
Pre- and Post-conditions for Security
Typechecking

Karthik Bhargavan3,1, Cédric Fournet2,1, and Nataliya Guts1

1 MSR-INRIA Joint Centre
2 Microsoft Research

3 INRIA

Abstract. We verify implementations of cryptographic protocols that
manipulate recursive data structures, such as lists. Our main applications
are X.509 certificate chains and XML digital signatures. These applica-
tions are beyond the reach of automated provers such as ProVerif, since
they require some form of induction. They can be verified using the F7
refinement typechecker, at the cost of annotating each data-processing
function with logical formulas embedded in its type. However, this en-
tails the duplication of many library functions, so that each instance can
be given its own type.
We propose a more flexible method for verifying ML programs that
use cryptography and recursion. We annotate standard library func-
tions (such as list processing functions) with precise, yet reusable types
that refer to the pre- and post-conditions of their functional arguments,
using generic logical predicates. We use these predicates both to spec-
ify higher-order functions and to track security events in programs and
cryptographic libraries. We implement our method by extending the F7
typechecker with automated support for these predicates. We evaluate
our approach experimentally by verifying a series of security libraries
and protocols.

1 Security Verification by Typing

We intend to verify the security of programs implementing protocols and ap-
plications (rather than their abstract models). Operating at the level of source
code ensures that both design and implementation flaws will be caught, and also
facilitates the adoption of verification tools by programmers. In this work, we
rely on F7 [Bengtson et al., 2008, Bhargavan et al., 2010], an SMT-based type-
checker developed for the modular verification of security protocols and their
cryptographic operations written in ML against first-order logic type interfaces.

Suppose that Alice sends a service request to Bob, who authenticates Alice’s
request before delivering the service. Bob programs in ML, so the security of
his code can be validated using the F7 typechecker to enforce his policy. De-
pending on the control- and data-flow of the protocol between Alice and Bob,
typechecking essentially propagates logical annotations from cryptographic and
communications primitives up to the protocol interface. Thus, the programmer

provides a few protocol-specific type annotations (for instance when allocating
a key) and the rest of the verification is automated.

In practice, protocol implementations involve various data structures, and
thus the need for type annotations extends to various library functions that
manipulate this data. Despite support for polymorphism à la ML, it is difficult
to give these library functions precise, yet polymorphic refinement types. In
particular, recursive data processing involves higher-order functions, and the
programmer must repeatedly provide an ad hoc type for each usage of these
functions. Pragmatically, this involves replicating the code for these functions
(and some of the functions they call); annotating each replica with its ad hoc
type; and letting F7 typecheck the replica for each particular usage. Annotating
code is the tedious part of work of an F7 programmer.

Now, suppose that the message format used by Alice and Bob is under de-
velopment and changes regularly. Each change trickles down the protocol data
flow, causing many changes to its logical annotations, and possibly further code
replication. This compromises the code modularity. Can we write less code and
annotations, and focus on the security properties of our program? In this work
we show how using automatic predicates for pre- and post-conditions allows to
write more flexible and reusable types.

Example F7 is based on a typed call-by-value lambda calculus, called RCF,
described in more detail in Appendix A. Expressions are written in a subset
of F#, a dialect of ML. Types are F# types refined with first-order formulas.
For instance, the refinement type v : int {v > 5} is the type of integers greater
than 5. More precisely, this type can be given to any expression such that,
whenever it returns a value, this value is an integer greater than 5. RCF defines
judgments for assigning types to expressions and for checking whether one type
is a subtype of another. For instance, v : int {v > 5} is a subtype of int.

Using refinements, we can write expressive types for functions. For instance,
the dependent function type v:int →w:int {w>v}, a subtype of int → int, repre-
sents functions that, when called with an integer v, may return only an integer
greater than v.

Consider the type α option, which is part of the standard library in many
flavours of ML. The type int option represents an optional integer: it is either of
the form Some n where n has type int, or it is of the form None. Using option
types, we can, for example, easily code up protocols that have optional fields in
their messages. To manipulate a message field of type int option, it is convenient
to use the higher-order library function Option.map:

val map: (int → int) → int option → int option
let map f x = match x with
| None →None
| Some(v) → let w = f v in Some(w)

This function can be applied to any function whose type is a subtype of int →
int, of the form x:int → y:int{ C(x,y)} for some formula C that can refer to both
x and y. Suppose we compute a value y using map over a function f:

2

val f : v : int →w : int {w>v}
let y = map f (Some(0))

We would then like to give y a type that reflects the post-condition of f :

val y:int option{∃w. y = Some(w) ∧w > 0}

What type must map have in order for y to have this type? The most precise
type we can give map in RCF accounts for the various cases (None vs Some) of
the argument and the result:

val map: f:(int → int) → x:(int option) → y:(int option)
{ (x = None ∧ y = None) ∨ (∃v,w. x = Some(v) ∧ y = Some(w))}

This type does not capture the possible post-condition of the function f .
Indeed, within F7, the only way to check that y has its desired type is to copy
the definition of the map function just for f and to typecheck it again.

Our main idea is to introduce annotations for pre- and post-conditions that
are automatically injected and checked by the F7 typechecker. We introduce
predicates Pre and Post and use them within the type of higher-order functions to
refer to the pre- and post-conditions of their functional arguments. For instance,
Post(f,v,w) can refer to the post-condition of a function parameter f applied to v
returning w, and we can give map the type:

val map: f:(int → int) → x:int option → y:int option
{(x = None ∧ y = None) ∨ (∃v,w. x = Some(v) ∧ y = Some(w) ∧Post(f,v,w))}

Whenever map is called (say within the definition of y above), the actual post-
condition of f is statically known (w>v) and can be used instead of Post(f,v,w).
Hence, y can be given its desired type without loss of modularity.

We show how to use such Pre and Post predicates to give precise reusable
types to a library of recursive higher-order functions for list processing, and use
the library to verify protocol implementations that use these functions. Verifying
such implementations is beyond the reach of typical symbolic verification tools,
since their proof requires some form of induction. For example, Fs2pv [Bhar-
gavan et al., 2008] is a verification tool that compiles implementation code in
F# into the applied π-calculus, for analysis with ProVerif [Blanchet, 2001], a
state-of-the-art domain-specific prover. Although Fs2pv and ProVerif are able
to prove complex XML-based cryptographic protocol code, they do so by limit-
ing the length of lists to some constant value and then inlining and re-verifying
the list processing code at each call site.

Contribution We present extensions of the RCF type system and F7 typechecker
to automatically support pre- and post-condition predicates. We study three dif-
ferent semantics for these predicates and give examples of their use. We design
precise and modular APIs for lists and several cryptographic protocol implemen-
tations using lists (X509 certificates and XML signatures).

3

Contents Section 2 explains our extension of F for pre- and post-conditions,
presenting different design choices. Section 3 illustrates the use of pre- and post-
conditions to specify and verify a simple authentication protocol. Section 4 illus-
trates the use of pre- and post-conditions to give reusable types to a library for
lists. Section 5 describes and evaluates larger verification case studies of crypto-
graphic protocol implementations. Section 6 discusses related work.

2 Refinements for pre- and post-conditions

Classically, a pair of formulas (C1, C2) models a valid pair of pre- and post-
conditions for a given function application when, if formula C1 holds just before
calling the function, then formula C2 holds just after the function completes.
Hoare [1969] originally proposed them for arbitrary programs. More recently,
for example, Spec# [Barnett et al., 2005] and Code Contracts [Fähndrich et al.,
2010] let function definitions be annotated with contracts (formulas) express-
ing intended pre- and post-conditions. F7 naturally supports pre- and post-
conditions for functions as refinements of their argument and return types. For
instance, if an F7 function has type x:(x:T {C1}) → y:T’{C2}, then asserting C1

before the function call and C2 after the function returns is always safe.
In this section we show how to explicitly refer to pre- and post-conditions

of functions using generic predicates indexed by function value. The semantics
of these predicates is not as straightforward as it seems. When speaking of a
program with verification annotations, the pre- and post-condition of a function
can refer either to the formulas associated with that function (irrespective of its
call sites) or to the concrete events of function call and termination. For each
semantics, we introduce a pair of generic predicates, informally explain their use,
and then give (1) a formal code transformation; and (2) a patch to the F7 typing
rules to implement and validate this semantics.

2.1 Event-collecting Semantics

Pre- and post- conditions can be seen as events marking the beginning and the
end of the execution of a function. We record them by assuming facts for two
predicates Call and Return: Call(M,N) means that M is a function that has been
applied to the argument N ; Return(M,N,O) means that M is a function that
has been applied to N and has returned the value O. Formally, this yields a
concrete, extensional, finite model, for each partial run of a complete program.

As a direct benefit, we can use Call and Return to reason about run-time
events, instead of introducing ad hoc predicates for that purpose. For instance,
if a function send parameterized by m assumes a “begin event” Send(m) before
signing a message with payload m, we can remove this assume and use instead
the generic event Call(send,m) in security specifications. Similarly, suppose that
keys are represented as bitstrings, but that the keys in use should be generated
only using a designated algorithm genKey. We can assign to keys the refinement
type k : bytes { Return(genKey,(),k)}. This pattern frequently applies to various
cryptographic materials, such as nonces, initialization vectors, and tags.

4

Code transformation We specify this semantics by replacing every syntactic
function using the translation:

[[rec f: T. fun x → e]]E = rec f: T. fun x →
assume Call(f,x);
let r = [[e]]E in
assume Return(f,x,r);
r

where [[]]E is a homomorphism for all other expressions. Thus, we bracket each
call with events before and after the call.

Modifying the typechecker We achieve the same effect as the transformation by
directly injecting formulas during typechecking, modifying the rule (Typ Fun).
We call the modified typing system RCFE

Results Let e be a closed program. We check that our transformation does not
affect the operational behaviour, safety and well-typedness of programs that do
not use Call and Return, and that the code transformation and the modified
typing rule yield the same typing judgments.

Lemma 1. Suppose that Call and Return do not occur in e.

– Evaluation: For any value M , e −→∗ M , if and only if [[e]]E −→∗ [[M]]E;
– Safety: e is safe if and only if [[e]]E is safe; and
– Typing: e is well-typed in RCF if and only if [[e]]E is well-typed in RCF.

Lemma 2. [[e]]E is well-typed in RCF if and only if e is well-typed in RCFE.

2.2 Macro-expansion semantics

Pre- and post-condition may also be seen as pure syntactic sugar, abbreviations
that refer to concrete formulas in the types of functions in scope (similar to the
definition of pre and post projections of Régis-Gianas and Pottier [2008]). It
is useful to refer to the pre- or post-condition of a known and fully annotated
function to avoid copying a formula which is big or likely to change during the
verification process.

To denote such macro-definitions we introduce generic predicates #Pre and
#Post. They may occur anywhere in the program or its interface, provided that
their first argument is a variable name that has a declared function type in the
scope of their occurrence. Then before typechecking we can always safely replace
this occurrence with the concrete formula read off its variable type.

Implementation For any values f,M,N in the environment E, if E(f) =x:T
{C} → y:T’{C’}, then we replace any occurrence of #Pre(f,M) with C[M/x],
and any occurrence of #Post(f,M,N) with C ′[M/x][N/y]. If the lookup fails, or
the returned type is not a function type, the preprocessing fails—the macro-
definition is ill-formed.

5

2.3 Subtyping-based semantics

As opposed to the type annotations of toplevel functions, the declared types of
function arguments in higher-order functions are only supertypes of the argument
types actually used at their call sites. Thus, as we type the higher-order function,
the actual refinements for its argument are unknown, and we cannot just rely on
macro-expansion. We refer to these refinements using predicates Pre and Post.
Intuitively,

– we use them parametrically while typing higher-order functions, seeing the
type of each function argument f as x:(x:P{Pre(f,x)})→ y:P’{Post(f,x,y)}.

– we logically relate them to the actual refinements at each call site: as f is
instantiated to some function g of type x:(x:P{C})→ y:P’{C’}, to type the
call site, by subtyping we have two proof obligations:

∀x. C ⇒Pre(f,x)
∀x,y. Post(f,x,y) ⇒C’

which we will be automatically assumed.

Relation to the event-based semantics Within the body of a higher-order function
with function argument f , whenever f is applied to a value M , the event Call
(f,M) records this application, and typing requires that the predicate Pre(f,M)
holds. At runtime, for each instance g of f , the actual pre-condition of g holds
(by typing) and implies the formal precondition of f (by assumption) so we
always have

∀x. Call(f,x) ⇒Pre(f,x)

Similarly, when f returns, we have Return(f,M,N), and its formal post-condition
Post(f,M,N) implies the actual post-condition for any instance g of f (by as-
sumption) so we always have

∀x,y. Return(f,x,y) ⇒Post(f,x,y)

Code transformation To support Pre and Post, we rely on the event-based se-
mantics, so we first apply the event-based code transformation, then we trans-
form every let binding whose expression has a function type annotation:

[[let f = e : (f : (x1:P1{C1} →x2:P2{C2}) {Cf}) in e’]]S =
let f = [[e]]S in
assume ∀x1. C1 ⇒Pre(f,x1);
assume ∀x1,x2. Post(f,x1,x2) ⇒C2;
assume ∀x1,x2. Return(f,x1,x2) ⇒Post(f,x1,x2);
[[e′]]S

[[rec f: x:T1 →T2. fun x→ e]]S =
rec f: x:T1 →T2. fun x → [[let x = (x : T1) in e]]S

where [[]]S is a homomorphism for all other expressions. The first clause applies
to every function binding (since they are always annotated). The second clause
applies to every synctatic function definition, ensuring that all functional argu-
ments are annotated in higher-order functions.

6

Modifying the typechecker We modify F7 to support Pre and Post by modifying
insertions of variables entries with function types into the typing environment.
Hence, E extended with x : T is now written E ⊕ x : E, and defined by pattern
matching on T . If T is a function type, it is of the form f:(x1:P1{C1} → x2:P2{
C2}){Cf} and we let

E ⊕ x : T
4
= E, x : T, {∀x1. C1⇒Pre(x,x1)},

{∀x1,x2. Post(x,x1,x2)⇒C2},
{∀x1,x2. Return(x,x1,x2)⇒Post(x,x1,x2)}

Otherwise E ⊕ x : T is just E, x : T . We call the modified type system RCFS .

Restrictions on the use of Pre/Post To take advantage of Pre and Post while
preserving their consistency, we rely on a standard notion of positive and nega-
tive positions in types and formulas. Hence, for instance, assumed formulas are
positive, while asserted formulas are negative. We require that programmers use
Pre only in negative positions, and use Post only in positive positions.

Results We obtain a variant of Lemma 1 for the subtyping semantics: we have
a similar Evaluation property, but for Safety and Typability we only have the
direct implication (since the injected assumes and asserts depend on the type
annotations of the functions).

We also prove two flavours of Correctness: we have a variant of Lemma 2
that relates typing with RCFS and the specification [[]]S . Besides, using another
program transformation, the lemma below confirms that Pre and Post can be
eliminated by inlining the code of higher-order functions at each call site and
annotating them with ad hoc types. We omit the full definition of the corre-
sponding code transformation, 〈〉 (details can be found in the online companion
paper).

Lemma 3 (Correctness). Let e be an expression, TR a type that contains nei-
ther Pre nor Post, and E a typing environment where Pre occurs only negatively
and Post occurs only positively.

If E ` e : TR using RCFS, then E ` 〈e〉 : TR using RCFE.

3 Example: A MAC-based Authentication Protocol

As a preliminary example, we consider a simple client-server authentication pro-
tocol. We shall see how to specify and verify an implementation for this protocol
using only the event-collecting semantics of the events Call and Return.

A −→ B : m | (mac kAB m)

(The symbol | represents an invertible concatenation of bytestrings.) When a
principal a (playing role A) wants to send a message m to principal b (playing
role B), it also sends a MAC over m computed with a key kab known only

7

to a and b. This MAC authenticates the sender (only a or b could have sent
this message) and protects the integrity of the message (the sender must have
intended to send message m).

This simple protocol can be implemented in ML as three functions:

let mkKey a b = hmac keygen()
let client a b k m =

let c = Net.connect p in
let h = hmac k m in
let w = concat m h in
Net.send c w

let server a b k =
let c = Net.listen p in
let w = Net.recv c in
let (m,h) = iconcat w in
hmac verify k m h;
m

The mkKey function generates a fresh MAC key for use with messages sent
from a to b (we assume that messages in the reverse direction will use a separate
key.) The client function takes such a shared key k and uses it to protect a
message m that a wishes to send to b over the public network. The server function
receives a message over the public network and uses a shared MAC key to verify
the MAC on the message.

This protocol code runs in a hostile environment where an attacker may
use the public interfaces of the protocol and the libraries to interfere with the
protocol. The attacker may call the networking functions send, recv on any TCP
connection to intercept and interject a message of his choice. He may construct
and verify MACs by calling hmac and hmac verify with keys that he already
knows. He may also start any number of copies of the client and server and get
them to communicate with each other.

The authentication goal for the protocol is that if the server function returns
a message m when called with a, b, and a key k generated by the mkKey func-
tion, then the server knows that some client for a sent this message m to b. In
particular, an adversary who does not know a key generated for a and b cannot
fool b into accepting a message that was not sent by a.

We express this security goal within the refinement types for these functions:

val mkKey: a:str → b:str → k:key
val client:

a:str → b:str →
k:key{Return(mkKey,[a;b],k)} →
m:bytespub →unit

val server:
a:str → b:str →
k:key{Return(mkKey,[a;b],k)} →
m:bytespub
{Call(client,[a;b;k;m]) ∨Pub(k)}

To verify that the code actually meets these types, we rely on the unforge-
ability of MACs, expressed as types for the cryptographic library:

val hmac keygen:
unit → k:key{MKey(k)}

val hmac:
k:key{MKey(k)} →
m:bytes{MACSays(k,m)} →
h:bytes{Pub(m) ⇒Pub(h)}

val hmac verify:
a:str → b:str →
k:key{MKey(k)} →
m:bytes →
h:bytes →
unit{MACSays(k,m) ∨Pub(k)}

8

Note that hmac has as precondition a predicate MACSays(k,m), representing
the conditions under which the key k may be used to MAC m; every protocol
that uses MACs must specify MACSays for its keys that it uses. The type of
hmac then checks that k is allowed to MAC m, and the type of hmac verify says
that it returns a value m only if either MACSays(k,m) or if the key k is public,
that is, known to the attacker.

For the keys in our authentication protocol, we use MACSays to specify that
a key k generated for a and b using mkKey will only be used to MAC a message
m after client has been called with a, b, k, and m:

assume ∀a,b,k. Return(mkKey,[a;b],k) ⇒
(MACSays(k,m) ⇔Call(client,[a;b;k;m]))

We can then verify by typing that our code meets the security goal, and by
the type safety theorem of RCF we have that our protocol implementation is
secure against our attacker model.

Comparison with other methods Any number of symbolic verification tools can
verify the simple protocol code written here. Tools such as ProVerif [Blanchet,
2001] can even automatically infer the logical assumption on MACSays, thus re-
quiring fewer annotations than our method. However, as we shall see in Section 5,
verifying complex protocols that manipulate flexible message formats requires a
form of induction that is beyond the reach of tools such as ProVerif.

In comparison to earlier work on F7, our type specification above uses the
events Call and Return. In their absence, the programmer would have to define
his own predicates corresponding to these events and enforce their relationship
to the function calls by assuming them within protocol code. Here, these events
are declared and managed automatically.

4 Example: A Reusable Typed Interface for List

Lists are perhaps the most commonly-used data structures in functional pro-
grams. The F# List library provides efficient implementations of several re-
cursive list processing functions, and for maximum reusability, these functions
are typically higher-order and polymorphic. Our goal is to give this library a
reusable refinement typed interface, using our Pre and Post predicates and their
subtyping-based semantics. The full interface is listed in Appendix B.

In this section, we detail our approach on the functionList.fold, the general
iterator on lists (also called fold left). Its ML type is val fold: (α→ β→α)→α

→ β list →α . It takes as argument a function f, an initial accumulator a, a list l
and traverses the list l, applying f to the current accumulator and the next value
in the list to obtain a new accumulator; when it reaches the end of the list, it
returns the accumulator. For example, fold (+)0 [1;2;3;4] computes the sum of
the elements in the list.

9

First attempt: Using Recursive Predicates Let us define two predicates PreFold
and PostFold to represent the pre- and post-condition of fold. By inspecting the
code for fold (on the left below) we can define these predicates as shown:

let rec
fold f acc l =
match l with
| [] → acc

| hd :: tl →
let acc’ = f acc hd in

fold f acc’ tl

assume ∀f,acc,l.
PreFold(f,acc,l)
⇔
(l=[]
∨
(∃hd,tl. l=hd::tl ∧
Pre(f,[acc;hd]) ∧
(∀acc’. Post(f,[acc;hd],acc’)

⇒PreFold(f,acc’,tl))))

assume ∀f,acc,l,r.
PostFold(f,acc,l,r)
⇔

((l=[] ∧ r=acc)
∨
(∃hd,tl. l=hd::tl ∧

(∃acc’. Post(f,[acc;hd],acc’)
∧PostFold(f,acc’,tl,r))))

The definition for PreFold can be read as follows. If the list is empty, there
is no pre-condition. Otherwise, the pre-condition of the argument f must hold
for the head of the list and the current accumulator, and if f terminates and
returns a new accumulator, PreFold must hold for the tail of the list and this
new accumulator. PostFold is defined similarly.

The resulting type for fold:

val fold: f:(α→β→α)→ acc:α→ l:β list{PreFold(f,acc,l)}→ r:α {PostFold(f,acc,l,r)}

is precise and easy to typecheck against the code of fold, yet difficult to use at call
sites. Indeed, even for a function with no pre-condition (∀x. Pre(f,x)), proving
PreFold(f,acc,l) requires the use of induction, which is generally beyond the reach
of the SMT solver Z3 that underlies F7. For example, even the following simple
functions cannot be typechecked with the above type for fold:

let idfold: int → int→ int = fun a → fun b → a
let testidfold: int list → int = fun l → fold idfold 0 l

Only by adding (and proving by hand) an assumption that functions with no
pre-conditions can always be used with fold can this code be typechecked.

Second attempt: Using Invariants In our second approach, we adopt the style
of Régis-Gianas and Pottier [2008] for specifying higher-order iterators, such as
fold. We introduce a generic predicate Inv that is used to define logical invariants
for functions that may be used as an argument to fold. The formula Inv(f,aux
,acc,l) is an invariant that holds when the function f is being applied to a list
of elements: l is the remainder of the list, acc is the intermediate result of the
computation, and aux contains function-specific auxiliary information about the
initial arguments to the fold.

As an example, consider the function fmem that can be used with fold to
search for an element in a list; fmem takes an element v to search for, an accu-
mulator acc and an integer n, and returns true if either acc is true or if v = n.
The invariant for the partial application fmem v is shown below; its auxiliary
argument aux is a pair consisting of the integer we are searching for and the
initial list. Its auxiliary argument is a pair consisting of the integer v to search

10

for, and the initial list linit. The invariant says that the remaining list l contains
a subset of the elements in linit, and that the accumulator is true only if v is a
member of linit.

let fmem v
acc
n
=

if v = n
then true
else acc

val fmem: v:α →
acc:bool →
n:α →
found:bool{
(v = n
∧ found = true)

∨ (found = acc)}

(∀v,f. Post(fmem,v,f) ⇒
(∀iv,acc,l. Inv(f,iv,acc,l) ⇔
(∃x,linit. iv=(x,linit) ∧ x = v
∧ (∀y. Mem(y,l) ⇒Mem(y,linit))
∧ ((Mem(x,linit)

∧ acc=true)
∨ acc = false))))

The next step, following Régis-Gianas and Pottier [2008], is to prove that the
invariant is hereditary, namely that the invariant of each function f is at least
as strong as its pre-condition, and that the invariant is preserved by function
application. We define a predicate Hereditary that captures this notion and use
it to type fold as follows; to use this style we need to add an additional argument
to fold that holds the auxiliary values needed to maintain its invariants.

let rec fold v f acc l =
match l with
| [] → acc
| hd :: tl →
let acc’ = f acc hd in
fold v f acc’ tl

assume (∀f. Hereditary(f)
⇔

(∀v,acc,h,t. Inv(f,v,acc,hd::tl) ⇒
(Pre(f,[acc;hd])
∧ (∀r. Post(f,[acc;hd],r) ⇒ Inv(f,v,r,tl)))))

val fold : v: γ→ f:(α →β→α) {Hereditary(f)} → acc:α
→ xs:β list {Inv(f,v,acc,xs)}
→ r:α { (xs = [] ∧ r=acc) ∨ Inv(f,v,r,[]) }

The type of List.fold then requires that (1) the invariant of the iterated function
is hereditary; and (2) the invariant holds for the initial accumulator. The post-
condition states that the invariant holds for the final accumulator. Hence, for
example, to typecheck mem:

val mem: v:α → l: α list → b:bool { b=true ⇒Mem(v,l)}
let mem v l = let f = fmem v in fold (v,l) f false l

we must prove that ∀v,f. Post(fmem,v,f)⇒Hereditary(f), and that the invariant
of fmem v holds for the initial values false,l. For a simple function like fmem
this can be proved automatically, but for more complex functions Hereditary
may have to be proved by hand. The rest of the typechecking is fully automatic.

5 Case Studies: Cryptographic Protocol Implementations

We can now use our new types for lists to verify realistic cryptographic applica-
tions. We present two case studies of programs previously verified using F7 and
show how our new extensions reduce the annotation effort for typechecking.

11

5.1 XML Digital Signatures

The XML digital signature standard specified cryptographic mechanisms that
are designed to provide integrity, message authentication, and signer authentica-
tion for arbitrary XML data [Eastlake et al., 2002]. These mechanisms are used
within web services security protocols to protect messages, and processing each
message involved tree and list processing. For example, consider the following
single message protocol, where the principal a uses an XML signature to protect
n ≥ 1 XML elements m1, . . . , mn located at URIs #1, . . . , #n within the
message, using the MAC key kab. A slightly simplified version of this protocol is
as follows:

A −→ B : 〈Message〉
〈Signature〉 base64 (m1 | (mac kAB m1)) 〈/Signature〉
· · ·
〈Signature〉 base64 (mn | (mac kAB mn)) 〈/Signature〉
〈/Message〉

The security goal for this protocol is simply that each mi is individually
authenticated. Since, the different messages in the list are not correlated with
each other, the server cannot authenticate the list as a whole, but this protocol
may be used as a component within a larger protocol that enforces a more
demanding security property.

Using List.map we can program and verify the server processing code:

val xml mac verify:
a:str → b:str →
k:key{Return(mkKey,[a;b],k)} →
mh:item →
m:item{(∃ml’. Mem(m,ml’) ∧
Call(client,[a;b;k;ml’])) ∨Pub(k)}

let server a b k =
let c = Net.listen p in
let w = Net.recv c in
let mhl = fromXml w in
let mvf = xml mac verify a b k in
let ml = List.map mvf mhl in
ml

val server:
a:str → b:str →
k:key{Return(mkKey,[a;b],k)} →
ml:itemlist{∀m. Mem(m,ml) ⇒

(∃ml’. Mem(m,ml’) ∧
Call(client,[a;b;k;ml’])) ∨Pub(k)}

assume ∀a,b,k.
Return(mkKey,[a;b],k) ⇒

(MACSays(k,m) ⇔
(∃ml’. Call(client,[a;b;k;ml’]) ∧

Mem(m,ml’))

The function xml mac verify parses an XML signature, extracts the message
and its MAC, and verifies the MAC. Its post-condition guarantees that the
message must have been sent by a valid client (as part of an authenticated
message). The type of the server function says that every message accepted
by the server must have been sent by the client as part of some authenticated
message sent to the server.

12

The use of List.map here avoids the need to inline the recursive code for map
in the code for server. In an earlier verification of XML digital signatures using
F7, there were four instances where we needed to inline list-processing functions
and define new type annotations. These are no longer necessary reducing the
annotation burden by roughly one-fourth.

5.2 X.509 Certification Paths

The X.509 recommendation [ITU, 1997] defines a standard format and processing
procedure for public-key certificates. Each certificate contains at least a principal
name, a public-key belonging to that principal, an issuer, and a signature of the
certificate using the private key of the issuer.

On receiving a certificate, the recipient first checks that the issuer is a trusted
certification authority and then verifies the signature on the certificate before
accepting that the given principal has the given public key. To account for sit-
uations where the certification authority may not be known to the recipient,
the certificate may itself contain a certification path: an ordered sequence of
public-key certificates that begins with a certificate issued by a trusted certifi-
cation authority and ends with a certificate for the desired principal. The X.509
sub-protocol between principals for certification paths can be written as follows:

A −→ B : Certificate(A1 | pkA1 | rsa sign skCA (A1 | pkA1
))

Certificate(A2 | pkA2 | rsa sign skA1 (A2 | pkA2))
· · ·
Certificate(A | pkA | rsa sign skAn−1

(A | pkA))

The code for verifying such certification chains uses List.fold to chain together
the results of verifying each step in the path.

val verify:
x:cert{Certificate(x)} →
b:bytes →
r:cert {Certifies(x,r)
∧Certificate(r)}

let verify all c path =
fold2 c verify c path

assume ∀ca,x,h,l.
Inv(verify,ca,x,l) ⇔
(Certificate(x) ∧
Certifies(ca,x))

val verify all:
x:cert{Certificate(x)} →
l: bytes list →
r:cert {Certifies(x,r)}

The predicate Certifies(x,y) specifies that there is some sequence of certifi-
cates x = x0, x1, . . . , xn = y such that the principal mentioned in each xi has
issued the certificate xi+1; hence if every principal mentioned in this sequence
is honest, then we can trust that the public-key in the final certificate y indeed
belongs to the principal mentioned in y.

The function verify all takes as an argument a certificate ca for a trusted
certification authority and it accepts only those certification paths that begin

13

with certificates issued with ca’s public-key. To typecheck verify all we define
the fold invariant for verify as the property that the accumulator x always has
a valid certificate (Certificate(x)) and that there is a valid path from the initial
certificate ca to x (Certifies(ca,x)).

The use of List.fold in verify all is the most natural way of writing this code.
We could inline the code for List.fold and redo the work of typechecking it for
this instance, but reusing the types and formulas in List is more modular, and we
believe, the right way of developing proofs for such cryptographic applications.

6 Related work

Introduced by the seminal work of Hoare [1969], the pre- and post-conditions
have been implemented by several extended static checking tools [Barnett et al.,
2005, Flanagan et al., 2002, Xu, 2006]. Our approach is the closest to the work by
Régis-Gianas and Pottier [2008] who show how to use Hoare-style annotations to
check correctness of programs written in a call-by-value language with recursive
higher-order functions and polymorphic types. They extract proof obligations
out of programs, and prove them using automated provers. However, their system
only uses declared types, and disregards subtyping and events.

Symbolic security verification techniques for programs have used a variety of
techniques from model-checking to cryptographic theorem-proving [Goubault-
Larrecq and Parrennes, 2005, Chaki and Datta, 2009, Bhargavan et al., 2008].
Such methods are often fully automated and require little program annotation.
However, they generally do not apply to programs with recursive data structures,
and even otherwise, their whole-program analysis seldom scales very well.

The RCF type system is the first to use refinement typing for security anal-
ysis. It has already being successfully used to verify complex cryptographic ap-
plications [Backes et al., 2009, Bhargavan et al., 2009, Guts et al., 2009]. By
using a standard program verification technique, we hope to benefit from recent
advances in verification technology. For example, Liquid Types [Rondon et al.,
2008] have been proposed as a technique for automatically inferring refinement
types for ML programs. The types inferred by Liquid Types are quite adequate
for verifying simple safety properties of a program, but the formulas for security
typing are typically more complex. As future work, we hope to reuse Liquid
Types to automatically infer as many annotations as possible for our examples
as well.

References

M. Backes, C. Hriţcu, M. Maffei, and T. Tarrach. Type-checking implementa-
tions of protocols based on zero-knowledge proofs. In Workshop on Founda-
tions of Computer Security, 2009.

M. Barnett, M. Leino, and W. Schulte. The Spec# programming system: An
overview. In CASSIS’05, volume 3362, pages 49–69, January 2005.

14

J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. Refine-
ment types for secure implementations. In CSF, pages 17–32, 2008.

K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Verified interoperable
implementations of security protocols. ACM TOPLAS, 31:5:1–5:61, December
2008.

K. Bhargavan, R. Corin, P. Deniélou, C. Fournet, and J. Leifer. Cryptographic
protocol synthesis and verification for multiparty sessions. In Proc. 22th IEEE
Symposium on Computer Security Foundations (CSF), 2009.

K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verification of security
protocol code by typing. In POPL, pages 445–456, 2010.

B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules.
In IEEE Computer Security Foundations Workshop (CSFW’01), pages 82–96,
2001.

S. Chaki and A. Datta. ASPIER: An automated framework for verifying security
protocol implementations. In CSF’09, 2009.

D. Eastlake, J. Reagle, D. Solo, M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and
E. Simon. XML-Signature Syntax and Processing, 2002. W3C Recommenda-
tion, at http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/.

M. Fähndrich, M. Barnett, and F. Logozzo. Embedded Contract Languages. In
SAC OOPS, 2010.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. SIGPLAN Not., 37(5):234–245, 2002.

J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real
C code. In VMCAI’05, pages 363–379, 2005.

N. Guts, C. Fournet, and F. Z. Nardelli. Reliable evidence: Auditability by
typing. In ESORICS, 2009.

C. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 1969.

Recommendation X.509 (1997 E): Information Technology - Open Systems In-
terconnection - The Directory: Authentication Framework. ITU-T, June 1997.

Y. Régis-Gianas and F. Pottier. A Hoare logic for call-by-value func-
tional programs. In Proceedings of the Ninth International Conference on
Mathematics of Program Construction (MPC’08), volume 5133 of Lecture
Notes in Computer Science, pages 305–335. Springer, July 2008. URL
http://gallium.inria.fr/ fpottier/publis/regis-gianas-pottier-hoarefp.ps.gz.

P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In Programming Lan-
guage Design and Implementation (PLDI’08). ACM, 2008. To appear.

D. N. Xu. Extended static checking for Haskell. In ACM SIGPLAN workshop
on Haskell (Haskell’06), pages 48–59. ACM, 2006.

A Refinement types for ML (review)

We recall the syntax and semantics of F7; we refer to Bengtson et al. [2008] for
a full description of the F7 typechecker and its underlying calculus RCF.

15

Syntax for F7

M,N ::= Values
()
x
(M,N)
h(M)
rec f : T.fun x→ e

e ::= Expressions
M
M N
let p = e1 in e2 else e3
assume C
assert C
e : T

p ::= Patterns
() | x | (p1, p2) | h(p)

C ::= Formulas
P (M1, . . . ,Mn)
M1 = M2 |M1 6= M2

True | False
not C | C ⇒ C | C ⇔ C
C ∧ C | C ∨ C
∀x.C | ∃x.C

P ::= Pretypes
unit unit type
x : T1 → T2 function type
α type constructor
Σi(hi : Ti → α) ADT
µα.P iso-recursive type

T,U, V ::= Refined Types
(x : P){C} (x is bound in C)

Values include unit, variables, constructed values, dependent pairs, and (re-
cursive) dependent functions. Recursive functions require type annotations; in
standard RCF they can be encoded using iso-recursive types. Constructors h
range over algebraic type constructors with fixed arities.

Formulas include predicates over values (re-using constructors as predicate
symbols), value equalities, and standard first-order logic constructs.

Expressions e are in A-normal form: they can be values, function applica-
tions of values, assuming or asserting a formula, pattern-matching let binding
of expressions, or type-annotated expressions. An assert succeeds if the asserted
formula can be logically derived from the conjunction of all previously-assumed
formulas. An expression is safe when all of its asserts succeed in every run.

Patterns (p) include constructor applications, pairs, variables and unit.

Refined types are ML-like pretypes refined with value-dependent formulas.
Compared to RCF, our types also include algebraic sum types: Σi(hi : Ti → α)
which relates possible constructors hi and their argument types Ti to the type
of the constructed value α. In iso-recursive types µα.P , the type variable α is
bound within the pretype P .

A type x:P{C} is the type of expressions that return values M of type P such
that the formula C[M/x] follows from the assumed formulas. Function types
have refinements on their arguments and on their return value: the argument of
a function with type x:(x:P{C})→ y:P’{C’} have type P and satisfy formula C,
while its return value has type P ′ and satisfies the formula C ′. Refined types
can be erased to plain ML (pre)types.

We denote by E typing environments which include bindings of variables to
types x : T , assumed formulas F , and type definitions. We use the following
judgments:

16

E ` C formula C holds in the environment E
E ` � the environment E is well-formed
E ` x : T x has type T in the environment E
E ` T <: T ′ T is a subtype of T ′ in the environment E

Preparing the ground for our extension of the typechecker in Section 2, we
recall F7 typing rules for functions and function applications.

E ` x : T1 → T2 <: T
E, f : T, x : T1 ` e : T2

E ` rec f : T.(fun x→ e) : x : T1 → T2

E `M : x : T → T ′

E ` N : Ta E ` Ta <: T

E ` (M N) : T ′

A recursive function has type x : T1 → T2 if this type is a subtype of its
annotation T and its body has type T2 in an environment extended for f and x.
An applicationM N has type T ′ if the valueM is a function with type x : T → T ′

and the value N has a type which is a subtype of T .

Typechecking by F7 relies on the main result of Bengtson et al. [2008]: if a
program is well-typed, then it is safe. Also, if a program is well-typed in an empty
environment, then the program is safe when applied to any expression with no
occurrence of assert (such expressions model malicious active attackers).

F7 implementation Our prototype typechecker F7 is an extension of RCF that
supports a subset of F#. In particular, it supports programs that contain type-
and value- parametered types, records, polymorphism, mutual recursion, match
expressions and references.

The typechecker takes two sorts of input files

– pure F# implementation files that contain program, possibly annotated with
F# types (file.fs)

– RCF interfaces containing full refinement types, definitions and formulas(file.fs7)

All extended types and formulas needed in F# can be moved to the interface by
defining additional definitions.

The typechecker can verify if an implementation is well-typed against an
interface or erase an interface into a plain F# type. To check validity of typing
constraints, the typechecker either establishes it internally for trivial cases, or
marshals it into Simplify format and calls the Z3 theorem prover (which can fail,
either because the query is unsatisfiable, or because Z3 is incomplete).

RCFE Below we show the rule that replaces the rule (Typ Fun) in RCFE .

x 6∈ dom(E) E ` x : T1 → T2 <: T
E, f : T, x : T1, Call(f, x) ` e : (z : P){C}

T2 = (z : P){C ∧Return(f, x, z)}
E ` (recf : T.fun x→ e) : x : T1 → T2

17

B List Library Interface

assume
(∀x, u. Mem(x,x::u)) ∧
(∀x, y, u. Mem(x,u) ⇒Mem(x,y::u)) ∧
(∀x, u. Mem(x,u) ⇒ (∃y, v. u = y::v ∧ (x = y ∨Mem(x,v))))

val mem: x:α → u:α list → r:bool{r=true ⇒Mem(x,u)}

val find: f:(α → bool) →
u:α list{(∀x. Mem(x,u) ⇒Pre(f,x))} →
r:α { Mem(r,u) }

val forall: t:(α → bool) →
xs:α list {(∀x. Mem(x,xs) ⇒Pre(t,x))} →
b:bool {(b = true ⇒ (∀x. Mem(x,xs) ⇒Post(t,[x],true))) }

val exists: t:(α → bool) →
xs:α list {(∀x. Mem(x,xs) ⇒Pre(t,x))} →
b:bool {(b = true ⇒ (∃x. Mem(x,xs) ∧Post(t,[x],true))) }

val iter: f:(α →unit) →
l:α list {(∀x. Mem(x,l) ⇒Pre(f,[x]))} →
r:unit {∀x. Mem(x,l) ⇒Post(f,[x],())}

assume
(∀x, y, u, v. Mem2((x,y),(x::u,x::v)) ∧
(∀x, y, u, v, x’, y’. Mem2((x,y),(u,b)) ⇒Mem2((x,y),(x’::u,y’::v))) ∧
(∀x, y, u, v. Mem((x,y),(u,v)) ⇒ (∃y1,y2,t1,t2. l1=y1::t1 ∧ l2=y2::t2
∧ ((y1=x ∧ y2=y) ∨Mem2((x,y),(t1,t2))))))

val map: f:(α → β) →
l:α list {(∀x. Mem(x,l) ⇒Pre(f,[x]))} →
r:β list {∀x,y. Mem2((x,y),(l,r)) ⇒Post(f,[x],y)}

assume (∀f. Hereditary(f)
⇔
(∀v,acc,h,t. Inv(f,v,acc,hd::tl) ⇒
(Pre(f,[acc;hd])
∧ (∀r. Post(f,[acc;hd],r) ⇒ Inv(f,v,r,tl)))))

val fold : v: γ→ f:(α → β→α) {Hereditary(f)} →
acc:α →
xs:β list {Inv(f,v,acc,xs)} →
r:α { (xs = [] ∧ r=acc) ∨ Inv(f,v,r,[]) }

18

