' and their
primed versions V’. The primed variables V' refer to the values
of the variables after executing the transition. We assume that V'
contains a special variable wt ranging over R which denotes the
weight of a particular state.

Figure 9: An example CFG

Given a CFG (), a corresponding transition system can be gen-
erated (with state-space L x D(V')) in a standard way. We add the
weight function (I, d) = w, where w is the value of the special
variable wt in d, to turn the transition system into a WTS.

We assume the following about the CFG (these assumptions
are valid for CFGs generated for programs in most programming
languages): (a) Reducibility. In the graph (L, A), every maximal
strongly connected component has a single entry and exit point,
i.e., if G C L is a maximal strongly connected component, there
exists a node I such that (I,I') e AN ((L\G) x G) = ' =
la NIy e AN(G x (L\G)) = 1 = lg; (b) Recursive
reducibility. Suppose G C L is a maximal strongly connected
component. The graph (G, AN (G x (G\ {lc})) is also reducible.
Intuitively, the above conditions imply that loops in the CFG are
single-entry and single-exit, and that they are nested.

A hierarchical control-flow graph
(HCFG) is a graph (H,A C H x H, h;)

while(true) where each node h € H is either a control-
;’ - ig}se; flow location, or a hierarchical control-flow
while 3 >0 graph. We call the first kind of nodes,
b = not b; abstract state nodes and the second kind of

if b costlyOp; hodes subgraph nodes.

j-- Any recursively reducible CFG C' can
k = 10; be converted into a HCFG H of a spe-
while (k>0) k-- cijal form using a standard algorithm on re-
ducible graphs. In this special form, H and
all sub-HCFGs occurring in H have the fol-
lowing property: either they are acyclic, or
they have a single node with a self-loop on itself. Note that each
loop of a program will correspond to such sub-HCFG. In what fol-
lows, we assume that all our HCFGs are of this special form.

Figure 8: Prg

Example 19. Consider the example CFG shown in Figure 9 (gen-
erated from program in Figure 8). The equivalent HCFG of the
special form to this CFG is shown in Figure 10. The statements on
the transitions in Figure 10 are omitted for the sake of clarity. Each
of the dotted boxes represent a HCFG. Intuitively, each loop has
been separated out into an acyclic CFG containing the loop body
and a single self-loop CFG.

Inductive trace segment covers can be derived from HCFGs.
In particular, every HCFG H represents a unique inductive trace
segment cover C(H). Intuitively, the root of the inductive trace
segment cover is the set of all traces of H, and the children of
the root node are either (a) C(H') if H' is a subgraph node of H,
and (b) {S} if S is a abstract state node of H where {S} is the
SegmentSet containing all segments of length 1 with states in S.
From now on, we use HCFGs and abstract inductive trace segment
covers interchangeably.

Example 20. Consider the program in Figure 8. Its CFG is in Fig-
ure 9 and the corresponding HCFG is in Figure 10. We use regular

expressions over control locations as our abstract SegmentSet do-
main L. The regular expressions have their intuitive meaning. For
example, (a) the expression s1S2 represents all segments q1q2 such
that the control location of q1 (resp. q2) is s1 (resp. s2); and (b) the
expression (s1s2)” represents the set of segments obtained by con-
catenation of segments from sisa.

The HCFG corresponds to the following inductive trace seg-
ment cover C of the traces generated by the CFG. The root of C is
the expression H = (s15253(8485(s6 + $7)s3)"s8s9(s1089)™)".
Its only child is F = s15283(s455(s6 + s7)s3)*s859(s1089)".
The children of F are {Cg, L1,Cwy, L2} where Cp = s15283,
L1 = (8485(86 + 87)83)*, C]V[= 8899, and LQ = (81089)*. Of
these, only L1 and Lo are non-leaf nodes having one child each
CrL, = sass(se + s7)s3 and Cr, = s1089, respectively.

Evaluating limavg for HPathBound abstractions induced by
HCFGs. Let H be a HCFG of a special form. We compute the
values mazxp, minp, valP®, and hasInfPath using the technique
of computing loop bounds. We consider a the domain of abstract
bound pairs with elements of the form ¢ A P as before.

Suppose H is a HCFG with a single node and a self-loop. Fur-
thermore, let A P be the corresponding abstract SegmentSet prop-
erty bound in C(H), and let {1 AP, . .., &n APy} be its children.
Let segment o be in y(¢AP)N {7(¢1 A Pr), ..., v(dn A P)}.
Let iters(c) C N where n € iters(o) if and only if there ex-
ist 00, ..., on—1 such that Vj < n.3i : 0; € v(¢:s A F;). Let
Iters(H) = |Jiters(o) for all such o. We define the upper loop
bound (resp. lower loop bound), denoted by ulb(H) (resp. lIb(H))
as the value sup Iters(H) (resp. inf Iters(H)). Note that there
exists techniques to compute loop bounds using for example rela-
tional abstractions and ranking functions, see for example [10], and
references therein.

Now, given the values of mazp, minp, val?®®, and hasInfPath
of subgraphs of an HCFG H, we inductively compute the value of
the properties for H as follows:

e If H is a single node with no self-loop, i.e., an abstract state
node, we have mazp(H) = minp(H) = 1, val?**(H) =
o(H), and hasInfPath(H) = false.

If H is acyclic, we construct the following graph H as in Sec-
tion 4.3, i.e., edges of H correspond to nodes of H', and every
node of H corresponds to two edges of weights (resp. lengths)
mazp(H') - val?**(H") and mazp(H') - val?**(H') (resp.
mazp(H') and minp(H')). Now, mazp(H) and minp(H) are
equal to the length of the longest and shortest paths in H . Also,
hasInfPath(H) = true if and only if there is a node H' in H
with hasInfPath(H') = 1. The value val?*®(H) can be eval-
uated using Howard’s policy iteration as in Section 4.3.

If H is a single node with a self-loop, there is only one

subgraph of H (say H'). We have mazp(H) = ulb(H) -
mazp(H'), Ub(H)-minp(H'), val?**(H) = val?**(H'), and
hasInfPath(H) = hasInfPath(H') V ulb(H) = oo.
Thus for such an HCFG, we can evaluate the limit-average value
by using the inductive evaluation scheme from Section 5.2, i.e.,
using the values minp, mazp, val?®® and hasInfPath, we can
inductively compute the limit-average values for an HCFG.

Example 21. Consider the HCFG in Figure 10 and its induc-
tive cover C from Example 20. We will illustrate a few steps
of the inductive computation of the properties on C. Fix P =
({minp), (mazp, val?*®, hasInfPath)).

Let us start for the leaves of C, i.e., Cp = 515283, Cnr = S38o,
Cr1 = sas5(s6 + 87)s3, and Cra = s1089. Now, we can compute
minp and maxp for these as the shortest and longest paths in the
corresponding HCFGs. Furthermore, the hasInfPath values for
each of these is 0 as all of these CFGs are acyclic. The val?®® of

boo 4 B, b
oo &

Cuy Cr1
L1
e o
L2 F H

Figure 10: HCFG of a program

all the leaves except Cr1 is 0 as the weights of all nodes except st
are 0. For Cr1, the val?®® can be computed to be 14—0. Therefore,
ReduceBound(Cg) = ((3),(3,0,0)), ReduceBound(Carr) =
((2),(2,0,0)), i = ReduceBound(Cr1) = ((4),(4,%.,0)),
and P> = ReduceBound(Cr2) = ((2),(2,0,0)).

Now, the nodes L1 = C7, and Ly = C7J4 have the children
{Cr1} and {Cr2} respectively. The PropComp procedure has
to now compute the properties P(L1) using Pr1. However, note
that the domain L does not give methods to compute loop-bounds
(see Example 22 for a refinement of the domain L which can
compute loop-bounds). Therefore, assuming ulb and llb for the
loops are 0 and oo respectively, we get the values P(L1) < Pp1 =
((0), (00, 22, 1)) and P(Lz) < Pra = ((0), (00,0, 1)).

Proceeding similarly, we get the estimates for P(F) < Pp =
((5), (00, 22,1)) and P(H) < Pu = ((0), (00, %2, 1)). Intu-
itively, this corresponds to a counterexample that ends with an in-
finite loop in LI that contains the costly operation.

6. Quantitative refinements

In this section, we present quantitative refinement algorithms for
the state-based and segment-based abstraction schemes.

6.1 Algorithmic Refinement of ExistMax abstractions

For the state-based abstraction scheme ExistMax, we give an algo-
rithm for counterexample-guided abstraction refinement (CEGAR)
for quantitative properties. The algorithm is based on the classical
CEGAR algorithm [2], which we extend to the quantitative case.
Here (as in [2]), we assume that the concrete system is finite-state,
and obtain a sound and complete algorithm. In the infinite-state
case, the algorithm is sound, but incomplete.

Let S = (Q,0,p,q.), let f be a (<,, C)-monotonic quantita-
tive property that admits memoryless extremal counterexamples (as
stated in Section 2, we restrict ourselves to these properties), and
let =~ be an equivalence relation on (). Let us further assume that
S = (Q%, 8%, p%, q) is the result of applying the EzistMaz ab-
straction parameterized by /1 on S. Let pe,: be the memoryless
counterexample of S® which realizes the value f(S<).

Algorithm 2 is a refinement procedure for FExistMax ab-
stractions. Its input consists of the concrete and abstract sys-
tems, the equivalence relation that parameterizes the abstrac-
tion, the quantitative property, and the extremal trace peq:. As
the extremal counterexample is memoryless, it is of the shape
H,...Hy(Hiy1 ... Hy)®. The output of the algorithm is either
a concrete counterexample (if one corresponding to pes: exists), or
arefined equivalence relation (which can be used to produce a new
abstract system).

Let us consider a set of traces ~y(pest) of the system
S that correspond to an abstract memoryless trace pes =
Hy...Hyp(Hg41 ... Hy,)”. The first observation is that checking
whether a concrete counterexample exists, i.e., whether y(peqt) is
non-empty, can be done by checking whether a finite abstract trace
pu corresponds to a concrete trace. The finite abstract trace p,, can
be obtained by unwinding the loop part of pesz: m number of times,
where m is the size of the smallest abstract state in the loop part of
Peat, or formally, m < min{|H;| | k + 1 < ¢ < n} (line 1). This
result can easily be adapted from [2] to the quantitative case.

Algorithm 2 Refinement for EzistMax

Input: WTS S = (Q, J, p, q.), quant. prop. f, eq. rel. ~1,
abstract WTS S = (Q%, %, p“, q),
abstract counterexample peze = Hi ... Hy(Hgy1 ... Hp)®
Output: refined eq. rel. ~2
or a concrete counterex. tecr
I m <« min{|y(H;)| | k+1<i<n}
¢ pu = unwind(pese, m, k,)
{we have Pu = G1 N GkJr(.,L,k).m}
t Ry v(o1) N{aq.}
74— 1
: while R #0Ai< (k+ (n—k)-m) do
Rit1 < post(Ri, p*(Git1)) Ny(Git1)
i1+ 1
if Ri,1 ;é @ then
return counterEx(Ro, . ..
else
U+ {s € y(Ri—1) | 3" € 7(Gi) : ds(s,8") A p(s') =
p*(Gi)}
return refine(~1,G;_1,U)

N

,Ri—1)

TYRINR W

—_—

_
n

Lines 3 to 7 traverse the finite abstract trace p,, and at each
step maintain the set of states that are reachable form the initial
state along a path corresponding to p,,. (The post operator in line 6
takes as input a set of concrete states L and a weight w, and returns
all the successors of states in L that have weight w.)

If the traversal finishes because at i-th step the set R; is empty,
then the algorithm refines the equivalence relation =1 by splitting
the equivalence class given by G;_1 into U and G;—1 \ U (line 11).
The set U contains those states that have a transition (correspond-
ing to a transition in p,,) to a state with weight p(G;). The inter-
section U N R;_1 is empty, because R; is empty. Thus separating U
leads to eliminating the counterexample from the abstract system.

If the traversal finishes a pass over the whole trace p,, it
can construct a concrete counterexample using sets of states
Ro, ey Ri_1 (line 9)

We have thus extended the classical CEGAR algorithm [2] to
the quantitative case. The extension is simple, the main difference
is in taking into account the weights in lines 6 and 11.

6.2 Algorithmic Refinement of HPathBound abstractions

In this subsection, we describe an algorithmic technique for refine-
ment of segment-based abstractions. We assume that the abstract
bound pair domain is precisely inductive.

We assume that the extremal counter-example from the evalu-
ation of a HPathBound abstraction is returned as a abstract hier-
archical trace ¥ = ((¢o A Po)(¢1 A Pr) ... (¢k A Pe)((dr+1 A
Piy1)...(¢n A Pp))“, suby). Note that we can assume a lasso-
shaped counter-example due to the memoryless property of the
quantitative properties we consider. Furthermore, without loss of
generality we also assume that every leaf in the abstract trace seg-
ment cover is composed of segments of length 1.

The basic structure of the refinement algorithm is same as in
FEzistMaz. However, the main difference is in the post operator.

For hierarchical traces, we define a non-deterministic post opera-
tor in Algorithm 3. Intuitively, the algorithm non-deterministically
chooses a level of the hierarchical trace to perform the analysis.
First, given a hierarchical trace of length 1, post operator com-
putes (Lines 3 and 4) the set y(¢o A Po) 0od = {qo | o €
v(¢po A Po) A (g, first(o)) € §}. Then, it computes the top-level
post set R* of states reachable from R using the segments from
v(po A Po) o §. Now, non-deterministically (Line 5) it chooses
whether to descend into the next level of the hierarchy. If it decides
to, the set of post states R is computed from the levels below, and
then the strengthening of R* by R',i.e., R* N R is returned.

Assume that the post computation is done at a particular level,
i.e., the level below is not used. Intuitively, this means that all the
segments in ¢g A Py are assumed to be valid segments, and the
property bounds are assumed to be tight, i.e., the part of the counter-
example corresponding to ¢o A Py is considered non-spurious. Note
that in the case where the algorithm always descends to the lowest
level, the set returned is exactly the set of states reachable using
segments in (1)) o 6. We also remark that nondeterminism in
Algorithm 3 can be instantiated in a manner suitable for a particular
domain.

Algorithm 3 Counterexample analysis for HPathBound

Input: Hierarchical trace ¢ = ((¢o A Po) ... (¢r A Pr), suby),
Concrete set of states R,
QOutput: Over-approximation of states reachable through seg-
ments in ().
1: if n > 1 then
return post((¢1 A P1)...(¢n A Pp), suby), post({¢po A
Po, suby), R))
T v(poANPp)od
: R*«+{q | 3goq €T :q€e R}
if * then
if suby (0) # L then
RY « post(suby(0), R)

n

else
RY « R*
. return (R* N RT, R* R")

@OV IUNAE®

—

Let C be the inductive trace segment cover and let ¢ = ((¢o A
Po)(o1AP1) .. Sk APk)((Grt1 APrt1) - - (dnAPn))”, suby)
be the extremal abstract trace. The abstraction refinement proce-
dure hAbsRefine(C, v, Ro) proceeds similarly to Algorithm 2 as
follows:

e The abstract hierarchical trace 1 is unwound m number of
times, where m = min{|y(¢; A ;)| |i € {k+1,...,n}};

e Let Ry be the set of concrete initial states. For each abstract
SegmentSet property pair ¢; A P; in the unwound trace, we
compute (R;t1, R*, R") = post({(¢: A Pi, suby), R:);

e If at any step R; 41 = (), we refine the inductive trace segment
cover C using set R; and (¢, sub,) as hRefine(R;, (¢s, sub,))
(explained below). Otherwise, return any concrete counter-
example constructed from the set { Ro, R, .. .}.

We describe the computation of hRefine(R;, (¢; N\ P, sub,))
when post((¢;, sub,), R;) = @: during the computation
post({¢;, sub,), R;) (execution of Algorithm 3) we have at least
one of the following cases based on the values of R* and R'. First,
we define Tr = {0 | 3¢ € R(r, first(c)) € 6 Ao € v(ps A P;)}
and T3 = {o | Ir € R.(r, first(0)) € 6 Ao € y(suby(4))}.
Intuitively, T’r is the set of concrete segments from R in ¢; A P,
and T5°'°" is the set of concrete segments from R generated from
the hierarchical levels under ¢; A P;. We have one of the following
options:

e R* = 0 A RT = (). In this case, the refinement returned is
hAbsRefine(C, (sub, (i), sub,), R), i.e., we run the abstrac-
tion refinement procedure on the lower level, starting from the
concrete set of states R.

e R* = (). In this case, we perform a horizontal refinement to
separate the sets Tr and T'\ T, i.e., the node labelled ¢; A P;
is split into ¢ A P4 and ¢& A PP where (¢4 APA) U~ (45 A
PBY = y(¢;AP) and Tr C v(¢p* AP ATRNY (6P APE) =
(). Intuitively, we are separating segments in ¢; A P; that are
from R from those that are not from R.

e R* # (0 AR*NR' = 0. In this case, we perform multiple
simultaneous refinements. The segment sets which need to be
distinguished from each other are T'\ (Tr U T§*°*), Tr and
TEew Intuitively, we are trying to separate the segments in
v(¢s A P;) that (a) do not start from R (i.e., T\ (Tr UTE")),
(b) those that start from R and are validly generated from the
levels below (i.e., Tf;“’“’); and (c) those that do start from R
and are not validly generated from the levels below (i.e., Tr).
Formally, let ¢* A P4, P A P, and ¢ A P be such that:

= T C (o™ AP U~(¢® A PP)U~(¢ A PO);
= Tr C (6" AP ATEY (¢ A PA) =0
v T Cy(¢P APP)ATR Ny (¢ A PP) = 0; and
s (TRUTE"™)Ny(¢° A PY) = 0.
First, we do a horizontal refinement splitting the node ¢; A P;
into ¢ A P4, B A PE, and ¢ A PC. Second, in the subtree
rooted at qu A PA, the levels below contains the information
that T'r is infeasible, but the root does not. So, we perform up-
ward strengthening refinements till the root contains the same
information. Third, in the subtree rooted at ¢B A PB | the root
contains the information that T%°/°" is infeasible, but the levels
below do not. So, we perform either (a) downward strengthen-
ing refinements till the levels below contain the same informa-
tion; or (b) vertical joining refinements till there are no levels
below. Note that if one of 4 A P4, ¢& A PE or ¢ A PP is
empty, we omit it.

Example 22. Consider the HCFG H and the corresponding ab-
stract trace segment cover C from Example 21. We now show some
examples of hierarchical counter-example guided refinements for
computing the limit-average value.

We work in a more powerful refined domain than in Example 21,
one that allows computation of loop bounds. Let L be the domain of
regular expressions over HC FG’s along with a relation between
the values of the variables in the initial and final states. For exam-
ple, the expression ((sas5(s¢ + s7)s3,b’ = —b) represents the set
of segments which match s4s5(se + s7)ss and have the value of b
is the last state is negation of the value of b in the first state.

Let us first start with abstract trace segment cover C from 21.
A part of the abstract extremal trace generated from C will
be (L1, sub) where (a) sub(l) = ((Cr1)“,sud’), where
(b) sub'(i) = sasssrss for all i > 1. We will illustrate two re-
finement steps that might occur:

e Suppose during the refinement process we are computing
post({L1, sub'), R) where R is the set of states at location s3
with j = 0. Now, we can perform the analysis either at the top
level or at the lower level:

" At the top level, we get the post states to be R* where the
control location of a state is in s3.

* At the lower level, we get the post states to be R = () as
the transition from ss to sy is disabled due to j being 0.

Therefore, we need to refine the abstract SegmentSet s455(s6 +

s7)83. One possible valid refinement is to strengthen the set

5485(86 + 57)83 10 8485(86 + 87)s3,J > OAj = j— 1. Using

this strengthened set, we can compute that the upper and lower

loop bounds for Ly are 10. This leads to a improvement in the

value of the system as now, there is no infinite path in the high
20

value segment L. The new value of the system is <.

Suppose during the refinement process we are computing
post({(L1 A P,sub’), R) where P bounds the limit-average
of segments in L to %, R is the set of states at location
s3 with b = true. Again, performing the analysis at top
level produces R* = {sz}, but the lower level produces R'
where RY = 0. Therefore, we can to refine the abstract Seg-
mentSet s155(s6 + s7)s3 and one possible refinement is a
horizontal split into s4555653,b = true AV = false and
s4855753,b = false A b = true. Performing this refinement
reduces the value of L1 to %0 and hence, by upward strength-

ening the value of the whole system to %.

7. Case study: WCET analysis

We present a case study to demonstrate anytime verification, and
to evaluate EzistMaz and hierarchical PathBound abstractions.
Worst-case execution time (WCET) estimation is an important part
of verifying real-time systems. We only study one aspect, i.e., cache
behavior prediction. In a processor, clock cycles needed for an in-
struction can vary by factors of 10-100 based on cache hits vs
misses. Assuming the worst-case for all instructions leads to bad
WCET estimates. Abstract domains for cache behavior prediction
are well studied (e.g., [9, 18]). However, we know of no work on au-
tomated refinement for these abstractions. Note that this case study
and the accompanying implementation is not a complete WCET
analysis tool, but a prototype used to illustrate the quantitative ab-
straction refinement approach. Our intention is just to evaluate the
anytime aspect of our approach.

We estimate WCET using the limit-average property. Intu-
itively, we put the whole program in a nonterminating loop. The
limit-average then corresponds to the average cost of an instruction
in the worst-case execution of a loop. (For a terminating program, it
is the execution of the artificial outer loop.) WCET is estimated by
multiplying the limit-average values with (an over-approximation
of) the length of the longest trace. We report limit-average values
instead of WCETs.

The cache model and the abstract domain used are from [9].
Multiple abstract domains are possible based on the tracked loca-
tions. If no set is tracked, every memory access is deemed a cache-
miss; whereas the invariant computation is very expensive in the
domain which tracks all cache-sets. Here, we start from the empty
cache and refine by tracking more cache-sets as necessary.

7.1 Implementation details

We implemented a WCET analyzer based on the presented tech-
niques in a tool QUART that analyzes x86 binaries.

Static analysis. We analyze the binary and produce the control flow
graph. Instructions in the program may operate on non-constant
addresses (for example, array indexing leads to variable offsets
from a fixed address). However, if the exact addresses cannot be
computed statically, we perform no further analysis and assume
that the memory access is a cache miss. This restriction comes from
the cache abstract domain we use from [9].

Worst-case computation. In the resulting graph, we annotate
states with invariants from the current cache abstract domain. From
the invariants, we compute costs of each transition (we use costs
of 1 and 25 cycles for cache-hits and cache-misses, respectively).
We then find the worst-case using techniques of Section 3 and Sec-
tion 4.3 to find a the worst-case limit-average value. Furthermore,
we implemented the extension of the algorithm to graphs with both
edge weights and edge lengths [3].

Refinement. We analyze worst-case counter-example ext:
Feasibility analysis. We first check if ext is a valid program ex-

Exam- Step | Value | Time Tracked
ple (ms)
0 14.14 | 1240
Basic 1 6.50 | 2102 i
Example 2 4.87 | 2675 a
3 4.75 3275 b
4 1.27 | 3864 c
5 1.03 | 4631 v
0 15.77 | 908
1 11.15 | 1130 m
2 8.23 | 1369 r
Binary 3 5.0 1707 1
search 4 3.76 1895 S
5 30 | 2211 | a[¥FY
6 | 297 | 2527 | al 2
7 285 | 3071 | a[BNY)
0 1549 | 524
Poly- 1 8.13 759 i
nomial 2 4.45 1025 val
Eval. 3 2.95 1237 X
0 13.76 289
GCD 1 9.47 399 inp2
2 | 665 | 472 inp1
3 6.33 536 temp

Table 1: EzxistMax abstraction results

ecution (ignoring the cache) using a custom symbolic execution
computation. If ext is not a valid execution, we refine the abstract
graph using standard CEGAR techniques.

Cache Analysis. If ext is valid, we compute the concrete cache
states for it. If the concrete value obtained is the same as that of
ext, we return the concrete trace.

Refinement heuristic. Otherwise, of all locations accessed in the
loop of ext, we find the one with most abstract cache misses which
are concrete cache hits. The current cache abstract domain is re-
fined by additionally tracking this location.

Fall-back refinement. If all the locations accessed in ext are al-
ready being tracked, we use Algorithm 2 and the algorithm given
by hAbsRefine to do the refinement.

7.2 Evaluation of ExistMaz abstraction

For evaluating the FzistMazx abstrac-
tion and refinement methods, we consider input(s);
binaries for five (small) C programs, in- 1=0;r=N-1;
cluding the example from the introduc- do {
tion (called Basic example in the table). m=1+r/2;
The results are in Table 1. For each ex- if(s > a[nl)

while(true)

. . =m + 1;
ample program, the table contains lines, eise m+ 1
with each corresponding to a refinement r=m- 1:

step. For each refinement step we report
the current estimate for the limit-average
value, the running time for the analy-
sis (cumulative; in milliseconds) and in
case the refinement enlarged the abstract
cache, we also show what new memory
locations correspond to the entries in the abstract cache. In each
case, the over-approximated limit-average value decreases mono-
tonically as the tool is given more time.

Binary search. We analyze a procedure (Figure 11) that repeatedly
performs binary search for different inputs on a given array. We
start with the empty abstract cache domain and all behaviors have
high values (with worst-case value 15.77). In the ext-trace, variable
m, accessed 4 times every iteration of the inner loop, causes most
spurious cache misses.

} while(l <= r
A alm] !'= s)

Figure 11: Bin.
Search

Using the Refinement heuristic we heuristically choose the loca-
tion of m is additionally tracked in the cache abstract domain reduc-
ing the value to 11.15. Indices 1, r and the input s are the next most
frequently used, and are added subsequently to the cache abstract
domain. More importantly, the most used array elements are added
in order. During binary search, the element at position N/2 is ac-
cessed always, and the elements at N/4 and 3N/4 half the times,
and so on. The refinements obtained add these array elements in or-
der. This illustrates the anytime aspect: refinement can be stopped
at any point to obtain an over-approximation of the value.

7.3 Evaluation of the hierarchical PathBound abstraction

For evaluating the PathBound abstraction refinement procedure,
we picked 4 benchmarks from the collection of WCET bench-
marks in [11]. These benchmarks were larger than the ones for
the FxistMax evaluation with around 150-400 lines of code
each. The benchmarks we picked included a simple program
which scanned a matrix and counted elements, matrix multi-
plication, and two versions of discrete-cosine transformations.

Bench Time We used the hier-

mark Step | Value (ms) archical PathBound
0 874 1810 abstraction-

3 8.64 6349 refinement algorithm,

cnt 4 4.08 8298 ie., the algorithm

0 8.73 4669 given by hRefine.

2 8.71 15660 We note that we

matmult 5 871 30408 do not perform any

6 4.17 35676 cache refinements.

0 6.88 3142 Nevertheless, the

fdct 1 1.94 4274 hierarchical as-

2 1.76 6685 pect of hierarchical

0 6.95 3005 PathBound abstrac-

o 1 3.35 5759 tion was evaluated,

Jfdctint 2 1.89 8674 as three of the bench-

3 1:57 11809 marks contained a

number of nested
loops. The challenge
addressed was to
obtain good (and
monotonically decreasing) estimates on WCET, as the abstraction
is refined.

We summarize the results in Table 2. For each example pro-
gram, the table contains a number of lines, with each line corre-
sponding to a refinement step. For each refinement step we show
the current estimate for the limit-average value, and the running
time for the analysis (cumulative; in milliseconds). As it can be
seen, the limit-average values monotonically decrease with longer
execution time. It should be noted that for most of these programs,
to obtain similar values with the EzistMaz approach, one would
need to perform a large number (in thousands) of counter-example
guided refinements (as the nested loops would have to be unrolled).

Table 2: PathBound abstraction re-
sults

8. Conclusion

Summary. This paper makes four main contributions. First, we
present a general framework for abstraction and refinement with
respect to quantitative system properties. Refinements for quanti-
tative abstractions have not been studied before.Second, we pro-
pose both state-based and segment-based quantitative abstrac-
tion schemes. Quantitative segment-based abstractions are entirely
novel, to the best of our knowledge. Third, we present algorithms
for the automated refinement of quantitative abstractions, achiev-
ing the monotonic over-approximation property that enables any-
time verification. Fourth, we implement refinement algorithms for
WCET analysis of executables, in order to demonstrate the anytime

verification property of our analysis, and to investigate trade-offs
between the proposed abstractions.

Future work. There are several directions for future work. The first
is to perform larger-scale case studies, for instance for worst-case
execution time analysis, with more realistic architecture models.
Second, quantitative abstraction can aid partial-program synthesis,
as quantitative reasoning is necessary if the goal is not to synthe-
size any program, but rather the best performing program according
to quantitative measures such as performance or robustness. Fur-
thermore, the anytime verification property of the refinements we
proposed can lead to anytime synthesis methods, that is, methods
that would synthesize correct programs, and refine these into more
optimized versions if given more time.

References
[1] M. Boddy. Anytime problem solving using dynamic programming. In
AAAI pages 738743, 1991.
[2] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752-794, 2003.

[3] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick, and J.-
P. Quadrat. Numerical computation of spectral elements in max-plus
algebra, 1998.

[4] B. Cook, A. Podelski, and A. Rybalchenko. Abstraction refinement
for termination. In SAS, pages 87-101, 2005.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In POPL, pages 238-252, 1977.

[6] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In POPL, pages 269-282, 1979.

[7]1 P. Cousot and R. Cousot. An abstract interpretation framework for
termination. In POPL, pages 245-258, 2012.

[8] L. de Alfaro and P. Roy. Magnifying-lens abstraction for Markov
decision processes. In CAV, pages 325-338, 2007.

[9] C. Ferdinand, F. Martin, R. Wilhelm, and M. Alt. Cache behavior pre-
diction by abstract interpretation. Sci. Comput. Program., 35(2):163—
189, 1999.

[10] S. Gulwani and F. Zuleger. The reachability-bound problem. In PLDI,
pages 292-304, 2010.

[11] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The milardalen
WCET benchmarks: Past, present and future. In WCET, pages 136—
146, 2010.

[12] H. Hermanns, B. Wachter, and L. Zhang. Probabilistic CEGAR. In
CAV, pages 162-175, 2008.

[13] M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. Abstrac-
tion refinement for probabilistic software. In VM CAI, pages 182-197,
2009.

[14] A. Podelski and A. Rybalchenko. Transition predicate abstraction and
fair termination. In POPL, pages 132—144, 2005.

[15] A. Prantl, M. Schordan, and J. Knoop. TuBound - a conceptually new
tool for worst-case execution time analysis. In WCET, 2008.

[16] N. Shankar. A tool bus for anytime verification. Usable Verification,
2010.

[17] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded
software: a first step towards software power minimization. In ICCAD,
pages 384-390, 1994.

[18] R. Wilhelm, S. Altmeyer, C. Burguiere, D. Grund, J. Herter,
J. Reineke, B. Wachter, and S. Wilhelm. Static timing analysis for
hard real-time systems. In VM CAI, pages 3-22, 2010.

[19] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenstrom. The worst-case
execution-time problem - overview of methods and survey of tools.
ACM Trans. Embedded Comput. Syst., 7(3), 2008.

