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tSpoken language dialogue systems are an important step on the way tothe ideal human-
omputer interfa
e, and the semanti
 analysis of spontaneousspee
h plays a fundamental role in any su
h system. This arti
le presents thedevelopment of a semanti
 analyzer for un
onstrained spee
h, independent ofthe appli
ation domain and the language spoken. A 
ase grammar formalismis used for knowledge representation, and the parsing is based on a hiddenMarkov model trained from annotated dialogue 
orpora. After des
ribing thear
hite
ture of the analyzer, together with details of its 
omponents, a series ofexperiments towards integrating it in a Romanian dialogue system for 
lassestimetable information retrieval are presented. Evaluations 
arried out duringthese experiments have shown performan
e �gures 
lose to the best previouslyreported in the literature.1 Introdu
tionAlong the development of 
omputing systems, the human-
omputer interfa
es havealso 
ome a long way, evolving from one paradigm to another. On the road towardsan ideal multi-modal interfa
e, perfe
tly adapted to the human 
ommuni
ation style,the intera
tive spoken dialogue systems represent an important step.One of the important problems to be solved by su
h systems, besides spee
hre
ognition and synthesis, is that of understanding the meaning behind the users'pronun
iations, based on whi
h their essential fun
tion { that of dialogue { 
an beperformed. Traditionally, the semanti
 analysis of human languages [1℄ dealt withtheir written form, and used quite rigid me
hanisms, unable to handle spontaneousspee
h phenomena (false starts, restarts, �lled pauses, hesitations, stutters, repeats,interje
tions, et
.). Various te
hniques have been proposed and tried to solve or�Work done while at Politehni
a University of Timi�soara.



at least alleviate this problem. An early example is the MIT Tina parser [2℄, inwhi
h ideas from 
ontext free grammars, augmented transition networks, and lexi
alfun
tional grammars were 
ombined with probabilities automati
ally assigned to ar
sbased on training senten
es. Another example is the PHOENIX parser [3℄, developedat Carnegie Mellon University, in whi
h small phrases were parsed and used to �llslots in semanti
 frames, with no 
on
ern for an overall senten
e parse. More re
ently,other solutions have been proposed and tried [4, 5, 6, 7, 8, 9℄.This arti
le des
ribes the approa
h to the problem of spee
h understanding takenas part of a larger e�ort [10, 11, 12, 13, 14℄ aimed at building a Romanian spokenlanguage dialogue system [15℄. After a brief overview of spoken dialogue systems(Se
tion 2) and a short dis
ussion of some problems spe
i�
 to the semanti
 analysisof spoken language (Se
tion 3), we will present a domain and language independentsemanti
 analyzer. The analyzer uses 
ase frames for knowledge representation anda hidden Markov model as a semanti
 learning and parsing me
hanism (Se
tion 4).The experiments performed and the results obtained during the �rst steps towardsits integration in a Romanian dialogue system are detailed in Se
tion 5. Con
lusionsdrawn from the work so far, together with some plans for the future, end the arti
le.2 Spoken dialogue systemsAt this moment, due to limitations in the subja
ent te
hnologies, spoken languagedialogue systems are limited to 
ertain appli
ation domains, most often informationretrieval or/and simple 
ooperative problem solving. But regardless of the appli
ationdomain or language, the issues that have to be addressed are mainly the same. Thishas generally led to modular designs, and a generi
 stru
ture for an informationretrieval spoken dialogue system 
an be identi�ed (Figure 1).
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al ar
hite
ture of an information retrieval spoken dialogue system.The main 
omponents of a spoken dialogue system and their fun
tions are:Spee
h Re
ognizer { re
eives the a
ousti
 spee
h signal produ
ed by the user andtypi
ally generates a set of hypotheses 
ontaining the utteran
es most likely tohave been pronoun
ed given the signal.



Semanti
 Analyzer { generates a formalized meaning representation of the textre
eived from the Spee
h Re
ognizer (the main obje
t of this arti
le).Dialogue Manager { lies at the 
ore of the system, 
ontrolling the intera
tion withthe user, and 
oordinating the other 
omponents.Response Generator { produ
es the appropriate system replies, using informationfrom an appli
ation domain knowledge database.Spee
h Synthesizer { 
onstru
ts the a
ousti
 form of the system replies produ
edby the Response Generator.3 Spoken Language Semanti
 AnalysisSemanti
 analysis plays an essential role in any spoken dialogue system: it extra
tsand partly disambiguates the information 
ontained in the text generated by thespee
h re
ognizer, produ
ing a formalized representation of this information, �t forfurther pro
essing by the dialogue management algorithms.Two de
isions have to be made when designing a semanti
 analyzer: the �rst
on
erns the formalism employed to represent the meaning of user utteran
es; these
ond regards the parsing te
hnique used to extra
t this meaning from the text.3.1 Representation FormalismThe links between syntax and semanti
s have led to the development of semanti
analysis te
hniques based on a synta
ti
 analysis. Although su
h methods were usedwith relative su

ess for the semanti
 analysis of written natural language [1℄, theirextension to un
onstrained spee
h raises some problems, generated mainly by therigidity of the various formalisms on whi
h they are based, and whi
h fail to a

ountfor ill-formed utteran
es or spontaneous spee
h phenomena: false starts, restarts,dis
uen
ies, �lled pauses, hesitations, et
. Most of these formalisms are therefore notappropriate 
hoi
es for semanti
 analysis in spoken dialogue systems.Mu
h more appropriate for meaning extra
tion and representation in this domain,as already demonstrated [3, 7, 9℄, is a 
ase grammar formalism. It operates aroundthe 
entral notion of 
ase frame, whi
h 
onsists of a �xed 
on
ept, identifying a 
aseframe, and a number of optional 
ases (slots) whi
h 
ontain information representingthe knowledge available in relation with that 
on
ept.Figure 2 illustrates the use of a 
ase frame to represent the meaning of a userquestion from a hypotheti
al 
onversation with a dialogue system for informationretrieval, operating in the 
lasses timetable domain. The 
on
ept is represented inangular parentheses (<when>) on the �rst line, and the 
ases (slots) and their valueson subsequent separate lines; missing 
ase values are represented as \-".Another essential entity in a 
ase grammar formalism is the 
ase marker. This issimply a word or phrase whi
h 
onstrains the possible 
ase values used to instantiatethe asso
iated 
ase in a frame (e.g., in Figure 2 the word professor is a 
ase marker for



when does professor Smith tea
h Algebra<when>year = -group = -subgroup = -subje
t = "Algebra"fa
ulty = "Smith"Figure 2: A sample utteran
e and its 
ase frame representation (pun
tuationand 
apitalization 
an not be generated by the spee
h re
ognizer unless expli
itlyverbalized and/or 
ontained in the re
ognition lexi
on).the fa
ulty 
ase, indi
ating the lo
ation of the 
orresponding 
ase value in the text).The 
ase markers impose therefore limitations upon the stru
tures allowed by a 
asegrammar formalism, modeling to some extent the syntax of the language. And sin
ethey indi
ate the lo
ation of meaningful information, they also play a fundamentalrole in parsing and information extra
tion.(er) what professor holds the AI lab with (er) the se
ond group<who><identifi
ation>group = 2... (uninstantiated 
ases and/or subframes)<subje
t-spe
ifi
ation>laboratory = "Artifi
ial Intelligen
e"... (uninstantiated 
ases and/or subframes)Figure 3: Another utteran
e and the resulting 
ase frame system. The (er)sdenote �lled pauses as examples of spontaneous spee
h phenomena; other su
hphenomena are false starts, restarts, dis
uen
ies, hesitations, et
.Case frames 
an be linked together, forming a frame system. This in
reases the
on
iseness and expressive power of the 
ase frame representation. Figure 3 gives anexample of an instantiation of su
h a frame system, used in this 
ase to represent themeaning of a slightly more 
omplex, a
tual user question. The 
on
ept in the mainframe (<who>) indi
ates that the user is trying to identify a fa
ulty member, while thesubframes (<identifi
ation> and <subje
t-spe
ifi
ation>) hold other pie
esof information from the question, useful in reasoning about the 
on
ept.



3.2 Parsing MethodOn
e a 
ase grammar 
hosen as representation formalism, the next step is to sele
ta te
hnique to derive the stru
ture (parse) of an analyzed utteran
e in terms of itsentities: 
on
epts (and hen
e 
ase frames), 
ase markers, and 
ase values. Here, thesolutions fall essentially in two 
ategories: rule-based or sto
hasti
.The rule-based parsing over a 
ase grammar formalism implies writing rules whi
h
ontrol the identi�
ation of 
on
epts and 
ase values [9℄. Typi
ally, the rules arelexi
alized, de�ning word families that identify the 
on
epts and the 
ase markers.Rules must also des
ribe the links between 
ase markers and 
ase values.The sto
hasti
 parsing [9℄ uses a probabilisti
 model to identify 
on
epts and
ase markers and values, to represent links between 
ase markers and values, and tosemanti
ally de
ode users' utteran
es. The model is built during a training (learning)phase, in whi
h its parameters 
apture the 
orresponden
es between the input textsand their semanti
 representations. On
e the training 
ompleted, the model is usedin de
oding mode to generate the most likely semanti
 representation of the input.A sto
hasti
 semanti
 analyzer presents several advantages over a rule-based one:�rst, the need for de�ning a set of rules (whi
h usually is a 
ostly and error-pronepro
ess) is eliminated, the rules being learned from the training set. Se
ondly, the
exibility and robustness of the system are in
reased as the rules are a
quired by anautomati
 learning pro
ess from 
orpora of real-world data. Moreover, the sto
hasti
approa
h allows for the implementation of a generi
 analyzer, whose 
ustomizationto a 
ertain language and appli
ation domain implies just a model rede�nition andtraining using spe
i�
 
orpora.During the last de
ade, sto
hasti
 parsers for spee
h understanding were realizedusing hidden Markov models [4, 7, 8℄ and neural networks [5, 6℄, with the �rst showingbetter results. Given this and the experien
e we already had with them from spee
hre
ognition work [11℄, the hidden Markov models were 
hosen for our analyzer.The hidden Markov models (HMM) are sto
hasti
 �nite state automata, in whi
hboth the transitions between states and the input or output symbols o

ur with 
ertainprobabilities. Most important for their use in spee
h and language pro
essing is thefa
t that these probabilities 
an be learned from appropriate training 
orpora usingsimple algorithms, and that the parsing of an input sequen
e of symbols 
an be donein a simple, time-eÆ
ient manner through the Viterbi de
oding algorithm. For moredetails, the reader is referred to the relevant literature [16, 17, 18℄.4 The Sto
hasti
 Semanti
 AnalyzerThe semanti
 analyzer uses a 
ase grammar formalism for knowledge representationand a hidden Markov model as a semanti
 learning and de
oding me
hanism, andits stru
ture is presented in Figure 4. It was implemented as a C++ 
lass library,already used to build a set of tools for HMM, 
orpora, and di
tionary manipulation,and is easily integrable into a dialogue system. Next, we will present in more detailea
h of the 
omponent modules.
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Figure 4: Semanti
 analyzer ar
hite
ture and utteran
e pro
essing example. Forthe utteran
e in Figure 3, various representations are illustrated: spee
h re
ognizeroutput (SRO), normalized text (NOR), semanti
 parse (PRS), and 
ase frame (FRM).Only the most likely hypothesis output by the spee
h re
ognizer is 
onsidered.The parse 
onsists of semanti
 labels for 
on
epts { <
on
ept> , 
ase markers {(m:
ase) , and 
ase values { (v:
ase) .4.1 Text Prepro
essingThe role of the text prepro
essor is to transform the spee
h re
ognizer output into anappropriate sequen
e of input symbols for the hidden Markov model (for more detailsabout this, see Se
tion 4.2). The transformation is implemented in several steps, andit essentially a

omplishes a vo
abulary redu
tion that does not signi�
antly a�e
tthe semanti
 
ontent of the utteran
e.The prepro
essing steps, exempli�ed with referen
e to Figure 4, are:� Non-lexi
al a
ousti
 event redu
tion: eliminates various a
ousti
 eventsthat might have been 
aptured by the spee
h re
ognizer, but whi
h do not 
arryany linguisti
 information: �lled pauses, 
oughs, noises, et
. { in Figure 4, thetwo �lled pauses trans
ribed as \(er)".� Number normalization: trans
ribes the numbers from the spee
h re
ognizeroutput into the 
orrespondent Arabi
 form (e.g. \se
ond" be
omes "2").



� In
e
tion redu
tion: repla
es various in
e
ted word forms with their baseforms { espe
ially e�e
tive for highly in
e
tional languages, su
h as Romanian.� Expression uni�
ation: 
lusters into unitary expressions groups of wordsthat 
onstitute semanti
 units (e.g. \what professor" be
omes \who").� Alias substitution: repla
es various words and word forms with standardequivalents. This is used mainly to a

ount for synonyms and abbreviations(\AI" turns into "Arti�
ial Intelligen
e", \lab" { into \laboratory").� Category uni�
ation: groups words or expressions into wider 
ategories (mostoften database re
ord �elds { e.g. \Arti�
ial Intelligen
e", being a value of theSUBJECT �eld, is transformed into \[SUBJECT:\Arti�
ial Intelligen
e"℄" { orother general 
ategories, e.g. \2" be
omes \[NR:"2"℄").� Out-of-domain word elimination: �lters out words whi
h are 
onsiderednot to be relevant for the appli
ation domain (\holds", \the", \with"), on thebasis of a domain vo
abulary built during the training phase.These steps were implemented using rather simple, deterministi
 approa
hes likerepla
ement lists and vo
abulary 
he
ks. More sophisti
ated statisti
al (e.g. hiddenMarkov models) and deterministi
 (e.g. �nite state transdu
ers) te
hniques exist forsolving some of these problems [18, 19℄, but given the limited domain of our dialoguesystem, we found the simple approa
hes mentioned above to be suÆ
ient for the timebeing, and left the more elaborate methods for future work.4.2 Semanti
 De
odingTo understand how semanti
 analysis is performed based on hidden Markov models,
onsider the example in Figure 4: the normalized form of the utteran
e in
ludes �veunits (who, [SUBJECT: "Arti�
ial Intelligen
e"℄, laboratory, [NR: "2"℄, group), ea
hwith a 
orrespondent semanti
 label in the parse.
O

S

who

<who> 

[SUBJECT:"Artificial Intelligence"]

(v:group) (m:group)

laboratory

(m:laboratory)

[NR:"2"] group

(v:laboratory)

(PRS)

(NOR) Figure 5: HMM-based semanti
 de
oding.If semanti
 labels are asso
iated with HMM states, and normalized text units withHMM input symbols, the semanti
 parsing 
an be thought of as an HMM de
oding(Figure 5): the \hidden" sequen
e S of HMM states, i.e. semanti
 labels, is \unveiled"based on the observed sequen
e O of HMM input symbols, i.e. normalized text units.



Assuming that a trained model M is available, the Viterbi algorithm [20℄ 
an beemployed to determine the sequen
e S of states (semanti
 labels) whi
h maximizesthe probability P (OjS,M), and whi
h (in the statisti
al sense) is the most likely to
orrespond to the input sequen
e O.The use of an HMM as a sto
hasti
 learning and parsing me
hanism is justi�edby the optional presen
e of 
ases in 
ase frames, and the fa
t that it is not alwayspossible to know a priory the relations between 
ase markers and values, or whi
hsemanti
 label a normalized text unit should be mapped to. Ea
h normalized textunit is assumed to 
orrespond to a single semanti
 label, but the identity of thatlabel 
an be highly 
ontext-dependent. For example, in Figure 6, the [NR:"2"℄ and[SUBJECT:"Arti�
ial Intelligen
e"℄ normalized text units, also present in the previousexample utteran
e, are mapped this time to other semanti
 labels.SRO: when does the se
ond year have the AI 
ourseNOR: when [NR:"2"℄ year [SUBJECT:"Artifi
ial Intelligen
e"℄ 
oursePRS: <when> (v:year) (m:year) (v:
ourse) (m:
ourse)Figure 6: Another sample utteran
e trans
ription, together with its normalizedform and semanti
 parse. Although some normalized text units are the same as inthe previous example, their semanti
 labels have 
hanged.To learn the 
ase grammar for a 
ertain appli
ation, an HMM is trained from a
orpus of spe
i�
 normalized and semanti
ally labeled user utteran
es. The modelsize is determined by the number of semanti
 labels in the 
ase grammar (number ofstates) and the dimension of the normalized text vo
abulary (number of observationsymbols1). Maximum likelihood estimates (MLE) of the HMM parameters (initialstate, state transition, and observation symbol probabilities) are then 
omputed asrelative frequen
ies in the training 
orpus.The downside of the MLE method is that it does not reliably estimate probabilitiesof rare but nevertheless possible events: it is likely that some valid semanti
 labelsequen
es will not appear in the training 
orpus (given its limited size), and the
orresponding initial state or state transition probabilities will be estimated to zero.Furthermore, the probability estimates for events whi
h o

ur in the 
orpus a verysmall number of times will be biased up. This is a well studied problem in statisti
allanguage modeling, and a number of di�erent methods exist for dealing with it [18℄.In our system, we employed the Turing-Good smoothing [21, 22, 18℄. This repla
esthe maximum likelihood estimates of unreliable parameters (probabilities of initialstates and state transitions that o

ur less than a 
ertain number of times in thetraining 
orpus) with their Turing-Good dis
ounted estimates. The probability massreleased in this pro
ess is then uniformly redistributed among the unseen events, andthe result is an ergodi
 hidden Markov model.1Redu
ing the normalized text vo
abulary, the prepro
essing redu
es therefore the HMM size.



4.3 Frame GenerationThe last module in the semanti
 analysis 
hain is the frame builder. It produ
esthe a
tual 
ase frame representation of the input utteran
e, based on the normalizedtext and the sequen
e of semanti
 labels re
eived from the semanti
 de
oder. Thealgorithm employed is relatively simple: the 
on
ept labels from the parse identifythe frames to be instantiated, and the 
ase values are used to �ll the slots.Given its sto
hasti
 nature, the semanti
 de
oding may generate a parse withno 
on
ept label. In this 
ase, a frame is built after the de
oding is repeated usingsupplementary information, re
eived from the dialoguemanager, about the most likely
on
epts (
ase frames) expe
ted from the user at that point in the dialogue.5 Experiments and ResultsThis se
tion des
ribes the �rst steps towards integrating the semanti
 analyzer into aspoken dialogue system for 
lasses timetable information retrieval, and illustrates thedevelopment of the resour
es needed to 
ustomize the generi
 analyzer for a parti
ularappli
ation. Intermediate and �nal performan
e �gures are also presented.First, a preliminary appli
ation domain analysis was performed. The 
on
epts thatthe system operates with were identi�ed: subje
ts, professors, 
lasses, 
lassrooms,student identi�
ation information (spe
ialization, year, group, subgroup), and timeinformation (days, time intervals, and time spe
i�ers). The intended dialogue system
apabilities and limits were also 
learly spe
i�ed (for more details, see [23℄).The dialogue 
orpora used in these experiments were 
olle
ted using a Wizardof Oz environment [14℄. To ensure a minimal domain 
overage and to allow at thesame time for spontaneous user utteran
es, 42 subje
ts { mainly 
omputer s
ien
eundergraduate students and a few fa
ulty members { sustained both s
enario-drivenand free dialogues. Three training 
orpora were 
olle
ted, 
ontaining 182 dialogues(130 s
enario-based and 52 free). From the 1088 user utteran
es in these 
orpora, 37out-of-domain utteran
es were eliminated, so 1051 utteran
es with a lexi
on of 400words were a
tually used. A test 
orpus of 45 dialogues (283 utteran
es) was also
olle
ted, and all user utteran
es were manually trans
ribed.The resour
es needed to 
ustomize the analyzer for a spe
i�
 appli
ation are theprepro
essor 
ontrol �les (one for ea
h prepro
essing stage), the HMM, and the framesystem spe
i�
ation. In these experiments, they were developed in three su

essivestages, using the three training 
orpora in a bootstrap pro
ess.In the �rst stage, the 352 utteran
es in the �rst training 
orpus were manuallyprepro
essed and semanti
ally labeled, and an initial set of prepro
essor 
ontrol �leswas developed. Eight 
ategories were identi�ed: 3 generi
 { [DAY RELATIVE℄,[TIME OF DAY℄, and [NR℄ { and 5 
orresponding to �elds in the 
lasses timetabledatabase { [SUBJECT℄, [DAY℄, [GROUP℄, [PROFESSOR℄, and [SPECIALTY℄.A lexi
on of about 230 words was extra
ted from the 
orpus, and repla
ement listswere 
reated. Next, 
ase frames and semanti
 labels were identi�ed, and a �rst versionof the frame system was developed. It 
ontained 12 frames and subframes: <yes>,<no>, <identifi
ation>, <when>, <who>, <time-spe
>, <subje
t-spe
>,



<what-subje
t>, <what-
ourse>, <what-laboratory>, <what-seminar> and<what-proje
t>. Using the utteran
es in the manually labeled 
orpus, a �rst HMMwith 40 states and 46 observation symbols was trained through maximum likelihoodestimation. All these resour
es de�ned an initial analyzer version named MLE-1.In the next stage, this �rst analyzer version was used to automati
ally pro
ess these
ond training 
orpus (369 utteran
es). On this o

asion, ea
h analyzer module andthe analyzer as a whole were evaluated (Table 1). Errors 
an o

ur in ea
h of the threeanalysis stages: prepro
essing, de
oding, and frame building. Moreover, it is possiblethat some errors from one stage be 
orre
ted by the following stage(s). The analysiserrors were manually 
orre
ted, performan
e evaluated, and the prepro
essor 
ontrol�les and the frame system spe
i�
ation re�ned to mat
h the newly observed data: anew 
ategory { [LOCATION℄ { and a new 
on
ept { <where> { were added to handlenew types of questions not met in the �rst training 
orpus. The se
ond HMM versiongrew a

ordingly to 46 states and 56 input symbols. The �rst two training 
orpora(721 utteran
es) were used together to 
ompute the maximum likelihood estimates ofthe new HMM parameters, and thus the MLE-2 analyzer version was obtained.Table 1: Semanti
 Analyzer Performan
e Evaluations.Version Train Test Prepro
essor De
oder Frame Globaluttr. uttr. errors errors errors errorsMLE-1 352 369 35 9.5% 44 11.92% 1 0.3% 80 21.68%MLE-2 721 330 0 0.0% 46 13.93% 0 0% 45 13.63%MLE-3 1051 283 0 0.0% 26 9.18% 0 0% 23 8.12%Final 1051 283 0 0.0% 19 6.71% 0 0% 18 6.36%Similarly, the third (and last) stage started with an automati
 pro
essing of thethird training 
orpus (330 utteran
es) using the se
ond analyzer version, followed bya manual errors analysis and 
orre
tion, and performan
e evaluation (Table 1). Asno more prepro
essing or frame building errors o

urred, no further 
ontrol �les orframe system re�nements were ne
essary.Using all three training 
orpora, new maximum likelihood estimates of the HMMparameters were 
omputed, resulting in the MLE-3 version. Turing-Good dis
ountingwas applied to the initial state and state transition probabilities, and a smoothedversion of the MLE-3 model, deemed the Final one, was obtained. These two versionswere evaluated on the test 
orpus (283 utteran
es). The errors were again manuallyanalyzed and re
ti�ed, and the performan
e was assessed, as summarized in Table 1.Examining the performan
e �gures, a 
ouple of remarks 
an be made. A �rstinteresting result was that the last three analyzer versions were able to repair de
odingerrors in the frame building phase. There were 
ases when, although the de
oding wasnot totally a

urate, the frame builder 
onstru
ted the 
orre
t frame 
orrespondingto the user input. In our opinion, this demonstrates the robustness of the 
hosenknowledge representation formalism, due to its 
exibility.



A se
ond important observation is that the Turing-Good smoothing brings a 21.7%relative redu
tion in error rate (from 8.12% to 6.36%). This redu
tion is even largerfor the de
oding errors (26.9% relative redu
tion, from 9.18% to 6.71%), of whi
hsome are repaired in the frame building pro
ess.Last but not least, the almost 
onstant fall of error rates2 gives us hope thatthe performan
e 
ould be improved even further by training with new data as thesebe
ome available. At this point, another advantage of the HMM approa
h showsup: the model 
an be trained with unlabeled data using an expe
tation-maximizationalgorithm { the Baum-Wel
h pro
edure [16, 17, 18℄. And although this pro
edure issus
eptible to lo
al maxima, the model developed up to this point should be a goodinitialization point for it, so that further improvements in a

ura
y 
an be expe
tedwithout the expense of manually labeling more data.6 Con
lusionsThis arti
le des
ribed the development of a sto
hasti
 semanti
 analyzer for a spokendialogue system. Although dire
t 
omparisons with semanti
 analyzers presentedpreviously in the literature are not possible due to di�eren
es of prin
iples, languages,appli
ation domains, and training and test 
orpora, the �nal 6.36% global error rateis quite 
lose to the 5.8% obtained by the AT&T CHRONUS system [24℄ in similar
onditions (i.e. on manual trans
riptions), allegedly the best ever, and indi
ates arobust analyzer, whi
h 
an be su

essfully integrated into a dialogue system.However, the main advantage of this semanti
 analyzer lies in its generality and is
onferred by the sto
hasti
 approa
h used for parsing. The analyzer is both languageand domain independent, and 
ustomizing it for a spe
i�
 appli
ation domain 
an bedone relatively easy, as illustrated in Se
tion 5 (for more details, see [23℄).Future work will follow two dire
tions: �rst, we will seek to improve analyzer'sperforman
e both at the general level (through better prepro
essing, training, andde
oding algorithms) and in the spe
i�ed appli
ation domain (by further trainingwith more data). The se
ond and �nal goal is to integrate the developed semanti
analyzer into a 
omplete operational information retrieval spoken dialogue system.7 A
knowledgementsWe thank Cosmin Munteanu for his help with the Wizard-of-Oz environment andexperiments, without whi
h this work would have not been possible, and the twoanonymous reviewers whose helpful and 
onstru
tive 
omments 
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