
RavenClaw: Dialog Management Using Hierarchical Task 
Decomposition and an Expectation Agenda 

Dan Bohus Alexander I. Rudnicky 

Carnegie Mellon University, 
Pittsburgh, PA, 15213 

{dbohus,air}@cs.cmu.edu 
 

Abstract 

We describe RavenClaw, a new dialog management 
framework developed as a successor to the Agenda [1] 
architecture used in the CMU Communicator. RavenClaw 
introduces a clear separation between task and discourse 
behavior specification, and allows rapid development of dialog 
management components for spoken dialog systems operating 
in complex, goal-oriented domains. The system development 
effort is focused entirely on the specification of the dialog 
task, while a rich set of domain-independent conversational 
behaviors are transparently generated by the dialog engine.  To 
date, RavenClaw has been applied to five different domains 
allowing us to draw some preliminary conclusions as to the 
generality of the approach. We briefly describe our experience 
in developing these systems. 

1. Introduction 

Dialog management maintains continuity over turns in a 
conversation between human and computer. While many 
approaches have been developed to address this problem, we 
believe that the essence of dialog management resides in 
performing two functions: interpreting user inputs with 
respect to task(s) within the domain, and maintaining the 
coherence, over time, of the conversation. 

Task structure is not always explicitly represented in 
dialog systems. For example, in graph-based systems (“IVR” 
systems) task structure is implicit in the structure of the graph. 
In information access systems, the “task” consists of form-
filling and is again implicitly represented in the architecture. 
Explicit task representations, however, are necessary for more 
complex domains, for example travel planning. The CMU 
Agenda dialog manager [1] represents one approach to 
directly modeling the human’s task. The current RavenClaw 
dialog manager builds on the experience of Agenda, notably 
in providing a clear separation between task-specific behavior 
and more general discourse behaviors (which we refer to as 
“conversational strategies”). The system development and 
maintenance effort is entirely focused on providing a 
description of the task to be performed; the mechanisms for 
maintaining the coherence and continuity of the conversation 
are generated by an underlying dialog engine. 

Section 2 describes in detail the structure, mechanisms 
and functionality of the RavenClaw architecture. 
Subsequently, Section 3 summarizes our experience in using 
it in five different applications that span a variety of task 
types. Finally, Section 4 concludes the paper and presents our 
current and future plans for extending this framework.  

2. RavenClaw architecture 

RavenClaw is a two-tier architecture (Figure 1). The Dialog 
Task Specification layer captures all the domain-specific 
dialog logic. The Dialog Engine is a domain-independent 
component that controls the dialog by executing the Dialog 
Task Specification, and contributes basic conversational 
strategies (e.g., timing and turn-taking behavior, grounding 
behavior; universal dialog mechanisms like help, repeat, 
suspend/resume). All domain-specific information is clustered 
within the Dialog Task Specification level. System developers 
can therefore focus their attention on defining the domain-
specific control of the dialog, and delegate realization of 
generic dialog mechanisms to the Dialog Engine. 

2.1. The Dialog Task Specification  

The domain-specific dialog control is represented in the 
Dialog Task Specification level using a tree of dialog agents, 
with each agent handling a certain part of the dialog task.  

To exemplify, Figure 1 illustrates the top portion of the 
dialog task tree for RoomLine, a spoken dialog system for 
conference room reservation and scheduling. The root node 
subsumes several children: Login, which identifies the user to 
the system, GetQuery, which obtains the time and room 
constraints from the user, GetResults, which executes the 
query against the backend, and DiscussResults which presents 
the obtained results and handles the forthcoming negotiation 
for selecting the conference room that best matches the user’s 
needs. Moving one level deeper in the tree, Login decomposes 
into Welcome, which introduces the user to the system, 
AskRegistered and AskName, which identify the user, and 
finally GreetUser, which sends a greeting to the user. 

Hierarchical task decompositions, traditionally used for 
task execution in robotics, have gained popularity in the 
dialog management community. Examples include the use of 
a tree-of-handlers in Agenda Communicator [1], activity trees 
in WITAS [2] and recipes in Collagen [3]. The hierarchical 
representation has several advantages. Most (goal-oriented) 
dialog tasks have an identifiable structure which naturally 
lends itself to a hierarchical description. The subcomponents 
are typically independent, leading to ease in design and 
maintenance, as well as good scalability properties. Moreover, 
the tree structure can be easily extended at run-time, allowing 
for the dynamic construction of dialog structure, a very useful 
feature in certain types of tasks. Finally, the tree 
representation implicitly captures the notion of context (via 
the parent relationship), as well as a default chronological 
ordering of the actions (i.e. left-to-right traversal); these 
elements significantly simplify the design of a dialog 
rendering engine operating over this type of representation.  



As a prerequisite to a more detailed presentation of the 
Dialog Engine control mechanisms (Section 2.2), we first turn 
our attention to the structure and functionality of the dialog 
task agents. 

2.1.1. Dialog Task agents 

Two categories of dialog agents populate the task tree: 
fundamental dialog agents and dialog agencies.  

The fundamental dialog agents appear as leaf nodes (i.e. 
Welcome, AskRegistered) and represent atomic dialog actions. 
RavenClaw uses four types of fundamental agents: Inform - 
sends an output (e.g. Welcome), Request - requests 
information (e.g. AskRegistered), Expect - expects 
information, but without requesting it (e.g. Projector) and 
DomainOperation - performs other domain-related 
operations (e.g. GetResults). The non-terminal nodes in the 
tree are dialog agencies (e.g. Login, GetQuery); agencies 
control the execution of their subsumed agents, capturing the 
higher level temporal and logical structure of the dialog task. 

Each agent implements an Execute routine, and holds a 
set of preconditions and triggers, and a completion criterion. 
The Execute routine is specific to the agent type. For 
example, Inform-type agents simply generate an output when 
executed, while Request-type agents also trigger an Input 
Phase (see subsection 2.2.2) to collect the user’s response. 
For agencies, the Execute routine is in charge of planning the 
order of the execution of the sub-agents. This sub-task 
planning problem is currently resolved by combining a set of 
simple policies (i.e. left-to-right traversal), with the 
preconditions that each agent holds. The system is however 
open to more sophisticated policies, and even learning at the 
dialog task level (e.g. by casting the sub-agent planning 
problem as a Markov Decision Process [4]). 

Between the preconditions, triggers, completion criteria 
and the Execute routines the tree captures an overall 
hierarchical plan for the dialog task but does not prescribe a 

fixed order of execution (as might be found in a directed 
dialog system). When executed, a particular trace through this 
plan is generated based on the specified policies, encoded 
domain constraints and logic, as well as the user’s inputs.  

An important feature of dialog agents, qualifying them as 
more than plan operators, is their ability to store concepts, 
and participate in the Input Phase, in which the information 
collected from the user is incorporated into the system. Each 
agent can contain one or more concepts (e.g. Registered, 
Name) that hold task-related information. Concepts are 
represented as probability distributions over the set of 
possible values, enabling a grounding management layer 
based on belief updating and decision making under 
uncertainty.  

2.2. The Dialog Engine 

The Dialog Engine is the core component in RavenClaw and 
controls the dialog by executing the Dialog Task 
Specification. Dialog flow is generated by interleaving 
Execution Phases and Input Phases. In an Execution Phase, 
the various agents in the task tree are executed and generate 
the system’s behavior. In an Input Phase, the system collects 
and incorporates the information from the user’s input. We 
now describe these mechanisms is more detail.  

2.2.1. The Execution Phase 

The Dialog Engine uses a stack to track the dialog structure 
and schedule the agents in the task tree for execution (see 
Figure 1). Initially, the root agent is placed on the dialog 
stack. Subsequently, the engine repeatedly takes the agent 
currently on the top of the stack, and executes it. When 
agencies are executed, they typically schedule one of their 
descendants for execution by pushing it on the dialog stack. 
Ultimately, the execution of fundamental dialog agents 
generates the system’s responses and actions.  

              AskRegistered 
 
      Login 
 
RoomLine 

 

Dialog Engine 

Dialog Task 
Specification 

RoomLine 

Login 

GreetUser 

AskName 

Welcome 

GetQuery GetResults DiscussResults 

Properties Location DateTime 

Whiteboard Projector Network 

Suspend 

Dialog Stack 

AskRegistered 

Expectation Agenda 

Registered: [yes]->true, [no]->false 
Registered: [yes]->true, [no]->false 
Name: [user_name] 
Registered: [yes]->true, [no]->false 
Name: [user_name] 
DateTime: [date_time] 
Location: [location] 
Network: [with_network]->true,  
                [without_network]->false 
… … … 

System: Are you a registered user? 
User:  Yes, this is John Doe. 
Parse:  [yes](yes) 

[user_name](john doe) 

User Input 

Resume 

Figure 1: RavenClaw architectural details 

Name Registered 

DateTime Location 

Network Projector Whiteboard 

Results 



Note that the isomorphism between the dialog stack and 
the dialog tree is only apparent. There is an essential 
functional difference between the two structures: the stack 
captures the temporal and hierarchical structure of the current 
dialog, while the tree describes the dialog task, implicitly 
capturing the set of all possible dialogs in the domain. As 
described in the next subsection, the user can at any point take 
the initiative and shift the focus of the conversation to another 
part of the task (as long as the domain logic and constraints 
encoded in the task tree are not violated). This can lead to the 
introduction of new dialog agents on the stack, breaking the 
apparent isomorphism. For instance, if the user had responded 
by saying “Suspend” to the system’s “Are you a registered 
user?” question, the Suspend agency would be triggered and 
placed on the stack on top of the AskRegistered agent. 
Moreover, the Dialog Engine itself can push new agencies 
modeling various conversational strategies on the dialog stack 
(see Section 2.3). The stack therefore tracks the current 
structure of the dialog, and provides support for focus shifts 
and handling sub-dialogs, as well as for the construction of 
the system’s agenda of expectations. 

The Request-type fundamental agents can interrupt the 
Execution Phase and instruct the Dialog Engine to start an 
Input Phase. The engine then acquires and incorporates the 
input from the user, as described below. 

2.2.2. The Input Phase 

Each Input Phase consists of three stages: (1) constructing the 
agenda of expectations, (2) binding values from the input to 
concepts, and (3) analyzing the need for a focus shift.  

In the first stage, the system constructs the expectation 
agenda, a data-structure describing what the system is 
expecting to “hear” at this point. The agenda is constructed by 
traversing the dialog stack in a top-down manner and asking 
each of the agents encountered to declare their expectations. 
An expectation describes the semantic grammar slots an agent 
is looking for (e.g. [user_name] for AskName in Figure 1), 
which concept they update (e.g. Name), and how the update is 
to be performed. An agency’s expectation is defined by 
collecting the expectations of all of its descendants. The 
resulting expectation agenda will therefore contain multiple 
sections (see Figure 1) representing increasingly larger 
contexts, imposed by the current state of the dialog stack. 

In the second stage, information from the input is matched 
to the declared expectations by a top-down traversal of the 
agenda. The top-down traversal provides support for reference 
resolution: if expectations for the same grammar slot exist in 
different sections of the agenda, the ones that are placed 
higher (and therefore closer in context to the conversational 
focus) will take precedence. In the example from Figure 1, the 
[yes] slot is bound to the Registered concept (setting its value 
to true), but also [user_name] is bound to the Name concept. 
When the execution later resumes, the AskName agent already 
has its completion criterion satisfied (i.e. the Name concept is 
available), and will not be scheduled for execution. 

Finally, in the last stage of the Input Phase, the system 
establishes if any of the dialog agents in the task tree need to 
be brought into focus, in light of the recently gathered 
information. This process is similar to the construction of the 
expectation agenda, in that each of the agents in the task tree 
is given the opportunity to declare a focus claim. Focus 
claims are domain-dependent, and they are specified as trigger 

conditions on the agents. If the need for a focus shift is 
signaled, the claiming agent is pushed on the dialog stack. 
The Input Phase concludes, and a new Execution Phase 
begins with the agent on top of the stack.  

2.3. Conversational strategies 

A characteristic which greatly influences the usability and 
ultimately the success of spoken dialog systems is their ability 
to employ a rich set of conversational strategies. These 
encompass grounding behaviors (e.g. confirmations, 
disambiguations, channel reestablishment, etc) turn-taking 
and timing behaviors, as well as other generic dialog 
mechanisms, like the ability to handle requests for help, for 
repeating the last utterance, suspending and resuming the 
dialog, starting over, re-establishing the context. 

RavenClaw provides automatic support for all the above-
mentioned conversational strategies. Internally, they are 
implemented as dialog agencies, in the same manner as the 
domain-specific dialog task tree. Their corresponding sub-
trees are either inserted in the task tree at the beginning of the 
session (e.g. the Suspend agency handling requests for 
temporarily suspending the dialog in Figure 1), or are pushed 
by the Dialog Engine onto the dialog stack at an appropriate 
time (e.g. explicit confirmations, disambiguations, etc). The 
transparent support offered for conversational strategies 
considerably simplifies the system development and 
maintenance efforts, while also providing uniformity within 
and across systems. Finally, if need be, the developers can 
build new task-specific conversational strategies, and/or 
overwrite the available defaults. 

3. RavenClaw-based systems  

Evaluating the appropriateness of a dialog management 
framework is a challenge, as many applications can be (and 
are) recast into a form that is tractable within a particular 
approach. As a first step, we made the system available to 
different developer teams working in a variety of structurally 
different domains and noted the degree of accommodation 
required by RavenClaw. Below, we briefly comment on the 
development of five such systems using RavenClaw-based 
dialog managers (Table 1 lists some system characteristics). 

LARRI [5] is a multi-modal conversational agent which 
provides assistance to F/A-18 aircraft mechanics performing 
maintenance tasks. The system guides the user through the 
task at hand, and provides access to relevant stored 
information (e.g. diagrams, warnings, etc). The tree-based 
decomposition of the dialog task is well suited to this domain, 
as it maps directly onto the structure of the actual tasks to be 
performed. Moreover, since the tasks are extracted on-the-fly 
from a task repository, the framework’s ability to 
generate/expand the dialog task tree at runtime plays an 
important role. The number of agents in the task tree can grow 
from 61 to several hundreds, depending on length of the task 
to be performed; in practice, the system scales gracefully. 
LARRI was used to initially test the RavenClaw design. 

The Intelligent Procedure Assistant [6], developed at 
NASA/Ames operates in a very similar domain: the system is 
intended to provide assistance to astronauts on the 
International Space Station in the execution of procedural 
tasks and checklists. In contrast to the other systems in this 
section, which use Phoenix [7] for semantic parsing and are 



integrated in a Galaxy architecture [8], the IPA uses the 
Gemini [9] parser and language generator, and is integrated 
using Open Agent Architecture [10]. Although new input and 
output representations reflecting the Gemini semantics were 
added, RavenClaw’s modular design allowed us to adapt it to 
this new setting without any core structural changes.  

BusLine, developed as part of the “Let’s Go!” project 
[11], provides an information search interface to Pittsburgh 
bus schedules. In contrast to LARRI and IPA, BusLine uses a 
static dialog task tree. BusLine required several changes to 
RavenClaw to better support information exploration: 
maintaining a history of previous values for the concepts in 
the task tree, providing clearer semantics for re-opening 
topics (agencies) for conversation, as well as refining the 
default behaviors of some conversational strategies. 

RoomLine provides assistance for conference room 
reservation and scheduling within the School of Computer 
Science at CMU. The system’s task entails both information 
access and room-schedule modification functionality. The 
RavenClaw architecture supports the RoomLine functionality 
without any modification.  

TeamTalk provides spoken control of a team of robots, 
and focuses on managing multi-way conversations and the 
asynchronous behavior that characterizes a team of 
autonomous agents. The initial design uses a separate dialog 
manager instantiation for each robot, and a token-passing 
scheme to control turn-taking. Although multi-participant 
conversation is a novel application, no structural changes to 
RavenClaw appear to be necessary. 

System Domain 
Type 

Interaction 
Type 

# of 
agents 

# of 
concepts 

LARRI 
Guidance 

& Browsing 
System 
Guided 

61 + 31 + 

IPA 
Guidance 

& Browsing 
System 
Guided 

52 + 25 + 

Bus 
Line 

Information 
Exploration 

Mixed 
Initiative 

44 10 

Room 
Line 

Information 
Mgmt. 

Mixed 
Initiative 

50 9 

Team 
Talk 

Command 
& Control 

User 
Initiative 

~80 
estim. 

~20 
estim. 

Table 1: Five RavenClaw-based dialog systems 

4. Conclusions 

We described RavenClaw, a new dialog management 
framework for spoken dialog systems operating in complex, 
goal-oriented domains. The framework separates the domain-
dependent and domain-independent components of the dialog 
manager and focuses system development effort on defining a 
hierarchical decomposition of the underlying task. A Dialog 
Engine uses the task representation to drive the dialog forward 
towards its goals, and uses separate, generic, conversational 
strategies to maintain dialog coherence and continuity. 

RavenClaw-based dialog managers were constructed for 
five dialog systems spanning qualitatively and quantitatively 
different domains. Work in one domain (information 
exploration) resulted in the addition of new functionality but 
no major changes in the overall structure or core mechanisms 
were required. Moreover, the framework easily adapted to all 
these domains, indicating a high degree of versatility and 
scalability. 

Currently our efforts are focused on managing grounding 
in a separate layer based on the continuous updating of the 
system’s beliefs about the validity of information in the task 
tree, and decision making under uncertainty. 

5. Acknowledgements 

We would like to thank Antoine Raux, Brian Langler, June 
Sison, Thomas Harris, Satanjaneev Banerjee, S.P. Kishore, 
the primary developers of the BusLine and TeamTalk 
systems. We would also like to thank Ridy Lie for his work 
on the development of the RoomLine system, and the 
RIALIST group at NASA/Ames for their collaboration in 
introducing a RavenClaw-based dialog manager into IPA.  

This research was sponsored in part by the Space and 
Naval Warfare Systems Center, San Diego, under Grant No. 
N66001-99-1-8905. The content of the information in this 
publication does not necessarily reflect the position or the 
policy of the US Government, and no official endorsement 
should be inferred. 

6. References 

[1] Xu, W. and Rudnicky, A., “Task-based Dialog 
Management Using an Agenda”, ANLP/NAACL 2000 
Workshop on Conversational Systems, May 2000. 

[2] Lemon, O., Gruenstein, A., Battle, A., and Peters, S. 
“Multi-tasking and Collaborative Activities in Dialogue 
Systems”, Proceedings of 3rd SIGDIAL Workshop on 
Discourse and Dialogue, Philadelphia, p.113-124, 2002. 

[3] Rich, C., and Sidner, C., “Collagen: A Collaboration 
Agent for Software Interface Agents”, Journal of User 
Modeling and User-Adapted Interaction, vol.8, 1998 

[4] Litman, D. J., Kearns, M. S., Singh, S., and Walker, M. 
A., “Automatic Optimization of Dialogue Management”,  
In Proceedings of COLING 2000. 

[5] Bohus, D. and Rudnicky, A., “LARRI: A Language-
Based Maintenance and Repair Assistant”, IDS-2002, 
Kloster Irsee, Germany. 

[6] Aist, G., Hockey, B.A., Rayner, M., Hieronymus, J., 
Bohus, D., Boven, B., Blaylock, N., Campana, E., Early, 
S., Gorrell, G., and Phan, S., “Talking Through 
Procedures: An Intelligent Space Station Procedure 
Assistant”, EACL-Demo, 2003 

[7] Ward, W., and Issar, S. “Recent Improvements in the 
CMU Spoken Language Understanding System”, 
Proceedings of the ARPA HLT Workshop, March 1994 

[8] Seneff, S., Hurley, E., Lau, R., Pao, C., Schmid, P., and 
Zue, V. “Galaxy-II: A reference architecture for 
conversational system development”, Proceedings 
ICSLP, Sydney, Australia, 1998 

[9] Dowding, J., Gawron, J.M., Appelt, D., Bear, J., Cherny, 
L., Moore, R., and Moran, D “A Natural Language 
System for Spoken-Language Understanding”, Meeting 
of the Association for Computational Linguistics 

[10] D. Martin and A. Cheyer and D. Moran, “The Open 
Agent Architecture: a framework for building distributed 
software systems”, Journal of Applied Artificial 
Intelligence, vol 13, no. ½, pp 91-128, 1999 

[11] Raux, A., Langner, B., Black, A., and Eskenazi, M., 
“LET'S GO: Improving Spoken Dialog Systems for the 
Elderly and Non-natives”, submitted to EuroSpeech 2003 


