RavenClaw: Dialog Management Using Hierarchical Task
Decomposition and an Expectation Agenda

Dan Bohus Alexander I. Rudnicky

Carnegie Mellon University,

Pittsburgh, PA, 15213
{dbohus, ai r} @s. cnu. edu

Abstr act

We describe RavenClaw, a new dialog management
framework developed as a successor to the Agendla [1
architecture used in the CMU Communicator. RavewCla

2. RavenClaw architecture

RavenClaw is a two-tier architecture (Figure 1)eDhialog
Task Specification layer captures all the domain-specific
dialog logic. TheDialog Engine is a domain-independent

introduces a clear separation between task andoutise
behavior specification, and allows rapid developnugmialog
management components for spoken dialog systematoye
in complex, goal-oriented domains. The system agraknt
effort is focused entirely on the specification tbe dialog
task, while a rich set of domain-independent cosatéonal
behaviors are transparently generated by the dexlggne. To
date, RavenClaw has been applied to five diffedorhains
allowing us to draw some preliminary conclusionst@aghe
generality of the approach. We briefly describe experience
in developing these systems.

1. Introduction

Dialog management maintains continuity over tumsi

conversation between human and computer. While many

approaches have been developed to address thikiprole
believe that the essence of dialog managementessiu
performing two functions: interpreting user inputgth
respect to task(s) within the domain, and maintgnihe
coherence, over time, of the conversation.

Task structure is not always explicitly representad
dialog systems. For example, in graph-based systdnR”
systems) task structure is implicit in the struetaf the graph.
In information access systems, the “task” consigt$orm-
filling and is again implicitly represented in thechitecture.
Explicit task representations, however, are necg$samore
complex domains, for example travel planning. ThdlC

Agenda dialog manager [1] represents one approach t

directly modeling the human’s task. The current &teMaw
dialog manager builds on the experience of Agendtbly
in providing a clear separation between task-sielsghavior
and more general discourse behaviors (which we tefas
“conversational strategies”). The system develogmemd
maintenance effort is entirely focused on providiag
description of the task to be performed; the meismas for
maintaining the coherence and continuity of theveosation
are generated by an underlying dialog engine.

Section 2 describes in detail the structure, meshan
and functionality of the RavenClaw architecture.
Subsequently, Section 3 summarizes our experigncsing
it in five different applications that span a véyief task
types. Finally, Section 4 concludes the paper ardgnts our
current and future plans for extending this frameéwo

component that controls the dialog by executing Eti@og
Task Specification, and contributes basic convinsak
strategies (e.g., timing and turn-taking behavgngunding
behavior; universal dialog mechanisms like helppeg,
suspend/resume). All domain-specific informatiorlisstered
within the Dialog Task Specification level. Systeevelopers
can therefore focus their attention on defining th@nain-
specific control of the dialog, and delegate redion of
generic dialog mechanisms to the Dialog Engine.

2.1. TheDialog Task Specification

The domain-specific dialog control is represented the
Dialog Task Specification level using a tree oflalipagents,
with each agent handling a certain part of theodjahsk.

To exemplify, Figure 1 illustrates the top portiohthe
dialog task tree for RoomLine, a spoken dialog esysfor
conference room reservation and scheduling. Thé mode
subsumes several childrdrogin, which identifies the user to
the system,GetQuery, which obtains the time and room
constraints from the usefGetResults, which executes the
query against the backend, abidcussResults which presents
the obtained results and handles the forthcomirmgptigion
for selecting the conference room that best matttheesiser’s
needs. Moving one level deeper in the tiegin decomposes
into Welcome, which introduces the user to the system,
AskRegistered and AskName, which identify the user, and
finally GreetUser, which sends a greeting to the user.

Hierarchical task decompositions, traditionally disfer
task execution in robotics, have gained populanitythe
dialog management community. Examples include teaf
a tree-of-handlers in Agenda Communicator [1],\étstitrees
in WITAS [2] and recipes in Collagen [3]. The hieaical
representation has several advantages. Most (giealted)
dialog tasks have an identifiable structure whicturally
lends itself to a hierarchical description. The mhponents
are typically independent, leading to ease in daesigd
maintenance, as well as good scalability properiieseover,
the tree structure can be easily extended at me;t@llowing
for the dynamic construction of dialog structureieay useful
feature in certain types of tasks. Finally, the etre
representation implicitly captures the notion ohxt (via
the parent relationship), as well as a default wbiwmgical
ordering of the actions (i.e. left-to-right travalls these
elements significantly simplify the design of a Ild@a
rendering engine operating over this type of regm&stion.

AskRegistered

Registered

Name

:;": DateTime ""-___ Location

DiscussResults

Results

Whiteboard

Dialog Task
Specification Network Projector Whiteboard

Dialog Engine . e

Expectation Agenda_ - User Input
4
Dialog Stack <[Registered: [yes]->true, [no]->false System: Are you a registered user?
_ { Registered: [yes]->true, [no]->false gser. _Yes, this is John Doe.
," ASkRengtered Name: [user_name] - ... arse ‘ ﬁgz:!‘ (ﬁgrsré] (j ohn doe)
Registered: [yes]->true, [no]->falsé"‘-a,” J - J

Name: [user_name]
DateTime: [date_time]
Location: [location]

|" Login
RoomLine _S‘>

Network: [with_network]->true,
[without_network]->false

Figure 1 RavenClaw architectural details

As a prerequisite to a more detailed presentatiothe
Dialog Engine control mechanisms (Section 2.2)five¢ turn
our attention to the structure and functionalitytioé¢ dialog
task agents.

2.1.1. Dialog Task agents

Two categories of dialog agents populate the taslk:t
fundamental dialog agents anddialog agencies.

The fundamental dialog agents appear as leaf n@ges
Welcome, AskRegistered) and represent atomic dialog actions.
RavenClaw uses four types of fundamental agénferm -
sends an output (e.gWelcome), Reguest - requests
information (e.g. AskRegistered), Expect - expects
information, but without requesting it (e.§rojector) and
DomainOperation - performs other domain-related
operations (e.gGetResults). The non-terminal nodes in the
tree aredialog agencies (e.g. Login, GetQuery); agencies
control the execution of their subsumed agentstucayy the
higher level temporal and logical structure of di@og task.

Each agent implements an Execute routine, and relds
set of preconditions and triggers, and a completigierion.
The Execute routine is specific to the agent typer
example, Inform-type agents simply generate anwduifnen
executed, while Request-type agents also triggednaunt
Phase (see subsection 2.2.2) to collect the usesjsonse.
For agencies, the Execute routine is in chargdasfriing the
order of the execution of the sub-agents. This tesk-
planning problem is currently resolved by combinanget of
simple policies (i.e. left-to-right traversal), it the
preconditions that each agent holds. The systehovgever
open to more sophisticated policies, and even iiegrat the
dialog task level (e.g. by casting the sub-ageminmhg
problem as a Markov Decision Process [4]).

Between the preconditions, triggers, completiorieca
and the Execute routines the tree captures an lbvera
hierarchical plan for the dialog task but does mr@scribe a

fixed order of execution (as might be found in &edied
dialog system). When executed, a particular trapgugh this
plan is generated based on the specified poli@aspded
domain constraints and logic, as well as the usepsts.

An important feature of dialog agents, qualifyilgin as
more than plan operators, is their ability to stooecepts,
and participate in the Input Phase, in which tHermation
collected from the user is incorporated into thstesyr. Each
agent can contain one or more concepts (Bagistered,
Name) that hold task-related information. Concepts are
represented as probability distributions over tret sf
possible values, enabling a grounding managemeydr la
based on belief updating and decision making under
uncertainty.

2.2. TheDialog Engine

The Dialog Engine is the core component in RavenGlad
controls the dialog by executing the Dialog Task
Specification. Dialog flow is generated by intevieg
Execution Phases andlnput Phases. In an Execution Phase,
the various agents in the task tree are executddyanerate
the system’s behavior. In an Input Phase, the systdlects
and incorporates the information from the userjsuin We
now describe these mechanisms is more detail.

2.2.1. The Execution Phase

The Dialog Engine uses a stack to track the diatogcture
and schedule the agents in the task tree for emec(see
Figure 1). Initially, the root agent is placed dre tdialog
stack. Subsequently, the engine repeatedly takesagent
currently on the top of the stack, and executesWhen
agencies are executed, they typically schedule ainéneir
descendants for execution by pushing it on theodiatack.
Ultimately, the execution of fundamental dialog rige
generates the system'’s responses and actions.

Note that the isomorphism between the dialog stauk
the dialog tree is only apparent. There is an disden
functional difference between the two structurdéee stack
captures the temporal and hierarchical structuthefturrent
dialog, while the tree describes the dialog tashplicitly
capturing the set of all possible dialogs in thendm. As
described in the next subsection, the user canyapaint take
the initiative and shift the focus of the convei@ato another
part of the task (as long as the domain logic amkstaints
encoded in the task tree are not violated). Thislead to the
introduction of new dialog agents on the stackakireg the
apparent isomorphism. For instance, if the userbasgonded
by saying“Suspend” to the system’sAre you a registered
user?” question, theSuspend agency would be triggered and
placed on the stack on top of thskRegistered agent.
Moreover, the Dialog Engine itself can push newnagss
modeling various conversational strategies on talg stack
(see Section 2.3). The stack therefore tracks tineewt
structure of the dialog, and provides support fmuk shifts
and handling sub-dialogs, as well as for the corttin of
the system’s agenda of expectations.

The Request-type fundamental agents can intertugpt t
Execution Phase and instruct the Dialog Enginetaot &n
Input Phase. The engine then acquires and incagsothe
input from the user, as described below.

2.2.2. The Input Phase

Each Input Phase consists of three stages: (1}rceting the
agenda of expectations, (2) binding values fromitipait to
concepts, and (3) analyzing the need for a focifts sh

In the first stage, the system constructs the dafien
agenda, a data-structure describing what the system
expecting to “hear” at this point. The agenda isstnucted by
traversing the dialog stack in a top-down mannet asking
each of the agents encountered to declare thegctagons.
An expectation describes the semantic grammar slots an agent
is looking for (e.g. [user_name] fdtskName in Figure 1),
which concept they update (e/dame), and how the update is
to be performed. An agency's expectation is defirsd
collecting the expectations of all of its descengahe
resulting expectation agenda will therefore containltiple
sections (see Figure 1) representing increasinghgel
contexts, imposed by the current state of the diatack.

In the second stage, information from the inpubh&ched
to the declared expectations by a top-down travextshe
agenda. The top-down traversal provides supporeference
resolution: if expectations for the same grammar ekist in
different sections of the agenda, the ones thatpdaeed
higher (and therefore closer in context to the eosational
focus) will take precedence. In the example froguFe 1, the
[yes] slot is bound to the Registered concepti(getts value
totrue), but also [user_name] is bound to fiene concept.
When the execution later resumes, AkilName agent already
has its completion criterion satisfied (i.e. tk@me concept is
available), and will not be scheduled for execution

Finally, in the last stage of the Input Phase, shgtem
establishes if any of the dialog agents in the teesk need to
be brought into focus, in light of the recently lgaied
information. This process is similar to the constien of the
expectation agenda, in that each of the agentseiriaisk tree
is given the opportunity to declare a focus claifocus
claims are domain-dependent, and they are specifiedgger

conditions on the agents. If the need for a fochift $s
signaled, the claiming agent is pushed on the dialack.
The Input Phase concludes, and a new ExecutionePhas
begins with the agent on top of the stack.

2.3. Conversational strategies

A characteristic which greatly influences the ubgbiand
ultimately the success of spoken dialog systertiseis ability

to employ a rich set of conversational strategi€sese
encompass grounding behaviors (e.g. confirmations,
disambiguations, channel reestablishment, etc)-taking
and timing behaviors, as well as other generic odial
mechanisms, like the ability to handle requestshielp, for
repeating the last utterance, suspending and regurhie
dialog, starting over, re-establishing the context.

RavenClaw provides automatic support for all thevab
mentioned conversational strategies. Internallyeythare
implemented as dialog agencies, in the same maas¢ne
domain-specific dialog task tree. Their correspogdsub-
trees are either inserted in the task tree at ¢éiginhing of the
session (e.g. theSuspend agency handling requests for
temporarily suspending the dialog in Figure 1)am pushed
by the Dialog Engine onto the dialog stack at aprapriate
time (e.g. explicit confirmations, disambiguatiomsc). The
transparent support offered for conversational tesfias
considerably simplifies the system development
maintenance efforts, while also providing unifoymwithin
and across systems. Finally, if need be, the dpeetocan
build new task-specific conversational strategiesd/or
overwrite the available defaults.

and

3. RavenClaw-based systems

Evaluating the appropriateness of a dialog manageme
framework is a challenge, as many applications lmar{and
are) recast into a form that is tractable withirpaaticular
approach. As a first step, we made the system ablailto
different developer teams working in a variety tfisturally
different domains and noted the degree of accomtiwda
required by RavenClaw. Below, we briefly commentthe
development of five such systems using RavenClaseda
dialog managers (Table 1 lists some system chaistate).

LARRI [5] is a multi-modal conversational agent which
provides assistance to F/A-18 aircraft mechanicfopring
maintenance tasks. The system guides the usergtnrthe
task at hand, and provides access to relevant dstore
information (e.g. diagrams, warnings, etc). Thee-based
decomposition of the dialog task is well suitedhis domain,
as it maps directly onto the structure of the ddasks to be
performed. Moreover, since the tasks are extrastethe-fly
from a task repository, the framework’s ability
generate/expand the dialog task tree at runtimgspkn
important role. The number of agents in the tas& tan grow
from 61 to several hundreds, depending on lengtihetask
to be performed; in practice, the system scalesefudy.
LARRI was used to initially test the RavenClaw desi

The Intelligent Procedure Assistant [6], developed at
NASA/Ames operates in a very similar domain: thetem is
intended to provide assistance to astronauts on
International Space Station in the execution ofcpdural
tasks and checklists. In contrast to the otheregystin this
section, which use Phoenix [7] for semantic pargng are

to

the

integrated in a Galaxy architecture [8], the IPAesighe
Gemini [9] parser and language generator, andtegiated
using Open Agent Architecture [10]. Although neypun and
output representations reflecting the Gemini seicsaiwere
added, RavenClaw’s modular design allowed us t@taitlao
this new setting without any core structural change

BusLine, developed as part of the “Let's Go!” project
[11], provides an information search interface ttisBurgh
bus schedules. In contrast to LARRI and IPA, Busluises a
static dialog task tree. BusLine required sevetanges to
RavenClaw to better support information exploration
maintaining a history of previous values for thexaepts in
the task tree, providing clearer semantics for pening
topics (agencies) for conversation, as well asnirdi the
default behaviors of some conversational strategies

RoomLine provides assistance for conference room
reservation and scheduling within the School of @oter
Science at CMU. The system’s task entails bothrin&ion
access and room-schedule modification functionalithe
RavenClaw architecture supports the RoomLine fonetity
without any modification.

TeamTalk provides spoken control of a team of robots,
and focuses on managing multi-way conversations taed
asynchronous behavior that characterizes a team of
autonomous agents. The initial design uses a depdialog
manager instantiation for each robot, and a tolassipg
scheme to control turn-taking. Although multi-peifient
conversation is a novel application, no structatenges to
RavenClaw appear to be necessary.

System Domain Interaction | # of # of
Type Type agents | concepts
Guidance System
LARRI & Browsing Guided 61+ s+
Guidance System
IPA & Browsing Guided 52+ 25+
Bus Information Mixed
Line Exploration | Initiative 44 10
Room | Information Mixed 50 9
Line Mgmt. Initiative
Team | Command User ~80 ~20
Talk & Control Initiative estim. estim.

Table 1 Five RavenClaw-based dialog systems

4, Conclusions

We described RavenClaw, a new dialog management
framework for spoken dialog systems operating imgex,
goal-oriented domains. The framework separatesitimeain-
dependent and domain-independent components dafidfeg
manager and focuses system development effort fimrdea
hierarchical decomposition of the underlying taskDialog
Engine uses the task representation to drive tdegiforward
towards its goals, and uses separate, generic.eczational
strategies to maintain dialog coherence and coityinu
RavenClaw-based dialog managers were constructed fo
five dialog systems spanning qualitatively and ditatively
different domains. Work in one domain (information
exploration) resulted in the addition of new funatlity but
no major changes in the overall structure or coeehmnisms
were required. Moreover, the framework easily agldo all
these domains, indicating a high degree of veitsatéind
scalability.

Currently our efforts are focused on managing gding
in a separate layer based on the continuous ugdafirthe
system’s beliefs about the validity of informationthe task
tree, and decision making under uncertainty.

5. Acknowledgements

We would like to thank Antoine Raux, Brian Langldune
Sison, Thomas Harris, Satanjaneev Banerjee, S.sholka,
the primary developers of the BusLine and TeamTalk
systems. We would also like to thank Ridy Lie fas work
on the development of the RoomLine system, and the
RIALIST group at NASA/Ames for their collaboratioim
introducing a RavenClaw-based dialog manager ipfa |

This research was sponsored in part by the Spade an
Naval Warfare Systems Center, San Diego, undertGtan
N66001-99-1-8905. The content of the informationtliis
publication does not necessarily reflect the positor the
policy of the US Government, and no official endonent
should be inferred.

6. References

[1] Xu, W. and Rudnicky, A., “Task-based Dialog
Management Using an AgendaANLP/NAACL 2000
Workshop on Conversational Systems, May 2000.
Lemon, O., Gruenstein, A., Battle, A., and PetSs,
“Multi-tasking and Collaborative Activities in Diague
Systems”, Proceedings of93SIGDIAL Workshop on
Discourse and Dialogue, Philadelphia, p.113-128220
Rich, C., and Sidner, C., “Collagen: A Collaboratio
Agent for Software Interface AgentsJpurnal of User
Modeling and User-Adapted Interactiovol.8, 1998
Litman, D. J., Kearns, M. S., Singh, S., and Walkér
A., “Automatic Optimization of Dialogue Management”
In Proceedings of COLING 2000.
Bohus, D. and Rudnicky, A., “LARRI: A Language-
Based Maintenance and Repair AssistahPS-2002,
Kloster Irsee, Germany.
Aist, G., Hockey, B.A., Rayner, M., Hieronymus, J.,
Bohus, D., Boven, B., Blaylock, N., Campana, EriEa
S., Gorrell, G.,, and Phan, S., “Talking Through
Procedures: An Intelligent Space Station Procedure
Assistant”, EACL-Demo, 2003
Ward, W., and lIssar, S. “Recent Improvements in the
CMU Spoken Language Understanding System”,
Proceedings of the ARPA HLT Workshop, March 1994
[8] Seneff, S., Hurley, E., Lau, R., Pao, C., Schmid,aRd
Zue, V. “Galaxy-Il: A reference architecture for
conversational system development”, Proceedings
ICSLP, Sydney, Australia, 1998
Dowding, J., Gawron, J.M., Appelt, D., Bear, J.e@Gly,
L., Moore, R., and Moran, D “A Natural Language
System for Spoken-Language Understanding”, Meeting
of the Association for Computational Linguistics
[10] D. Martin and A. Cheyer and D. Moran, “The Open
Agent Architecture: a framework for building distited
software systems”, Journal of Applied Artificial
Intelligencevol 13, no. %, pp 91-128, 1999
[11] Raux, A., Langner, B., Black, A., and Eskenazi, M.,
“LET'S GO: Improving Spoken Dialog Systems for the
Elderly and Non-natives”, submitted to EuroSpee@b3?

(2]

(3]

(4]

(5]

(6]

(7]

9]

