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Abstract. Distributed applications may be specified as parallel compo-
sitions of processes that summarize their global interactions and hide lo-
cal implementation details. These processes define a fixed protocol (also
known as a contract, or a session) which may be used for instance to
compile or verify code for these applications.

Security is a concern when the runtime environment for these applica-
tions is not fully trusted. Then, parts of their implementation may run
on remote, corrupted machines, which do not comply with the global
process specification. To mitigate this concern, one may write defensive
implementations that monitor the application run and perform crypto-
graphic checks. However, hand crafting such implementations is ad hoc
and error-prone.

We develop a theory of secure implementations for process specifica-
tions. We propose a generic defensive implementation scheme, relying
on history-tracking mechanisms, and we identify sufficient conditions on
processes, expressed as a new type system, that ensure that our imple-
mentation is secure for all integrity properties. We illustrate our approach
on a series of examples and special cases, including an existing imple-
mentation for sequential multiparty sessions.

1 Introduction

Distributed applications may be specified using concurrent processes that cap-
ture their global interactions, or protocol, and otherwise ignore their local im-
plementation details. Hence, each machine that takes part in the application is
assigned a fized initial process (often called a role of the protocol) and may run
any local code that implements its process, under the global assumption that all
other participating machines will also comply with their respective assigned pro-
cesses. This approach yields strong static guarantees, cuts the number of cases to
consider at runtime, and thus simplifies distributed programming. It has been ex-
plored using (binary) sessions [6,5] and, more recently, multiparty sessions [3,7].
Within sessions, machines exchange messages according to fixed, pre-agreed pat-
terns, for instance a sequence of inputs and outputs between a client and a server;
these patterns may be captured by types, expressed as declarative contracts (also
known as workflows), or more generally specified as processes.

Global process specifications also provide an adequate level of abstraction to
address distributed security concerns. Each machine is then interpreted as a unit
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of trust, under the control of a principal authorized to run a particular role in
the application. Conversely, these principals do not necessarily trust one another.
Indeed, many applications commonly involve unknown parties on open networks,
and a machine may participate in a session run that also involves untrustworthy
machines (either malicious, or compromised, or poorly programmed). In this
situation, we still expect session integrity to hold: an “honest” machine should
accept a message as genuine only if it is enabled by the global specification.
To this end, their implementation may perform cryptographic checks, using for
example message signatures, as well as checks of causal dependencies between
messages.

Cryptographic implementation mechanisms need not appear in the global
specification. They can sometimes be automatically generated from this specifi-
cation. Corin et al. perform an initial step in this direction, by securing imple-
mentations of n-ary sequential sessions [3,1]. Their sessions specify sequences of
communications between n parties as paths in directed graphs. A global session
graph is compiled down to secure local implementations for each role, using a
custom cryptographic protocol that protects messages and monitors their de-
pendencies. Their main security result is that session integrity is guaranteed
for all session runs—even those that involve compromised participants. They
also report on prototype implementations, showing that the protocol overhead
is small. Although their sequential sessions are simple and intuitive, they also
lack flexibility, and are sometimes too restrictive. For instance, concurrent spec-
ifications must be decomposed into series of smaller, sequential sessions, and the
programmer is left to infer any security properties that span several sub-sessions.
More generally, they leave the applicability of their approach to more expressive
specification languages as an open problem.

In this paper, we consider a much larger class of session specifications that
enable concurrency and synchronization within session runs; and we systemat-
ically explore their secure implementation mechanisms, thereby enforcing more
global properties in a distributed setting. We aim at supporting arbitrary pro-
cesses, and as such we depart significantly from prior work: our specification
language is closer to a generic process algebraic setting, such as CCS [8]. On the
other hand, we leave the cryptography implicit and do not attempt to generalize
their concrete protocol design.

FEzample 1. To illustrate our approach, consider a simple model of an election,
with three voting machines (V1, Va2, and V3) and one election officer machine (E)
in charge of counting the votes for two possible candidates (c¢; and ¢2) and send-
ing the result (1 or r3) to a receiver machine (R). We specify the possible actions
of each machine using CCS-like processes (defined in Section 2), as follows:

Vi=Vo=Va=01+¢ E =ci.c1. 71| c2.co2 R=ri+r

Machines running process V; for i = 1,2, 3 may vote for one of the two candidates
by emitting one of the two messages ¢; or co; this is expressed as a choice
between two output actions. The machine running process E waits for two votes
for the same candidate and then fires the result; this is expressed as a parallel



composition of two inputs followed by an output action. Finally, the machine
running process R waits for one of the two outcomes; this is expressed as a
choice between two input actions.

Protocols and applications We now give an overview of the protocols and the
attacker model. Our processes represent protocol specifications, rather than the
application code that would run on top of the protocol. Accordingly, our protocol
implementation monitors and protects high-level actions driven by an abstract
application. The implementation immediately delivers to the application any in-
put action enabled by the specification, and sends to other machines any action
output enabled by the specification and selected by the application. The applica-
tion is in charge of resolving internal choices between different message outputs
enabled by the specification, and to provide the message payloads.

We intend that our implementations meet two design constraints: (1) they
rely only on the global specification—not on the knowledge of which machines
have been compromised, or the mediation of a trusted third party; and (2) they
do not introduce any extra message: each high-level communication is mapped
to an implementation message. This message transparency constraint excludes
unrealistic implementations, such as a global, synchronized implementation that
reaches a distributed consensus on each action.

Attacker Model We are interested in the security of any subset of machines that
run our implementation, under the assumption that the other machines may be
corrupted. In Example 1, for instance, the receiver machine should never accept
a result from the election officer if no voter has cast its vote.

Our implementations provide protection against active adversaries that con-
trols parts of the session run: We assume an unsafe network, so the adversary
may intercept, reorder, and inject messages—this is in line with classic symbolic
models of cryptography pioneered by Dolev and Yao [4]. We also assume partial
compromise, so the adversary may control some of the machines supposed to run
our implementation, and run instead arbitrary code; hence, those machines need
not follow their prescribed roles in the session specification and may instead col-
lude to forge messages in an attempt to confuse the remaining compliant, honest
machines.

We focus on global control flow integrity, rather than cryptographic wire for-
mats; thus, we assume that the message components produced by the compliant
machines cannot be forged by our adversary. (This can be achieved by standard
cryptographic integrity mechanisms, such as digital signatures.) Conversely, the
adversary controls the network and may forge any message component from com-
promised machines. Also, we do not address other security properties of interest,
such as payload confidentiality or anonymity.

Contributions Relying on process calculi, we define an expressive language for
specifications and formally describe its implementation. We construct a secure,
generic implementation scheme: we propose a general implementability condi-
tion, expressed as a type system, and show that it suffices to ensure that any set
of compliant machines remain in a globally-consistent state, despite any coordi-
nated attack by an adversary in control of the remaining, corrupted machines.



Contents Section 2 defines a global semantics for specifications. Section 3 de-
scribes their generic implementations, and states their soundness and complete-
ness properties. Section 4 considers binary specifications. Section 5 defines our
type system. Section 6 presents our history-tracking implementation and estab-
lishes its correctness for well-typed specifications. Section 7 considers sequential
n-ary sessions. Section 8 concludes. Additional details and proofs appear in an
online paper at http://msr-inria.inria.fr/projects/sec/sessions.

2 Global process specifications

We consider specifications that consist of distributed parallel compositions of
local processes, each process running on its own machine. In the remainder of
the paper, we let n be a fixed number of machines, and let P range over global
process specifications, that is, n-tuples of local processes (FPo,..., Py, ..., Pn_1).

Syntax and informal semantics Our local processes use a CCS syntax, given
below. Their outputs are asynchronous, since we are in a distributed setting.

P = Local processes
0 inert process
a asynchronous send
a.P asynchronous receive
P+P choice
P|P parallel fork
\P replication

The specification P = (Po,...,P,_1) sets a global “contract” between n
machines; it dictates that each machine ¢ behaves as specified by P;. For instance,
in Example 1 we have n =5 and P = (V4, V5, V3, E, R).

Operational semantics (—p and —s) We define standard labelled transitions for
local processes, with the rules given below. We write Pﬂp P’ when process P
evolves to P’ with action [ ranging over a and @. We omit the symmetric rules
for sum and parallel composition.

P Lp P Py L P Pl.p
p+pPSepr, PP, Le PP 1P Zplp|P

We also define labelled transitions for global configurations, with the com-
munication rule below. We write P RN P’ when P evolves to P’ by action a
with sender P; and receiver P;. (The case ¢ = j is for local, but still observable
communications.) We let « range over global communication labels ¢ a j, and let
 range over sequences of these labels (written for instance i a j.«) representing
high-level traces. We write oo € ¢ when « occurs in .

P e B (Po=P)M P e P (PE =P

~ia ~
pLtilop



http://msr-inria.inria.fr/projects/sec/sessions

3 Distributed process implementations

We describe distributed implementations of the specifications of Section 2, each
process being mapped to one machine. We separate compliant (honest) machines
from compromised (dishonest) machines, then we define their implementations,
their semantics, and their properties (soundness and completeness).

We let C range over subsets of {0, . = 1}, representing the indexes of P
whose machines are compliant. We let P range over tuples of processes indexed
by C. Intuitively, these machines follow our implementation semantics, whereas
the other machines are assumed to be compromised, and may jointly attempt
to make the compliant machines deviate from the specification P. For instance,
if the election officer of Example 1 is compromised, it may immediately issue a
result 7; without waiting for two votes ¢;. Similarly, a compromised voter may
attempt to vote twice. We are interested in protecting (the implementations of)
compliant machines from such actions.

We give a generic definition of process implementations. In the following
sections, we show how to instantiate this definition for a given specification.
Informally, an implementation is a set of programs, one for each specification
process to implement, plus a definition of the messages that the adversary may
be able to construct, in the spirit of symbolic models for cryptography.

Definition 1 (Distributed implementation). A distributed implementation

is a triple ((Qy)icn, (“i)i<ns (Fe)eco.n—1) (abbreviated (Q,=,Fc)) where, for
eachi€0.n—1 and C C0..n —1,

— Q; is an implementation process;

¥ . . . . .
— —; 18 a labelled transition relation between implementation processes;
— k¢ is a relation between message sets and messages.

In the definition, each @; is an initial implementation process, and each L. isa
specialized transition relation between implementation processes for machine i,
labelled with either an input (M) or an output (M). We let v range over M
and M, and let v range over sequences of v, representing low-level traces. For
each local implementation process, these transitions define the messages that
may be sent, and the messages that may be received and accepted as genuine. We
assume that every message M implements a single high-level communication a.
(Intuitively, M is a wire format for ¢, carrying additional information.) We write
p(7y) for the corresponding high-level communication «, obtained by parsing ~.

The relations ¢ model the capabilities of an adversary that controls all
machines outside C to produce (or forge) a message M after receiving (or eaves-
dropping) the set of messages M. For instance, if the implementation relies
on digital signatures, the definition of ¢ may reflect the capability of signing
arbitrary messages on behalf of the non-compliant machines.

Ezample 2. We may implement the request-response protocol with processes
Ag =a|b, Ay = a.b by re-using the syntax of specification processes and labels
(i.e. M is just o), with initial implementation processes (Ag, 41 ), implementation
transitions
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and an adversary that can replay intercepted messages and produce any messages
from compromised principals, modelled with the deduction rules

i¢C i,j € {0,1} x € {a,b}
M, M be M Mbtcizj

Distributed semantics For a given distributed implementation (@,3, Fc) and
set of compliant machines C, we define a global implementation semantics that
collects all message exchanges between compliant machines on the network. In
our model, compromised processes do not have implementations; instead, the en-
vironment represents an abstract adversary with the capabilities specified by F¢.
Thus, the global implementation transitions 2,1 relate tuples of compliant im-
plementation processes (Q and also collects all compliant messages M exchanged
on the network (starting with an empty set), with the following two rules:

(SENBI) (RECEIVEI)

Qi Q Q=@M Qi @ (Qu= Q)
ieC p(M)=1iaj ieC Mbe M p(M)=7jai
M,@EIMUM,@ M7@£IM5©\/

Rule (SEnDI) simply records the message sent by a compliant participant, after
ensuring that its index ¢ matches the sender recorded in the message interpre-
tation ¢ a j (so that no compliant participant may send a message on behalf
of another). Rule (RECEIVEI) enables a compliant participant to input any mes-
sage M that the adversary may produce from M (including, for instance, any
intercepted message) if its index matches the receiver 7 in its interpretation j a ;
this does not affect M, so the adversary may a priori replay M several times.
The wire format M may include additional information, such as a nonce to de-
tect message replays, or some evidence of a previously-received message. The
example below illustrates the need for both mechanisms.

Ezample 3. In the specification Ay = @|a, A; = a|a, machine A; must discrim-
inate between a replay of Ag’s first message and Ap’s genuine second message,
so these two messages must have different wire formats. For instance, an imple-
mentation may include a sequence number, or a fresh nonce.

In the specification Ay = @, A; = a.b, Ay = b, the implementation of A,
that receives b from A; must check that A; previously received a from Ay. For
instance, the two messages may be signed by their senders, and A;’s message
may also include Ay’s message, as evidence that its message on b is legitimate.

Concrete threat model and adequacy The distributed implementations of Defini-
tion 1 are expressed in terms of processes and transitions, rather than message
handlers for a concrete, cryptographic wire format. (We refer to prior work for
sample message formats and protocols for sequential specifications [3,1].)



In the implementation, the use of cryptographic primitives such as digital
signatures can prevent the adversary to forge arbitrary messages. On the other
hand, since the adversary controls the network, he can resend any intercepted
messages and, when it controls a participant, he can at least send any message
that this participant could send if it were honest. Accordingly, for any realistic
implementation, we intend that the two rules displayed below follow from the
definition of F¢. We say that an implementation is adequate when these two
rules are valid.

i¢C QiiﬁQQEng M ¢ M for each M € 1)

M e My

M, MbFe M

In the second rule, if (1) the adversary controls machine ¢; (2) a compliant
implementation @); can send the message M after a trace ¥ has been taken; and
(3) every message received in ¢ can be constructed from M by the adversary;
then he can also construct the message My from M.

Soundness and completeness We first formally relate high-level traces of the
specification, ranged over by ¢, which include the communications of all pro-
cesses, to low-level implementation traces, ranged over by v, which record only
the inputs and outputs of the compliant processes. We then define our property
of soundness, stating that every implementation run corresponds to a run of
the specification; and our property of completeness, stating that every specifica-
tion run corresponds to a run of the implementation. These properties depend
only on the implementation and specification traces: trace-equivalent specifica-
tions would accept the same sound and complete implementations. The corre-
spondence between high-level and low-level traces is captured by the following
definition of valid explanations.

Definition 2. A high-level trace ¢ = ag . .. ap—1 is a valid explanation of a low-
level trace 1 = 7y ... v4—1 for a given set C when there is a partial function v from
(indezxes of ) low-level messages i, of 1 to (indexes of ) high-level communications
a, ) of @ such that p() = o, for k € 0. — 1 and

1. the restriction of v on the indexes of the low-level inputs of 1 is a one-to-one,
increasing function to the indexes of the high-level communications of @ with
honest receivers (i a j with j € C);

2. the restriction of v on the indexes of the low-level outputs of 1 is a partial
one-to-one function to the indexes of the high-level communications of @ with
honest senders (i a j with i € C); and

3. whenever a low-level input precedes a low-level output, their images by v are
in the same order when defined.

The definition relates every trace of messages sent and received by honest
implementations to a global trace of communications between specification pro-
cesses (including compromised processes). In particular, the specification trace
may have additional communications between compromised processes. The rela-
tion guarantees that the implementation messages are received in the same order



as the communications in the specification trace. Conversely, since the adversary
controls the network, the relation does not guarantee that all low-level outputs
are received, or that they are received in order.

For example, consider an implementation that uses specification messages as
wire format (that is, M is just «) and let C = {0;2}. We may reflect the trace

Yp=000b2).0c1).(1d2).00aTl).0b2)

using, for instance, the valid explanation o1 = (0 ¢ 1).(1 d 2).(0 b 2) and the
index function ¢ from ¢ to o1 defined by {0 — 2,1 +— 0,2 +— 1,4 +— 2}. Following
Definition 2, we check that

1. the restriction of ¢ to the indexes of the low-level inputs is {2 — 1;4 — 2}
and relates the inputs of compliant participants in ¢ and in (;

2. the restriction of ¢ to the indexes of the low-level outputs is {0 — 2;1 — 0}
and relates two of the three outputs in ¢ to the outputs of compliant par-
ticipants in ¢, out of order; and

3. (1 d 2) precedes (0 a 1) in 1, but ¢ is undefined on that low-level output.

Another valid explanation is 2 = (1 d 2).(0 a 1).(0 ¢ 1).(0 b 2).

We are now ready to define our main security property, which states that an
implementation is sound when the compliant machines cannot be driven into an
execution disallowed by the global specification.

Definition 3 (Soundness). (Q, =, F¢) is a sound implementation of P when,

for every C C 0.n — 1 cmd _every implementation trace 0, Q —>1 M, Q’ there
exists a source trace P L P’ where  is a valid explanation of .

Also, an implementation is complete if, when all machines comply, every trace
of the global specification can be simulated by a trace of the implementation.

Definition 4 (Completeness). (Q, =.,ke) is a complete zmplementatwn ofP
when, for C = 0.n —1 and for every source traces P 2 P' there exists an

implementation trace (), Q —>1 M, Q where ¢ is a valid explanation of .

We easily check that, with our definition of valid explanations, an implemen-
tation that is both sound and complete also satisfies the message transparency
property discussed in Section 1.

4 Implementing two-party specifications (application)

We instantiate our definitions to specifications with only two participants, such
as a client and a server. Such specifications have been much studied using session
types. For this section, we set n = 2 and implement specifications of the form
P = (P, Py). For simplicity, we also exclude local communications: for any
action a, each P; for ¢ = 0,1 may include either a or @, but not both.



A simple (insecure) implementation An implementation that re-uses the syn-
tax of specification processes and labels with initial implementation processes
(Po, P1) (that is, @; is just P;, and M is just «) is generally not sound. Con-
sider, for instance, the specification Ay = a.€|b.(e+¢) and A; =a|b|e|c. After
the communications a, e, and b, the implementation of machine 1 would be in
state ¢, while that of machine 0 would be in state €+ ¢: machine 1 should accept
a message c. However, after the communications b, e, and a, the implementa-
tion of machine 1 would still be in state ¢, but that of machine 0 would be in
state e, unable to send c: machine 1 should not accept a message c. In state ¢
machine 1 does not know whether a message ¢ from machine 0 is legitimate or
not. Therefore, an implementation accepting the message c is unsound, and an
implementation refusing it is incomplete.

History-tracking Implementations Our implementation relies on a refinement of
the specification syntax and semantics to keep track of past communications:
local processes are of the form P : 1 where 9 is a sequence of global communi-
cations, each tagged with a fresh nonce ¢ used to prevent message replays (any
received message whose tag already occurs in v is ignored).

— We use Py : ¢ and P : € as initial processes (where ¢ is the empty sequence).
— We define local implementation transitions —; from the initial specification
P and the specifications traces:

ﬁp(w)slg’,iajsﬁ iajle& ﬁﬂsﬁﬂsﬁ iajldgy

j P;IQﬁ(Z ajﬁ)

iajdl tajl
_—

P!y i P iy(iajl) Pi:e
where 4,5 is either 0,1 or 1,0 and where p yields a specification trace by
erasing all nonces ¢ in 1.
1¢C
and —.
M, Mbe M Mbciajl

— We define the adversary knowledge ¢ by

Hence, an action is locally enabled only when it extends the specification trace
recorded so far and the nonce /¢ is fresh. The adversary may send a message
either by eavesdropping it or by constructing it with a compromised sender.
(Pragmatically, a concrete implementation may generate ¢ at random, or incre-
ment a message sequence number, and may use a more compact representation

of ¥.)

Theorem 1. ((Py : ¢, P : €),—,b¢) is a sound and complete implementation
Of (Po, Pl)

The soundness of our implementation above relies on every machine recording
every communication (since it is either sending or receiving every message);
this approach does not extend to specifications with more than two machines,
inasmuch as these machines do not directly observe actions between two remote
machines.



5 Implementability by typing

In the preceding section, we presented a complete and sound implementation for
binary sessions. We now illustrate some difficulties in the general n-ary case.

Ezxzample 4. Consider a variant of Example 1 with the same Vi, V5, V3 and R
but with the election officer E split into E; = ¢1.¢1.77 and Ey = ¢5.¢2.73. One
of the voters (say, V1) may cheat, and send both ¢; to Ey and ¢y to Es. To
prevent this attack, Fy and Es would need to communicate with one another,
thereby breaking message transparency. Therefore no adequate implementation
of this example can be both sound and complete. To prevent this pattern, we
will demand that both sides of a sum affect the same participants in the same
order.

Ezample 5. Consider now the specification
A:(E‘a)+(g|6) B:bl‘bg 0201|CQ

The process A can send either b; to B and ¢; to C, or by to B and ¢ to C.
A dishonest machines in charge of running A can send b; to B and ¢ to C.
Therefore no adequate implementation of this example can be both sound and
complete. To prevent this pattern, we will also demand that both sides of some
parallel composition (e.g.under a sum) affect the same participants in the same
order.

To prevent these situations, we develop a type system with two kinds of
types, for sequential processes and (possibly) parallel processes:

o= sequential types T on= parallel types
0 completion o sequential type
1.0 sequence % sequence
| parallel

Intuitively, our types indicate (by their indexes) which other participants may
be affected by each action, and in what order. In Example 1, action ¢; would be
of type 3.4 since it is received by process 3 and this reception may contribute to
the emission of r; to process 4.

We define subtyping with three base rules and two context rules:

<z m < m my < mh

0<o Tl <7 T<m|m _ — T
o <im m | e <y |7y
Thus, for a sequential type, we can “forget” potential future actions and obtain
a less precise type and, for parallel types, we can duplicate or merge parallel
copies carrying the same information.

We type local processes at each machine ¢ € 0..n—1, in a given environments
I" that map channels to parallel types. The typing judgment I" ; P : 7 indicates
that P can be given type 7 at machine ¢ in environment ', with the rules below:

10



(RECEIVE) (Sus)

(SEND) L Ia:mkP:n o' <= I'~P:nm o<z
Na:mhkia:i(m\7) . ;
lNa:mk;a.P:m ' P:m
N (PLus) (PAR) (REPL)
};L)O_ I'tiPy:o I'tiPi:o  T'kiPyiw I P:x  THPix
P [FPotPrio [Pl Pin|n TFP:n

where 7\i is 7 after erasure of every occurrence of i.

Rule (SEND) gives to the output @ the type of action a (minus ) preceded by .
This records that @ at host i affects any process that receives on a. Conversely,
rule (RECEIVE) gives to a.P the type of the continuation process P, and checks
that it is at least as precise as the type of action a. Rule (SuB) enables subtyping.
Rule (NiL) gives type ¢ to an empty process, since it has no impact outside i.
Rule (PLus) ensures that the two branches of a choice have the same effect,
a sequential type, excluding e.g.the typing of the specifications in Example 4.
Rules (Par) and (RePL) deal with parallel compositions.

For instance, in the environment I" = ry : 4,75 : 4,¢1 : 3.4,¢co : 3.4, the
processes of Example 1 have types

ThoVi:034 T Ve:134 IFyV3:234 I'F3E:34 Ty R:4

Conversely, the processes V) = Vo = V3 = €1 + ¢ are not typable within the un-
safe specification of Example 4, because ¢; and ¢3 necessarily have incompatible
types.

We end this section by defining typability for global specifications, with a
shared environment for all machines and a technical condition to ensure consis-
tency on channels with parallel types.

Definition 5. A global specification P s well-typed when, for some environ-
ment I and each i € 0.n — 1, we have I' ; P; : w; and, for each (a :w) € I',
either  is (a subtype of ) a sequential type, or P has at most one reception on a.

6 History-tracking implementations

In this section we present an implementation for session specifications. We prove
that the implementation is complete, and that it is sound when the specification
is well-typed (Definition 5). The resulting family of implementations subsumes
those presented in the special cases of binary sessions (Section 4) and sequential
sessions (Section 7).

Multiparty specifications and history-tracking implementations As seen in Ex-
ample 1, in a multiparty system, a local action at one machine may causally
depend on communications between other machines. To avoid cheating, we em-
bed evidence of past execution history in our implementation messages. Thus,
to implement Example 1, the code for the election officer F explicitly forwards
evidence of receiving ¢; twice in order to convince R that it can send the result r;.

As a preliminary step, we enrich processes with histories of prior communi-
cations. Then, we equip these processes with a refined semantics, with rules that

11



define how histories are collected and communicated. Finally, the presence of
histories allows us to constrain each local implementation by prescribing what
messages may be sent and received at runtime. (Our history-tracking implemen-
tation is related to locality semantics for CCS; for instance Boudol and Castel-
lani [2] use proved labelled transitions that keep track of causality by recording
where each action occurs in a process.)

Histories are lists of messages, defined by the following grammar:

H = Histories
€ empty history
H.M recorded receive
M ::= Messages
(Hiaj¥)

Each message H i a j £ records an action a between sender ¢ and receiver j (where
i and j are indexes of processes in the global specification), with a history H
that provides evidence that action a is indeed enabled. In addition, ¢ denotes a
unique nonce, freshly generated for this message, used to avoid replays.

The syntax of processes extended with histories is as follows:

T ::= Threads

0 inert thread

a asynchronous send

a.P asynchronous receive

P+ P choice

\P replication
R = History-tracking processes

(T02H0|T1 ZH1‘...|T[C,1 : kal)

parallel composition of history-tracking threads

Ru= Global history-tracking specifications

(Ro,R1,...,Rn—1) tuple of n history-tracking processes

where P ranges over the local processes of Section 2. Our specification processes
are split into different parallel components, each with its own history. For exam-
ple, when P = a.b|C receives a, this receive enables action b (and is tracked in
its history) but is independent from action €. So, a thread T is a (specification)
process without parallel composition at top-level, a history-tracking process R
is a collection of threads in parallel, each with its history, and a global history-
tracking specification R is a tuple of n history-tracking processes.

The function Ths(P : H) normalizes the process P into a parallel composi-
tion of threads, each annotated with the same history H. It is recursively defined
from Ths(Py| Py : H) = Ths(Py : H)| Ths(Py : H). Further, the function [-]o
normalizes a global specification, with an initial, empty history. Conversely, since
any thread is a local process, a history-tracking process (resp. a global history
specification) stripped of its histories is a local process (resp. a global specifica-
tion).

Semantics of history specifications (—y, and —y) We define labelled transitions
for history specifications. We write R 2, R’ when R can evolve to R’ with
action . It corresponds to an input or an output on one of its threads.
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(SENDH) (RECEIVEH)

T%p P T % P
T.ogTieil p.g o I P H (Hiajl)
(PARH)
RLL R

R|R// l’h RllR//

Rule (REcEIVEH) records the message in the thread history. In contrast, rule
(SENDH) does not record the message, since our semantics is asynchronous. Rule
(ParH) is a rule for parallel contexts; we omit the symmetric rule.

We write R iH R to represent communications between history-tracking
specifications, with a single global rule:

Hiajt
R;

B;

h Ry (Ri = Ry)F
WRy (Rp=R)" HiajlgR

~ Hiajlt ~
4>HR/

R

Hiajt
_

A communication step consists of a send (at machine ¢) followed by a receive
(at machine j) for local history-tracking processes (possibly with ¢ = j). The
condition H i a j £ ¢ R excludes multiple usage of the same message.

Example 6. Consider a global specification with three processes @, a.b and b; the
following is a trace of its global history specification.

e0al

[@ ab,b)]o ~—2=n (0:e,b:e0al,b:¢)
LO0eDIb2 0:6,0:20a1,0:(c0al)lb2)

Local semantics (—;) We are now ready to define distribute]& implementation
transitions locally, for each machine ¢ € 0..n — 1, written R; —; R:

Plo “wR HiajlgR [Plo “w R HiajlgR
Ry 215 R (R =RYMT RIS R (Ry = R
R;HiagéhR;_, (RZ:R%)kij R;HzajéhR;/ (R,ZZRZ)’C#

R;WZR;} R;Hiajij;'/
These rules (with identical premises) prescribe that a distributed implementation
can send or receive a message when the corresponding communication is enabled
in some global history specification state that is reachable from the initial history
specification process [P]o.

A naive concrete implementation may enumerate all possible runs at every
communication. A more efficient implementation would cache this computation
and perform incremental checks, or perform this computation at compile-time.
(See [3,1] for optimized implementations in the sequential case.)

13



Distributed implementation We finally define our distributed implementation,
with Q = [P]o as initial implementation processes, with (-;); defined above as
transition relations between implementation processes, and with capabilities ¢
for the adversary defined by

(Mbe M,)™<k  idcC
Ml‘cMo."' .Mk,liajf

M, M bFe M

The first rule states that the adversary can eavesdrop messages on the network.
The second rule states that the adversary can build any message sent by a dis-
honest participant, with a history recursively composed of sequence of messages
previously obtained. Conversely, the adversary cannot forge any message from a
compliant machine (i.e.a machine ¢ € C). This can be cryptographically enforced
by authenticating messages and countersigning their histories. Our implementa-
tion is adequate, in particular a dishonest participant can behave as an honest
participant.

(The global transition rules —p for our distributed implementation follow
from the general definitions of Section 3.)

Soundness and completeness Our implementation is complete, that is, it can
simulate any specification trace:

Theorem 2 (Completeness). ([P]o, =, ) is a complete implementation of P.

Our main result states that our implementation is also sound when applied
to well-typed specifications; as explained in Section 5, many other specifications
cannot be safely implemented.

Theorem 3 (Soundness by Typing). If P is well-typed, then <[[ﬁ]]o,:, Fe)
s sound.

7 Sequential multiparty sessions (application)

We consider secure implementations of sequential multiparty sessions, as defined
by Corin et al. [3]. Their sessions are a special case of process specifications. We
recall their grammar, which defines a session as a parallel composition of role
processes, each process specifying the local actions for one role of the session.

T = Payload types
int | string base types
p = Role processes
Wfi:Ti ;5 pi)i<k send
2 fi:Ti 5 Di)i<k receive
WX.-D recursion declaration
b% recursion
0 end
S Sequential session (with n roles)

Di)i€0..n—1

—~ I
-
b,
Il
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Their role processes must alternate between send and receive actions, and
moreover only the initiator role process (pg) begins with a send. Thus, there is
always at most one role that can send the next message, as expected of a sequen-
tial session. From a more global viewpoint, a session is represented as a directed
graph, whose nodes represent roles and whose arrows are indexed by unique com-
munication labels. The paths in the graph correspond to the global execution
traces for the session. Given an additional implementability property on these
paths, named “no blind fork”, they construct a cryptographic implementation
that guarantees session integrity, even for sessions with dishonest participants,
a property closely related to Soundness (Definition 3).

To illustrate our approach, we show that our generic implementation directly
applies to every session that they implement (although with less compact mes-
sage formats). We translate their role processes into our syntax as follows:

Hp]] = Zz(k(ﬁ) when p = '(fzﬁ 5 pi)i<k
| H(?(fz‘:ﬁ i Di)i<k)ED, i<k, pi:!(f;:'rN; i ph)j<i i Zj<l(fg/‘)

| H(?(fiiﬁ i Pi)i<k)EP, i<k, pi=x, (ux-!(f5:75 ; pj)j<z)€p!fi' Zj<l(f1l')
[[(Ti = pi)ieO..n—I]] = ([[pi]])iEO“n—l

Each node in a session graph has an input arrow and one or several output
arrows, representing an internal choice between outputs. Accordingly, our trans-
lation associates to each node a replicated input (using ¢ € p to denote any
syntactic subprocess ¢ of p) following by a choice between asynchronous out-
puts. In addition, the initial role for the session is an internal choice between
outputs, translated to an internal choice of asynchronous outputs. By induction
on paths in the graph, we can check that our translation behaves as the initial
sequential session. (The sequentiality of the session follows from the presence of
a single choice between outputs in every reachable state, so we can replicate all
inputs, whether they occur in recursive loops or not.)

For any given sequential session, typability of the translation (Definition 5)
coincides with the “no blind fork” property [3]. Hence, every sequential session
supported by their implementation is typable, and can also be implemented in
our general framework:

Theorem 4. The history-tracking implementation of the translation of a se-
quential session that respects the “no blind fork” property is sound and complete.

8 Conclusions

We have given an account of distributed specifications and their implementa-
tions in three steps: (1) a global specification language; (2) a distributed im-
plementation semantics; (3) correctness and completeness results, depending on
an implementability condition. In combination, this yields a general framework
for designing and verifying n-ary communication abstractions with strong, guar-
anteed security properties. (In comparison, the work on sequential multiparty
sessions [3] can now be seen as a specialized cryptographic implementation for
the sequential case.)
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Future work Each of the above contributions may be improved. First, the spec-
ification language may be extended, for example by accounting for the message
contents and stating additional security goals (secrecy, causality, commitment)
or by adding mobile channel names. Second, the implementation semantics may
be further refined. Although we believe our implementation approach is fully
general, its performance can clearly be improved, for example by avoiding re-
dundant communications of history once it is either irrelevant or common knowl-
edge. Also, even if the cryptographic protection mechanisms are standard, their
efficient implementation remains delicate. More experimentally, we have not pro-
totyped an actual session compiler for our implementation scheme, and it remains
unclear how to deal efficiently e.g.with infinite numbers of states. This leads us
to our third point, possible improvement on implementability conditions: typa-
bility only provides a sufficient condition; we have built an efficient (quadratic)
typability verifier, and our only examples of specifications that are sound but not
typable can be easily rewritten into typable ones, but still it would be interesting
to address this gap.
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