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ABSTRACT 

 
Spoken dialog systems typically use a limited number of non-

understanding recovery strategies and simple heuristic policies1 to 

engage them (e.g. first ask user to repeat, then give help, then 

transfer to an operator). We propose a supervised, online method 

for learning a non-understanding recovery policy over a large set 

of recovery strategies. The approach consists of two steps: first, we 

construct runtime estimates for the likelihood of success of each 

recovery strategy, and then we use these estimates to construct a 

policy. An experiment with a publicly available spoken dialog 

system shows that the learned policy produced a 12.5% relative 

improvement in the non-understanding recovery rate.  

 
Index Terms— non-understandings, recovery strategy, recovery pol-

icy, spoken language interface 

 

1. INTRODUCTION 
 

Two types of understanding-errors commonly affect spoken dialog 

systems: misunderstandings and non-understandings. In a misun-

derstanding the system constructs an incorrect interpretation of the 

user’s turn, while in a non-understanding the system fails alto-

gether to construct an interpretation. Both types of understanding-

errors typically stem from speech recognition problems, and both 

exert a significant negative impact on the overall quality and suc-

cess of the interactions [1].  

For misunderstandings, detection is the key issue [2]. The 

number of strategies that can be used to recover is fairly small (e.g. 

explicit and implicit confirmation) and the tradeoffs between these 

strategies have been studied and are relatively well understood [3]. 

In contrast, for non-understandings detection is generally trivial, 

but the set of strategies that can be used to recover is significantly 

larger. For instance, the system could ask the user to repeat; it 

could ask the user to rephrase; it could simply notify the user that a 

non-understanding happened; it could ignore the non-understan-

ding altogether and try a different dialog plan; it could provide 

various types of help messages, and so on. The relative tradeoffs 

between these strategies are less well understood. Moreover, these 

tradeoffs might be domain- and task-dependent. As a consequence, 

designing a policy for choosing between different strategies is a 

non-trivial task. Most spoken dialog systems use a limited number 

of non-understanding recovery strategies in conjunction with sim-

ple heuristic rules for engaging them. A typical example is the so-

                                                 
1 By recovery strategy we denote a single, one-turn action the system takes 

to recover from an error (e.g. asking the user to repeat, asking the user to 

rephrase, etc). By recovery policy we denote a method for choosing be-

tween different recovery strategies at runtime. 

called “three strikes and you’re out” approach [4]: repeat the sys-

tem question after the first non-understanding, provide help after 

the second one, and transfer the user to a human operator if a third 

consecutive non-understanding occurs. 

In this paper we address the problem of designing a non-

understanding recovery policy over a large set of non-understan-

ding recovery strategies (9 in our case). We present a supervised, 

online-learning method for this task. The approach, discussed in 

detail in Section 2, consists of two steps: first, we construct run-

time estimates for the likelihood of success of each individual 

strategy, together with confidence bounds. Then, we use these 

estimates to choose between the strategies, and construct a recov-

ery policy.  

We implemented and evaluated the proposed approach in a 

telephone-based spoken dialog system that provides bus route and 

schedule information in the greater Pittsburgh area. The system 

learned a non-understanding recovery policy online, throughout a 

period of 5 weeks. Our experiments indicate that the learned policy 

led to a 12.5% relative improvement in the non-understanding 

recovery rate. Furthermore, the improvement was attained quickly, 

in only 10 days from the beginning of the learning period.  

 

2. METHOD 
 

The starting point for the proposed approach is the intuition that 

certain non-understanding recovery strategies are more likely to 

succeed under certain circumstances. For instance, if the source of 

the non-understanding is an out-of-vocabulary word, asking the 

user to repeat is less likely to help than asking the user to rephrase. 

However, if the non-understanding is caused by a transient noise, 

asking the user to repeat might be a more appropriate course of 

action. If we could estimate the likelihood of success for each 

strategy, an optimal policy would be easy to construct: simply pick 

the strategy with the highest likelihood of success. The method we 

are proposing works therefore in two steps: first, we use a super-

vised learning approach to construct predictors for the likelihood 

of success of each individual recovery strategy. Then, we use these 

predictors at runtime to select which strategy to engage. 

 

2.1. Learning Predictors for Strategy Success  
 

To predict the likelihood of success for each recovery strategy, we 

use logistic regression models. One separate model is constructed 

for each strategy. Its goal is to predict whether or not the strategy 

has successfully recovered, i.e. put the dialog back on track follow-

ing a given non-understanding. We consider that a strategy has 

successfully recovered if the following user turn is correctly under-

stood by the system. For training and evaluation purposes, this 

information is manually annotated. In fact, since the system already 



knows when non-understandings occur, a semi-automatic approach 

can be used to create the recovery labels: all the non-understan-

dings followed by another non-understanding are automatically 

labeled as not-recovered; the remaining non-understandings are 

inspected and labeled by a human annotator. The features (i.e. the 

dependent variables in the regression model) capture various as-

pects of the last non-understanding (e.g. the number of words, 

acoustic, language modeling and goodness-of-parse scores, etc.), as 

well as information about the current dialog state and about the 

history of the dialog so far (e.g. number of previous non-under-

standings, previous recovery actions taken.)  

Logistic regression models [5] present a number of advan-

tages over other machine learning techniques in this task. In con-

trast with other discriminative approaches, logistic regression gen-

erally produces well-calibrated class posterior probability scores 

[6, 7]. In other words, the model predictions accurately reflect the 

probability of success (e.g. a strategy will be successful in x% of 

the cases when the model predicts that the likelihood of success is 

x). This is an important property since we plan to use the model 

scores as probability estimates. Secondly, logistic regression mod-

els can automatically provide the confidence intervals for these 

predictions, a prerequisite for the strategy selection method de-

scribed in the next subsection. Furthermore, logistic regression is 

sample efficient. This is another desirable property since we plan 

to learn one separate model for each strategy and therefore a rela-

tively small number of data-points will be available for training 

each predictor. Last but not least, logistic regression models can be 

constructed in a stepwise manner. This allows us to consider a very 

large number of features; the relevant features will be automati-

cally included in the model.  

 

2.2. Highest Upper Bound Strategy Selection 
 

Once we can predict the likelihood of success for each strategy, we 

are left with choosing the method for selecting between the strate-

gies. Ideally, we should choose the strategy with the highest likeli-

hood of success. However, we are interested in developing an ap-

proach in which the system learns a recovery policy on-line, 

through experimentation. As a result, we are faced with an explora-

tion-exploitation tradeoff. We need to strike a balance between 

using strategies we know to be successful (exploitation) and gath-

ering more training data for the strategies about which we are still 

unsure (exploration).  

We address this tradeoff by always selecting the strategy that 

has the highest upper bound on the estimated probability of suc-

cess. This selection method, also known as the interval estimation, 

was initially proposed by Kaelbling in [8], and has been shown 

empirically to perform very well in various exploration-

exploitation tasks.  

Intuitively, by selecting the strategy with the highest upper 

bound, we either choose a strategy that has a high likelihood of 

success (Figure 1.a), or we choose a strategy that has a wide confi-

dence interval (Figure 1.b1). In the first case, we are exploiting, in 

the second we are exploring. After a strategy is engaged, we obtain 

a new data-point for training the predictor for that strategy. As 

more and more data becomes available for a strategy, the corre-

sponding confidence interval will shrink. As a result, another strat-

egy will have the highest upper bound, and the system will switch 

to exploring that strategy (Figure 1.b1 � 1.b2). 

 

 

3. EXPERIMENTAL SETUP 
 

3.1. System 
 

The experiments described below were performed in the context of 

Let’s Go! [9], a telephone-based spoken dialog system which pro-

vides access to bus route and schedule information for Pittsburgh 

Port Authority busses. Since March 2005, the system has been 

available to the general public via the Port Authority customer 

service line during non-business hours (i.e. 7pm-7am on weekdays 

and 6pm-8am on weekends and holidays). Throughout this time, 

the system has serviced over 23,000 calls. On average, the system 

receives about 50 calls per night. Given this density of calls, this 

system provided an excellent basis for our experiment.  

 

3.2 Strategies 
 

During the first year of operation, the system used 5 non-under-

standing recovery strategies in conjunction with a simple heuristic 

policy (for more details, see [9]). Prior to starting the policy learn-

ing experiment, we redesigned the set of non-understanding recov-

ery strategies. The final set is shown in Table 1.  

Additionally, we also designed a set of rules to restrict the cir-

cumstances under which each strategy can be used. Here are some 

examples: don’t ask the user to repeat more than twice in a row; 

don’t ask the user to give shorter answers unless the number of 

words is greater than 5; don’t ask the user to rephrase if the num-

ber of words is below 3; don’t give up unless the number of turns 

is above 30 and the ratio of non-understandings so far above 80%. 

These rules encapsulate prior expert knowledge. They are used to 

ensure that the system never uses an unreasonable policy as well as 

to constrain the search space for the policy learning algorithm. In 

effect, they implement a heuristic strategy selection policy, which, 

instead of selecting one strategy, selects a set of valid strategies at 

each non-understanding. Given these heuristic constraints, the 

average number of strategies available to the system was 4.2, with 

a minimum of 1 and a maximum of 9. 

 

3.3. Features 
 

We identified a large set of features (294) which carry potentially 

relevant information for predicting the likelihood of successful 

recovery. Due to space constraints, we only provide a brief outline 

of the feature set (the full set is available online [10]): 

• features describing the current non-understanding: speech 

recognition features (e.g. acoustic and language model scores, 

speech rate, signal and noise levels, clipping information), 

lexical features (e.g. number of words, presence and absence 

A         B        C 

Figure 1. Highest-upper-bound selection between 3  

fictitious strategies (A, B and C) 

A         B        C A         B        C 

           (a)                             (b.1)                            (b.2) 



of confirmation markers), grammar features (e.g. various 

goodness-of-parse scores, number of grammar slots), timing 

information (e.g. barge-ins and timeouts), the non-understan-

ding type (e.g. no-parse vs. rejection); 

• features describing the current non-understanding seg-

ment: the length of the current non-understanding segment; 

information about which recovery strategies were already 

taken in the current non-understanding segment, etc.; 

• features describing the current dialog state and the dialog 

history: we encoded the 22 dialog states with a set of 22 bi-

nary variables; additionally, we computed history features 

such as the ratio of non-understandings, and running averages 

of  confidence scores, goodness-of-parse scores, acoustic and 

language model scores, etc. 

 

3.4. Learning 
 

We started the experiment on March 11th 2006. First, we con-

structed a baseline by running the system for 2 weeks with the new 

set of 11 recovery strategies. During this time, the system randomly 

chose a recovery strategy whenever a non-understanding hap-

pened, while obeying the set of constraints described in Section 

3.2. In effect, the system was using a heuristic, stochastic non-

understanding recovery policy. 

After 2 weeks, on March 26th, 2006 we started the online pol-

icy learning algorithm. During this learning phase, we excluded the 

last two strategies shown in Table 1, due to their incompatibility 

with our local definition of successful recovery. The first excluded 

strategy (ASO) notifies the user that a non-understanding occurred 

and asks if the user would like to start over. This generally elicits a 

yes/no type answer from the user. Although this answer might be 

correctly understood by the system in most cases, a correct under-

standing does not really represent a successful recovery from the 

previous non-understanding. Similarly, when the give up (GUP) 

strategy is engaged, the system apologizes, asks the user to call 

during normal business hours, and hangs up. No recovery is there-

fore possible in this case. 

Throughout the learning phase, we retrained the models on a 

daily basis. Each morning the data from the previous night was 

semi-automatically labeled with non-understanding recovery in-

formation; the models for predicting the likelihood of success for 

each strategy were retrained and introduced in the system for the 

following night. We allowed the system to learn in this manner for 

5 weeks, until May 5th, when we stopped the experiment. 

 

4. RESULTS 
 

To evaluate the proposed approach we computed the average non-

understanding recovery rate (ANRR) throughout the baseline and 

learning periods. The presence of two extra strategies (ASO and 

GUP) during the baseline period could confound the results. To 

make the comparison fair, we excluded all the sessions from the 

baseline period in which these strategies were engaged (27 out of 

524). In fact, this approach artificially inflates the baseline per-

formance of the system. The reason is that, because of the heuristic 

constraints, the ASO and GUP strategies were only available dur-

ing sessions with large numbers of non-understandings. ASO was 

available when the non-understanding ratio was >50%, GUP when 

this ratio was >80%. By eliminating any session that contained one 

of these strategies we are therefore also eliminating a significant 

number of unrelated non-understandings, which were not recov-

ered. This artificially inflates the baseline performance. Neverthe-

less, we can still detect a learning effect.  

The resulting daily and weekly averages for the non-under-

standing recovery rate (ANRR) throughout the baseline and learn-

ing periods are illustrated in Figure 2. Despite fairly wide daily 

fluctuations, a comparison of average recovery performance be-

tween the last and first two weeks reveals a statistically significant 

improvement from 33.6% to 37.8% (a 12.5% relative improve-

ment, p=0.0309).  

To better understand the learning process we fitted a learning 

curve to the data, described by the following equation: 

DnC
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The curve describes a temporal learning process (n is the 

number of days elapsed) that starts from the baseline ANNR=A and 

asymptotes at ANRR=A+B. The learning rate is captured by the C 

parameter. The D parameter allows for a shift in the starting point 

for the learning. The resulting fit is also illustrated in Figure 2. The 

coefficients were A=0.3385, B=0.0470, C=0.5566, D=-11.44. The 

Name Description 

HLP Give a help message indicates how users might 

answer the current system question 

HLP_R Same as above, but also tell users that they can 

say start-over to restart the dialog 

RP Repeat the previous system prompt 

AREP Ask user to repeat what they said 

ARPH Ask user to rephrase what they said 

MOVE Ignore the current non-understanding and back-

off to an alternative dialog plan (this strategy 

task-specific and was only available when the 

system requested the departure stop; when en-

gaged, the strategy would first request the de-

parture neighborhood, then a departure stop in 

that neighborhood) 

ASA Ask user for a shorter answer 

SLL Ask user to speak less loud 

IT Give general interaction tips to the user  

ASO Ask user if he/she would like to start over 

GUP Give up dialogue and hang up 

 Table 1. 11 non-understanding recovery strategies in the 

Let’s Go! Public Bus Information system 
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Figure 2. Improvement in average non-understanding  

recovery rate (ANRR) 



fitting process recovered our baseline (A=33.85%) and indicates 

that the asymptote ANRR is 38.55% (A+B). Furthermore, the fitted 

line also recovered the starting point for the learning (the curve 

starts moving up after Match 26th). More interestingly, the curve 

reveals that the system reached the asymptote performance quickly, 

in only ten days after the system started learning.  

In Figure 3, we illustrate (on a weekly basis) how often each 

strategy was engaged, as a proportion of the total number of times 

that the strategy was available (recall that a set of predefined rules 

constrained when each strategy was available). Before March 26th 

(i.e. during the baseline phase) the invocation percentages were 

roughly constant, since the system randomly chose between the 

strategies available at any given point. The invocation percentages 

started changing significantly once the learning phase began. Some 

of the strategies, like backing off to the neighborhood (MOVE) 

and providing help about what users can say (HLP) were engaged 

more often than before, while others such as asking the user to 

repeat (AREP) or rephrase (ARPH) were engaged less often. The 

strategy which asks for shorter answers was initially engaged less 

often (we suspect the predictor was unreliable due to small 

amounts of training data); as more data accumulated, the strategy 

was pushed up. These trends are in line with previous empirical 

observations about the general efficiencies of these strategies [1].  

We inspected the final versions of the predictors for the like-

lihood of success of each individual strategy. For three of the 

strategies – asking the user to repeat (AREP), providing more in-

teraction tips (IT), and ask the user to speak less loud (SLL) – no 

informative features were found. The models simply predicted the 

mean training set success rate for each of these strategies. A poten-

tial explanation is that the number of training samples collected by 

the end of the experiment for each of these strategies is still rela-

tively low (653, 273, and 300 respectively). At the same time, for 

the strategies that asked the user to provide a shorter answer (ASA, 

637 samples), repeating the system prompt (RP, 2532s), and the 

two help strategies (HLP, 3698s; HLP_R, 989s) the models in-

cluded 4 or more features. Some of the most informative features 

were the dialog state indicators: for instance the help strategies 

were more successful during explicit confirmation states. Addi-

tionally, dialog history features were also informative: the likeli-

hood of recovery was generally increased if the dialog went well so 

far (i.e. if the ratio of non-understandings was low. 

 

5. CONCLUSION 
 

We have presented a supervised, online method for learning non-

understanding recovery policies. Initial experiments with a pub-

licly available spoken dialog system indicate that the proposed 

method leads to statistically significant improvements in the aver-

age non-understanding recovery rate.  

We plan to further investigate this proposed approach. We be-

lieve that more improvements can be obtained by identifying other 

relevant features, and further increasing the number of strategies. 

We also plan to investigate an unsupervised version of this ap-

proach. Instead of defining recovery as “next turn is correctly un-

derstood by the system”, we could define it as “next turn is not 

another non-understanding”, or “next turn has a high confidence 

score”. While less accurate, training labels to match this definition 

are available automatically to the system, and we suspect that per-

formance improvements could be attained this way.  
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