
Synthesis from Examples

Sumit Gulwani
Microsoft Research
Redmond, WA, USA

sumitg@microsoft.com

ABSTRACT
Examples are often a natural way to specify computational
structures such as programs, queries, and sequences. Syn-
thesizing such structures from example based specification
has applications in automating end-user programming and
in building intelligent tutoring systems. Synthesis from ex-
amples involves addressing two key technical challenges: (i)
design of an efficient search algorithm – these algorithms
have been based on various paradigms including version-
space algebras, SAT/SMT solvers, numerical methods, and
even exhaustive search, (ii) design of a user interaction model
to deal with the inherent ambiguity in the example based
specification. This paper illustrates various algorithmic tech-
niques and user interaction models by describing inductive
synthesizers for varied applications including synthesis of
tricky bitvector algorithms, spreadsheet macros for automat-
ing repetitive data manipulation tasks, ruler/compass based
geometry constructions, new algebra problems, sequences
for mathematical intellisense, and grading of programming
problems.

1. INTRODUCTION
The IT revolution over the past few decades has resulted

in widespread access to computational devices. Unfortu-
nately, it has not been easy to interact with these devices
because of the need to under the syntax and semantics of
computational structures (such as programs or queries) re-
quired to interact with these devices. Program synthesis or
automatic programming has the revolutionary potential to
change this landscape.

Program synthesis is the task of automatically synthesiz-
ing a program in some underlying language from a given
specification using some search technique [7]. The synthe-
sis technology has the potential to impact various classes of
users in the technology pyramid ranging from algorithm/system
designers [34, 10, 14, 13, 35, 15] and software developers [33,
24] at the top of the pyramid to end-users [9, 8, 12, 27, 28]
and students/teachers [11, 29, 25, 30] at the bottom of the
pyramid. In this paper, we will present applications for var-
ious such classes of users.

A traditional view of program synthesis is that of synthe-
sis from complete specifications. One approach is to give a

This paper is based on the keynote given at the 3rd Workshop on Advances
in Model-Based Software Engineering (WAMBSE) held at IIT Kanpur (In-
dia) in February 2012.

specification as a formula in a suitable logic [23, 34, 10, 35,
15]. Another is to write the specification as a simpler, but
possibly far less efficient program [32, 16, 33]. While these
approaches have the advantage of completeness of specifi-
cation, such specifications are often unavailable, difficult to
write, or expensive to check against using automated verifi-
cation techniques. In this paper, we focus on another style
of specifications, namely specification by examples [21, 6].

It is natural to ask what prevents the synthesizer from
synthesizing a trivial program that simply performs a table
lookup as follows, when provided with the set {(x1, y1), (x2, y2),
. . . , (xn, yn)} of input-output pairs.

switch x
case x1: return y1;
case x2: return y2;

...
case xn: return yn;

The restriction on the underlying search space is what of-
ten prevents such trivial solutions. In particular, the search
space might permit only a bounded number of statements
or conditionals. This paper describes various examples of
interesting and useful search spaces that are often described
as domain-specific languages.

There are two key challenges in designing inductive syn-
thesizers that take examples as specifications. The first chal-
lenge is that of designing a good user interaction model that
can deal with the inherent ambiguities in examples, which
are often an under-specification of the user’s intent. The
inductive synthesizers presented in this paper use a variety
of effective user interaction models.

The second challenge is that of designing an efficient al-
gorithm that can search for structures (in the underlying
search space) that are consistent with the user provided ex-
amples. The inductive synthesizers presented in this paper
use techniques that have been developed in various commu-
nities including use of SAT/SMT solvers (formal methods
community), version space algebras [20] (machine learning
community), and A*-style goal-directed heuristics (AI com-
munity).

We next describe a variety of synthesis by example tech-
nologies for various classes of users. We start out by describ-
ing a technique for synthesizing bitvector algorithms, which
targets algorithm designers (§2). Then, we describe induc-
tive synthesizers for spreadsheet data manipulation, which
targets end-users (§3). Finally, we present some surprising
applications of this technology in the area of intelligent tu-
toring systems, which targets students and teachers (§4).

2. BITVECTOR ALGORITHMS
Finding a new algorithmic solution for a given problem re-

quires human ingenuity. Use of computational techniques to
discover new algorithmic insights can be the ultimate appli-
cation of program synthesis. One domain of algorithms that
has been shown amenable to automated synthesis is the class
of bitvector algorithms [18, 37], which are typically straight-
line sequence of instructions that use both arithmetic and
logical bitwise operators.1 Such programs can be quite un-
intuitive and extremely difficult for average, or sometimes
even expert, programmers to discover methodically.

Consider the task of designing a bitvector algorithm that
masks off the right-most significant 1-bit in an input bitvec-
tor. More formally, the bitvector algorithm takes as input
one bitvector x and outputs a bitvector s such that s is ob-
tained from x by setting the right-most significant 1-bit in
x to 0. For example, the bitvector algorithm should trans-
form the bitvector 01100 into 01000. A simple method to
accomplish this would be to iterate over the input bitvector
starting from the rightmost end until a 1 bit is found and
then set it to 0. However, this algorithm is worst-case linear
in the number of bits in the input bitvector. Furthermore,
it uses undesirable branching code inside a loop. There is
a non-intuitive, but quite elegant, way to achieving the de-
sired functionality in constant time by using a tricky compo-
sition of the standard subtraction operator and the bitwise
logical & operator, which are supported by almost every ar-
chitecture. In particular, the desired functionality can be
achieved using the following composition: x & (x− 1). The
reason why we can do this seemingly worst-case linear task
in unit time using the subtraction operator and the logical
bitwise-and operator is because the hardware implementa-
tions of these operators manipulate the constituent bits of
the bitvectors in parallel in constant time.

As another example, consider the task of computing (the
floor of) the average of two 32-bit integers x and y. Note
that computing average using the expression (x+y)/2 is in-
herently flawed and vulnerable since it can overflow. How-
ever, using some bitwise tricks, the average can be com-
puted without overflowing; one such way to compute it is:
(x& y) + ((x⊕ y) >> 1)).

Such tasks can be described by writing a logical specifica-
tion that relates the input and output bitvectors. We have
presented a technique for synthesizing bitvector algorithms
from logical specifications [10]. However, such logical speci-
fications may often be tricky to write themselves. A simple
alternative to writing such logical specifications is to provide
input-output examples. We detail below an interesting in-
teraction model that can be used to guide the user towards
providing more descriptive examples [14].

User Interaction Model.
Given a set of input-output examples, the synthesizer searches

for programs that map each input in the given set to the
corresponding output. The number of such programs may
usually be unbounded, if the search space consists of all

1These algorithms “typically describe some plausible yet un-
usual operation on integers or bit strings that could easily
be programmed using either a longish fixed sequence of ma-
chine instructions or a loop, but the same thing can be done
much more cleverly using just four or three or two carefully
chosen instructions whose interactions are not at all obvious
until explained or fathomed” [37].

possible programs. However, since the search space is usu-
ally restricted, the number of such programs may either be
0, 1, or more than 1. If the synthesizer is unable to find
any such program over the search space, the synthesizer de-
clares failure. If the synthesizer finds exactly 1 program,
the synthesizer declares success and presents the program
to the user. If the synthesizer finds at least two programs
P1 and P2, both of which map each input in the given set to
the corresponding output, the synthesizer declares the user
specification to be partial. It then generates a distinguishing
input, an input on which the two programs P1 and P2 yield
different results, and asks the user to provide the output
corresponding to the distinguishing input. The synthesis
process is then repeated after adding this new input-output
example to the previous set of input-output examples.

Search Algorithm.
Our synthesis algorithm [14] is based on a novel constraint-

based approach that reduces the synthesis problem to that
of solving two kinds of constraints: the I/O-behavioral con-
straint whose solution yields a candidate program consis-
tent with the given set of input-output examples, and the
distinguishing constraint whose solution provides the input
that distinguishes between non-equivalent candidate pro-
grams. These constraints can be solved using off-the-shelf
SMT (Satisfiability Modulo Theory) solvers. Instead of per-
forming an expensive combinatorial search over the space
of all possible programs, our technique leaves the inher-
ent exponential nature of the problem to the underlying
SMT solver—whose engineering advances over the years al-
low them to effectively deal with problem instances that
arise in practice (which are usually not hard, and hence end
up not requiring exponential reasoning).

Example 1. Consider the task of synthesizing the bitvec-
tor algorithm that masks off the rightmost contiguous se-
quence of 1s in the input bitvector. The synthesizer driven
input-output interaction process is illustrated in Figure 1.
The user may start out by providing one input-output exam-
ple (01011, 01000) for the desired program. The synthesizer
generates a candidate program (x+ 1) & (x− 1) that is con-
sistent with the input-output pair (01011, 01000). Then, it
checks whether a semantically different program also exists
and comes up with an alternative program (x + 1) &x and
a distinguishing input 00000 that distinguishes the two pro-
grams, and asks the user for the output for the distinguishing
input. The newly obtained input-output pair (00000, 00000)
rules out one of the candidate programs, namely, (x+1) & (x−
1). In the next iteration, with the updated set of input-
output pairs, the synthesizer finds two different programs
−(¬x) &x and (((x& − x) | − (x − 1))&x) ⊕ x and a dis-
tinguishing input 00101. It then asks the user for the output
for 00101. The newly added pair (00101, 00100) rules out
(((x&− x) | − (x− 1))&x)⊕ x. Note that at this stage, the
program (x + 1)&x remains a candidate, since it was not
ruled out in the earlier iterations. In next four iterations,
the synthesizer driven interaction leads to four more input-
output pairs: (01111, 00000), (00110, 00000), (01100, 00000)
and (01010, 01000). The semantically unique program gener-
ated from the resulting set of input-output pairs is the desired
program: (((x− 1) | x) + 1) & x.

3. SPREADSHEET DATA MANIPULATION

User Oracle
Input→ Output Program 1 Program 2 Distinguishing Input ?

01011→ 01000 (x+ 1) & (x− 1) (x+ 1) &x 00000 ?
00000→ 00000 −(¬x) &x (((x&− x) | − (x− 1))&x)⊕ x 00101 ?
00101→ 00100 (x+ 1)&x · · · 01111 ?
01111→ 00000 · · · · · · 00110 ?
00110→ 00000 · · · · · · 01100 ?
01100→ 00000 · · · · · · 01010 ?
01010→ 01000 (((x− 1)|x) + 1)&x None Program is

(((x− 1)|x) + 1)&x(((x− 1)|x) + 1)&x(((x− 1)|x) + 1)&x

Figure 1: An illustration of the synthesizer driven interaction model for synthesis from input-output examples
(for the task of turning off the righmost contiguous sequence of 1 bits). Program 1 and Program 2 are two
semantically different programs generated by the synthesizer that are consistent with the past set of input-
output pairs provided by the user. The synthesizer also produces a distinguishing input on which the two
programs yield different results, and asks the user for the output corresponding to the distinguishing input.
The process is repeated until the synthesizer can find at most one program.

More than 500 million people worldwide use spreadsheets
for storing and manipulating data. Unfortunately, the state
of the art of interfacing with spreadsheets is far from sat-
isfactory. Spreadsheet systems, like Microsoft Excel, come
with a maze of features, but end-users struggle to find the
correct features to accomplish their tasks [19]. More sig-
nificantly, programming is still required to perform tedious
and repetitive tasks such as transforming names or phone-
numbers or dates from one format to another, cleaning data,
or extracting data from several text files or web pages into
a single document. Excel allows users to write macros us-
ing a rich inbuilt library of string and numerical functions,
or to write arbitrary scripts in Visual Basic or .Net pro-
gramming languages. However, since end-users are not pro-
ficient in programming, they find it too difficult to write
desired macros or scripts. Moreover, even skilled program-
mers might hesitate to write a script for a one-off repetitive
task.

We performed an extensive case study of spreadsheet help
forums and observed that string, number, and table process-
ing constitute a very common class of programming prob-
lems that end-users struggle with. We have defined various
domain specific languages L for manipulating strings (§3.1,
§3.2), numbers (§3.3), and tables (§3.4). Each of these lan-
guages is expressive enough to capture several real-world
tasks in the underlying domain, but also restricted enough
to enable efficient learning from examples. For each of these
languages, we have developed an inductive synthesizer that
can generate a script from input-output examples. We de-
scribe below the high-level structure of the search algorithm
and the user interaction model that is common to all these
synthesizers [9]. More specific details of the synthesizers can
be found in respective papers [8, 27, 28, 12].

Search Algorithm.
The number of programs in the underlying domain spe-

cific language L that are consistent with a given set of input-
output examples can be huge. We first define a data struc-
ture D (based on a version-space algebra [20]) to succinctly
represent a large set of such programs. Our synthesis algo-
rithm for language L applies two key procedures: (i) Gen-

erate learns the set of all programs, represented using data
structure D, that are consistent with a given single exam-
ple. (ii) Intersect intersects these sets (each correspond-

ing to a different example). We also develop a scheme that
ranks programs, preferring programs that are more general.
Each ranking scheme is inspired by Occam’s razor, which
states that a smaller and simpler explanation is usually the
correct one. The ranking scheme is used to select the top-
ranked programs from among the set of all programs that are
consistent with the user provided examples. Note that the
choice of data-structure D, the procedures Generate and
Intersect, and the ranking scheme are all specific to the
language L.

User Interaction Model.
A user provides to the synthesizer a small number of exam-

ples, and then can interact with the synthesizer according to
multiple models. In one model, the user runs the top-ranked
synthesized program on other inputs in the spreadsheet and
checks the outputs produced by the program. If any output
is incorrect, the user can fix it and reapply the synthesizer,
using the fix as an additional example. However, requiring
the user to check the results of the synthesized program,
especially on a large spreadsheet, can be cumbersome. To
enable easier interaction, the synthesizer can run all syn-
thesized programs on each new input to generate a set of
corresponding outputs for that input. The synthesizer can
highlight for the user the inputs that cause multiple distinct
outputs. Our prototypes, implemented as Excel add-ins,
support this interaction model.

We next describe some task domains to which we have
applied this general methodology.

3.1 Syntactic String Transformations
Spreadsheet users often struggle with reformatting or clean-

ing data in spreadsheet columns [8]. For example, consider
the following tasks.

Example 2 (Phone Numbers). An Excel user wants
to uniformly format the phone numbers in the input column,
adding a default area code of “425” if the area code is missing.

Input v1 Output

510.220.5586 510-220-5586
235 7654 425-235-7654
745-8139 425-745-8139
(425)-706-7709 425-706-7709
323-708-7700 323-708-7700

Our tool [8] synthesizes a script for performing the desired
transformation from the first two example rows and uses it
to produce the entries in the next three rows (shown here in
boldface for emphasis) of the output column.

Example 3 (Generate Abbreviation). The following
task was presented originally as an Advanced Text Formula [36].

Input v1 Output

Association of Computing Machinery ACM
Principles Of Programming Languages POPL
International Conference on Software Engineering ICSE

The above-mentioned tasks require syntactic string trans-
formations. We have developed an expressive domain-specific
language of string-processing programs, that supports lim-
ited conditionals and loops, syntactic string operations such
as substring and concatenate, and matching based on regu-
lar expressions [8].

3.2 Semantic String Transformations
Some string transformation tasks also involve manipulat-

ing strings that need to be interpreted as more than a se-
quence of characters, e.g., as a column entry from some re-
lational table, or as some standard data type such as date,
time, currency, or phone number [27]. For example, consider
the following task from an Excel help forum.

Example 4. A shopkeeper wants to compute the selling

price of an item (Output) from its name (Input v1) and
selling date (Input v2). The inventory database of the
shop consists of two tables: (i) MarkupRec table that stores
id, name and markup percentage of items, and (ii) CostRec
table that stores id, purchase date (in month/year format),
and purchase price of items. The selling price of an item is
computed by adding its purchase price (for the corresponding
month) to its markup charges, which in turn is calculated by
multiplying the markup percentage by the purchase price.

Input v1 Input v2 Output

Stroller 10/12/2010 $145.67+0.30*145.67
Bib 23/12/2010 $3.56+0.45*3.56
Diapers 21/1/2011 $21.45+0.35*21.45
Wipes 2/4/2009 $5.12+0.40*5.12
Aspirator 23/2/2010 $2.56+0.30*2.56

MarkupRec
Id Name Markup

S33 Stroller 30%
B56 Bib 45%
D32 Diapers 35%
W98 Wipes 40%
A46 Aspirator 30%
· · · · · · · · ·

CostRec
Id Date Price

S33 12/2010 $145.67
S33 11/2010 $142.38
B56 12/2010 $3.56
D32 1/2011 $21.45
W98 4/2009 $5.12
A46 2/2010 $2.56
· · · · · · · · ·

To perform the above task, the user must perform a join of
the two tables on the common item Id column to lookup the
item Price from its Name (v1) and selling Date (substring
of v2), besides performing syntactic string manipulations.
Our tool [27] synthesizes a script for performing the desired
transformation from the first two example rows and uses it
to produce the entries in the next three rows (shown here in
boldface for emphasis).

For automation of such tasks, we have extended the lan-
guage mentioned in §3.1 with a relational algebra for se-
lecting strings from relational tables [27]. This extended

language also enables manipulation of strings that repre-
sent standard data types whose semantic meaning can be
encoded as a database of relational tables. For example,
consider the following date manipulation task.

Example 5 (Date Manipulation). An Excel user
wanted to convert dates from one format to another, and the
fixed set of hard-coded date formats supported by Excel 2010
do not match the input and output formats. Thus, the user
solicited help on a forum.

Input v1 Output

6-3-2008 Jun 3rd, 2008
3-26-2010 Mar 26th, 2010
8-1-2009 Aug 1st, 2009
9-24-2007 Sep 24th, 2007

We can encode the required background knowledge for the
date data type in two tables, namely a Month table with 12
entries: (1, January), . . ., (12, December) and a DateOrd ta-
ble with 31 entries (1, st), (2, nd) , . . ., (31, st).

3.3 Number Transformations
Numbers represent one of the most widely used data type

in programming languages. Number transformations like
formatting and rounding present some challenges even for
experienced programmers. First, the custom number format
strings for formatting numbers are complex and take some
time to get accustomed to. Second, different programming
languages support different format strings which makes it
difficult for programmers to remember each variant.

Following is an example of a task that requires number
transformations [28].

Example 6 (Duration Manipulation). An Excel user
needed to convert the “raw data” in the input column to the
lower range of the corresponding “30-min interval” as shown
in the output column.

Input v1 Output

0d 5h 26m 5:00
0d 4h 57m 4:30
0d 4h 27m 4:00
0d 3h 57m 3:30

In this example, we first need to be able to extract the hour
component of the duration in input column v1 and perform a
rounding operation on the minute part of the input to round
it to the lower 30-min interval. Our tool [28] learns the
desired transformation using only the first two input-output
examples.

For automation of such tasks, we have extended the domain-
specific language mentioned in §3.1 with a number transfor-
mation language that can describe formatting and rounding
transformations [28].

3.4 Table Layout Transformations
End-users often transform a spreadsheet table not by chang-

ing the data stored in the cells of a table, but instead by
changing how the cells are grouped or arranged. In other
words, users often transform the layout of a table [12].

Example 7. The following example input table and sub-
sequent example output table were provided by a novice on
an Excel user help thread to specify a layout transformation:

Qual 1 Qual 2 Qual 3
Andrew 01.02.2003 27.06.2008 06.04.2007
Ben 31.08.2001 05.07.2004
Carl 18.04.2003 09.12.2009

Andrew Qual 1 01.02.2003
Andrew Qual 2 27.06.2008
Andrew Qual 3 06.04.2007
Ben Qual 1 31.08.2001
Ben Qual 3 05.07.2004
Carl Qual 2 18.04.2003
Carl Qual 3 09.12.2009

The example input contains a set of dates on which tests
were given, where each date is in a row corresponding to
the name of the test taker, and in a column corresponding
to the name of the test. For every date, the user needs to
produce a row in the output table containing the name of the
test taker, the name of the test, and the date on which the
test was taken. If a date cell in the input is empty, then no
corresponding row should be produced in the output.

We have designed a domain-specific language that can ex-
press a rich set of practical transformations over tabular data
(such as the one required to map the example input table
to the example output table shown in Example 7). Our
inductive synthesizer for table layout transformations [12]
can synthesize scripts in this language from example input
and output tables. The user can then apply the synthesized
script to transform the layout of possibly a much larger in-
put table.

4. INTELLIGENT TUTORING SYSTEMS
The need for use of technology in education cannot be

under-stated. Classroom sizes are increasing and the cost
of education is rising. Recent trends such as advent of de-
vices with new form factors (e.g., tablets and smartphones
that are speech/ink/touch enabled), and social networking
have created a favorable opportunity in the marketplace.
This has given rise to several online educational initiatives
such as Khan Academy [1], Udacity [5], MITx [2], and Stan-
ford online classes [4], which have the potential of providing
quality education to a large number of students. However,
the presence of a larger number of students enrolled in a
course further increases the challenge of providing personal-
ized feedback to students. This is where intelligent tutoring
systems can play a pivotal role. They can help both students
and teachers with various repetitive and structured tasks in
education such as feedback and grading, problem generation
(of a certain difficulty level and that exercise use of certain
concepts), solution generation (to any given problem in the
subject domain), and even digital content creation that pro-
vides a better experience than pen and paper. After all,
teachers are teaching the same material over and over again
and have to grade similar kinds of mistakes made by stu-
dents year after year.

It turns out that the technology of synthesis from exam-
ples can help with each of the above-mentioned aspects of an
intelligent tutoring system. We illustrate this by presenting
below few applications from different subject domains.

4.1 Solution Generation (for Geometry)
Geometry is regarded to be one of the most difficult as well

as important subjects in high-school curriculum. Geome-
try education is supposed to help exercise logical abilities of
the left-brain, visualization abilities of the right-brain, and

hence enables students to make the two connect and work
together as one. In this section, we consider the problem
of synthesizing high-school ruler/compass based geometry
constructions [11].

Geometry constructions are essentially straight-line pro-
grams that manipulate geometry objects (points, lines, and
circles) using ruler and compass operators. Hence, the prob-
lem of synthesizing geometry constructions is very similar
to the problem of synthesizing bit-vector algorithms (§2),
which are straight-line programs over bit-vector operators.

Example 8. Consider the problem of constructing a tri-
angle, given its base L (with end-points p1 and p2), a base
angle a, and sum of the other two sides r. We wish to syn-
thesize a program S that performs the above construction
(i.e., obtains the third vertex p) using ruler and compass
instructions.

The following example represents one such construction
(where p1, p2, L, r, a constitute the input tuple, and p consti-
tutes the output).

L = Line(p1 = 〈81.62, 99.62〉, p2 = 〈99.62, 83.62〉)
r = 88.07 a = 0.81 radians

p = 〈131.72, 103.59〉

From this example, our tool [11] synthesizes the following
program over an extended library of ruler/compass opera-
tions.
ConstructTriangle(p1,p2,L,r,a):

L1 := ConstructLineGivenAngleLinePoint(L,a,p1);
C1 := ConstructCircleGivenPointLength(p1,r);
(p3, p4) := LineCircleIntersection(L1,C1);
L2 := PerpendicularBisector2Points(p2,p3);
p5 := LineLineIntersection(L1,L2);
return p5;

Search Algorithm.
Given an input-output example, the synthesizer performs

a brute-force search by applying all possible ruler/compass
operators on the concrete input state and derivative states in
a recursive manner in an attempt to reach the concrete out-
put state. We use two key ideas in order to make this search
feasible in practice. First, we extend the basic instruction
set of the geometry programming language with higher level
primitives (such as the ones used in Example 8), which rep-
resent common constructions found in textbook chapters.
This is inspired by how humans use their experience and
knowledge gained from previous chapters to perform com-
plicated constructions. This transforms the search space to
one that has a smaller depth but larger width. Second, we
prune the forward exhaustive search using a goal-directed
heuristic. This is inspired by backward reasoning often per-
formed by humans in doing such constructions. For example,
this heuristic might suggest that if a construction results in
a line L1 that passes through a given output point P , then
it may be useful to apply that construction (since we might
be able to construct another line L2 in the future that also
passes through P , and hence intersection of L1 and L2 can
yield desired point P).

User Interaction Model.
A construction that works for a randomly chosen input-

output model of the geometry construction problem, will

also work for any arbitrary input with high probability over
the choice of the random model. (This result follows from
an extension of the classic polynomial identity testing theo-
rem [26] to expressions with arbitrary algebraic operators [11]).
Such a random model can be generated by using some nu-
merical solver over the logical constraints that specify the
construction problem (after randomly fixing values for the
independent variables).

4.2 Problem Generation (for Algebra)
Generating fresh problems that involve using the same set

of concepts and have the same difficulty level as the problems
discussed in the class, is a tedious task for the teacher. Even
motivated students want to have access to such fresh similar
problems, when they fail to solve a given problem and had
to look at the solution. We desire to automatically generate
fresh problems that are similar to a given problem, where
the user interactively works with the tool to fine-tune the
notion of similarity.

We have developed a synthesis algorithm that can take a
proof problem p in Algebra, and can synthesize new prob-
lems that are similar to p [29]. Our technique is fairly gen-
eral and is applicable to several subfields of Algebra such as
Multivariate Polynomials, Trigonometry, Summations over
Series, applications of Binomial theorem, Calculus (Integra-
tion and Differentiation), Matrices and Determinants.

Example 9 (Limit/Series).

lim
n→∞

n∑
i=0

2i2 + i+ 1

5i
=

5

2

Given the above (“example”) problem, our tool [25] generated
several similar problems, some of which are:

lim
n→∞

n∑
i=0

3i2 + 2i+ 1

7i
lim
n→∞

n∑
i=0

3i2 + 2i+ 1

7i
lim
n→∞

n∑
i=0

3i2 + 2i+ 1

7i
===

7

3

7

3

7

3

lim
n→∞

n∑
i=0

3i2 + 3i+ 1

4i
lim
n→∞

n∑
i=0

3i2 + 3i+ 1

4i
lim
n→∞

n∑
i=0

3i2 + 3i+ 1

4i
=== 444

lim
n→∞

n∑
i=0

i2

3i
lim
n→∞

n∑
i=0

i2

3i
lim
n→∞

n∑
i=0

i2

3i
===

3

2

3

2

3

2

lim
n→∞

n∑
i=0

5i2 + 3i+ 3

6i
lim
n→∞

n∑
i=0

5i2 + 3i+ 3

6i
lim
n→∞

n∑
i=0

5i2 + 3i+ 3

6i
=== 666

Example 10 (Trigonometry). From [22].

sinA

1 + cosA
+

1 + cosA

sinA
= 2 cscA

Given the above problem, our tool generated 8 similar prob-
lems, of which 2 are present in the same textbook, and the
remaining 6 are new problems with similar proof strategy.

We list some of the new problems below:

cosA

1− sinA
+

1− sinA

cosA

cosA

1− sinA
+

1− sinA

cosA

cosA

1− sinA
+

1− sinA

cosA
=== 2 tanA2 tanA2 tanA

cosA

1 + sinA
+

1 + sinA

cosA

cosA

1 + sinA
+

1 + sinA

cosA

cosA

1 + sinA
+

1 + sinA

cosA
=== 2 secA2 secA2 secA

cotA

1 + cscA
+

1 + cscA

cotA

cotA

1 + cscA
+

1 + cscA

cotA

cotA

1 + cscA
+

1 + cscA

cotA
=== 2 secA2 secA2 secA

tanA

1 + secA
+

1 + secA

tanA

tanA

1 + secA
+

1 + secA

tanA

tanA

1 + secA
+

1 + secA

tanA
=== 2 cscA2 cscA2 cscA

sinA

1− cosA
+

1− cosA

sinA

sinA

1− cosA
+

1− cosA

sinA

sinA

1− cosA
+

1− cosA

sinA
=== 2 cotA2 cotA2 cotA

Example 11 (Integration). From [38].∫
(cscx) (cscx− cotx) dx = cscx− cotx

where x ∈
[
π
6
, π
3

]
.

Given the above problem, our tool generated 8 similar prob-
lems, of which 4 are present in the tutorial and the remaining
4 are new problems. We list some of the problems below:∫

(tanx) (cosx+ secx) dx

∫
(tanx) (cosx+ secx) dx

∫
(tanx) (cosx+ secx) dx = secx− cosxsecx− cosxsecx− cosx∫
(secx) (tanx+ secx) dx

∫
(secx) (tanx+ secx) dx

∫
(secx) (tanx+ secx) dx = secx+ cosxsecx+ cosxsecx+ cosx∫
(cotx) (sinx+ cscx) dx

∫
(cotx) (sinx+ cscx) dx

∫
(cotx) (sinx+ cscx) dx = sinx− cscxsinx− cscxsinx− cscx

Example 12 (Determinants). From [17].∣∣∣∣∣∣
(x+ y)2 zx zy
zx (y + z)2 xy
yz xy (z + x)2

∣∣∣∣∣∣
∣∣∣∣∣∣

(x+ y)2 zx zy
zx (y + z)2 xy
yz xy (z + x)2

∣∣∣∣∣∣
∣∣∣∣∣∣

(x+ y)2 zx zy
zx (y + z)2 xy
yz xy (z + x)2

∣∣∣∣∣∣ === 2xyz(x+ y + z)32xyz(x+ y + z)32xyz(x+ y + z)3

where x, y, z ∈ [0, 1].
Given the above problem, our tool generated 6 similar prob-

lems, of which 3 are already present in the same textbook and
the remaining 3 are new. Some of the generated problems
are given below (Here s = (x+ y + z)/2):∣∣∣∣∣∣

x2 (s− x)2 (s− x)2

(s− y)2 y2 (s− y)2

(s− z)2 (s− z)2 z2

∣∣∣∣∣∣
∣∣∣∣∣∣

x2 (s− x)2 (s− x)2

(s− y)2 y2 (s− y)2

(s− z)2 (s− z)2 z2

∣∣∣∣∣∣
∣∣∣∣∣∣

x2 (s− x)2 (s− x)2

(s− y)2 y2 (s− y)2

(s− z)2 (s− z)2 z2

∣∣∣∣∣∣ === 2s3(s− x)(s− y)(s− z)2s3(s− x)(s− y)(s− z)2s3(s− x)(s− y)(s− z)

∣∣∣∣∣∣
y2 x2 (y + x)2

(z + y)2 z2 y2

z2 (x+ z)2 x2

∣∣∣∣∣∣
∣∣∣∣∣∣

y2 x2 (y + x)2

(z + y)2 z2 y2

z2 (x+ z)2 x2

∣∣∣∣∣∣
∣∣∣∣∣∣

y2 x2 (y + x)2

(z + y)2 z2 y2

z2 (x+ z)2 x2

∣∣∣∣∣∣ === 2(xy + yz + zx)32(xy + yz + zx)32(xy + yz + zx)3

∣∣∣∣∣∣
−xy yz + y2 yz + y2

zx+ z2 −yz zx+ z2

xy + x2 xy + x2 −zx

∣∣∣∣∣∣
∣∣∣∣∣∣
−xy yz + y2 yz + y2

zx+ z2 −yz zx+ z2

xy + x2 xy + x2 −zx

∣∣∣∣∣∣
∣∣∣∣∣∣
−xy yz + y2 yz + y2

zx+ z2 −yz zx+ z2

xy + x2 xy + x2 −zx

∣∣∣∣∣∣ === xyz(x+ y + z)3xyz(x+ y + z)3xyz(x+ y + z)3

∣∣∣∣∣∣
yz + y2 xy xy
yz zx+ z2 yz
zx zx xy + x2

∣∣∣∣∣∣
∣∣∣∣∣∣
yz + y2 xy xy
yz zx+ z2 yz
zx zx xy + x2

∣∣∣∣∣∣
∣∣∣∣∣∣
yz + y2 xy xy
yz zx+ z2 yz
zx zx xy + x2

∣∣∣∣∣∣ === 4x2y2z24x2y2z24x2y2z2

User Interaction Model.
The user provides an example problem p. The tool ab-

stracts problem p to a query Q, which defines the search
space of potential problems. The query execution engine
generates a set of valid problems from this search space. If
the user is not satisfied with some of the problems in the
generated set, the user can either modify the query manu-
ally, or indicate undesirable problems after which the tool

can refine the query automatically. The process of query
execution is then repeated on the new query.

Search Algorithm.
The query execution engine systematically enumerates the

entire search space defined by Q (by instantiating all pos-
sible resolutions of choice nodes in Q). The size of this
search space can be huge (exponential in the number of
choice nodes in Q), and hence we need an efficient algo-
rithm to quickly check whether or not a potential problem
is a valid problem. For this, the tool performs randomized
(approximate) testing (using finite-precision arithmetic), the
probabilistic correctness of which follows from a generalized
polynomial identity testing theorem [11].

4.3 Content Creation (for Mathematical Text)
Inputting mathematical text into a computer remains a

painful task, despite several improvements to document edit-
ing systems over the years. Markup languages like LaTeX
lead to unreadable text in encoded form, while WYSIWYG
editors like Microsoft Word require users to change cursor
position several times, and switch back and forth between
keyboard and mouse input.

We believe that mathematical text, like several human
created artifacts, is quite structured with low entropy, and
hence it is amenable to both encryption and prediction. We
observe that mathematical text is often organized into ses-
sions, each consisting of mutually related expressions with
an inherent progression. Examples of such session include a
lengthy equation, a symbolic matrix, a solution to a problem,
a list of problems in an exercise, and a set of related rules
and axioms. Using this observation, we phrase a synthesis-
from-example problem that can predict what sub-term the
user is likely to input next. Such intellisense algorithms can
be important components of human-computer interfaces for
inputting mathematical text into a computer, be it through
speech, touch, keyboard or multi-modal interfaces.

Consider the following lengthy equation:

Example 13 (Equation).

tanA · tan 2A · tan 3Atan 3Atan 3A = tanA+ tan 2A+ tan 3Atan 2A+ tan 3Atan 2A+ tan 3A (1)

The arguments of the trigonometric function in the LHS fol-
low the sequence: A, 2A, 3A. Thus, if the user has already
typed “tanA · tan 2A·”, our tool [25] suggests “tan 3A” as the
next term, saving about 1/3 of typing time for the LHS.

A related, but different problem, arises in the RHS of the
above equation. Assume that the user types the RHS after
typing the LHS. The RHS of this equation is a transforma-
tion of LHS, where operator “·” is replaced with the opera-
tor “+”. Thus, after the user has typed “tanA+”, our tool
suggests “tan 2A+ tan 3A” as a choice for auto-completion,
saving about 2/3 of typing time for the RHS.

Following are some examples of a symbolic matrix with
an inherent progression pattern.

Example 14 (Symbolic Matrix).yz − x2 zx− y2 xy − z2xy − z2xy − z2
zx− y2 xy − z2xy − z2xy − z2 yz − x2yz − x2yz − x2
xy − z2 yz − x2yz − x2yz − x2 zx− y2zx− y2zx− y2

 (2)

(
A1 sin3 α B1 sin3 β C1 sin3 γC1 sin3 γC1 sin3 γ
A2 sinα B2 sinβB2 sinβB2 sinβ C2 sin γC2 sin γC2 sin γ

)
(3)

The bold text denotes the terms that can be predicted by our
tool.

Following is an example of a solved exercise taken from a
textbook [22].

Example 15 (Semantic Intellisense in a Solution).

Prove: (cscx− sinx)(secx− cosx)(tanx+ cotx) = 1

L.H.S. =

(
1

sinx
− sinx

)(
1

cosx
− cosx

)(
sinx

cosx
+

cosx

sinx

)(
1

cosx
− cosx

)(
sinx

cosx
+

cosx

sinx

)(
1

cosx
− cosx

)(
sinx

cosx
+

cosx

sinx

)
=

(
1− sin2 x

sinx

)(
1− cos2 x

cosx

)(
sin2 x+ cos2 x

cosx sinx

)(
1− cos2 x

cosx

)(
sin2 x+ cos2 x

cosx sinx

)(
1− cos2 x

cosx

)(
sin2 x+ cos2 x

cosx sinx

)
=

(
cos2 x

sinx

)(
sin2 x

cosx

)(
1

cosx sinx

)(
sin2 x

cosx

)(
1

cosx sinx

)(
sin2 x

cosx

)(
1

cosx sinx

)
= 1

The bold text denotes the terms that can be predicted by our
tool.

User Interaction Model.
The user types the mathematical text in a normal left to

right fashion. The synthesis tool learns the inherent pat-
tern in the text using the surrounding context, and provides
ranked suggestions for auto-completion.

Search Algorithm.
We note that mathematical text inside a session can be

thought of as a collection of sequences. For instance, in
Equation 1 both the LHS and RHS of the equation corre-
spond to the sequence 〈tanA, tan 2A, tan 3A〉 with different
separators (· in the LHS and + in the RHS). In Equations 2
and 3, we identify each row of the matrix as a sequence.
We perform pre-processing on the input stream to identify
such sequences. The prediction problem then reduces to
predicting the next term of a sequence, given a few initial
terms of the sequence and a relevant context (previous se-
quences). We define a language of term transformations, and
present an efficient algorithm to synthesize term transfor-
mations from examples, and use this algorithm for sequence
prediction [25]. The general approach here is similar to the
one presented in §3.

4.4 Grading (for Programming)
Manually grading programming problems is very challeng-

ing because of the need to reason about semantic equivalence
of the student’s solution with that of a reference solution.
Recent advances in testing technology have been used to
automatically generate test inputs on which the student’s
solution yields an answer that is different from that pro-
duced by the reference implementation [3]. However, this
technique still does not come close to providing direct feed-
back to the student about what exactly is wrong with a given
program and how to fix it.

We have developed a program synthesis technology to au-
tomatically determine minimal fixes to the student’s solu-
tion that will make it match the behavior of a reference
solution provided by the teacher [30]. This technology pro-
vides a basis for assigning partial credit for incorrect solu-
tions by giving a quantitative measure of the degree to which
the solution was incorrect, and makes it possible to provide

students with precise feedback about what they did wrong.
Our methodology involves generating abstract error models
(manually or automatically) from few solutions graded by
the teacher (which serve as “examples” of corrections), and
then automatically grading other solutions using those error
models.

Example 16. Suppose we obtain the following abstract
error model from grading few students’ solutions for the ar-
ray reversal problem, where each correction rule indicates a
potential replacement for the expression on the left side by
one of the expressions on the right side.

IndF v[a] → v[{a{+,−}{1, ?a}, v.Length− a− 1}]
InitF v = Int → v = {n+ 1, n− 1, 0}

CondF b0 opb a0 → b′0 õpb {a0{+,−}1, 0, 1, ?a0}
where õpb = {<,>,≤,≥,==, 6=}

IncF v + + → {+ + v,−− v, v −−}
RetF return v → return ?v

Consider the following incorrect solution submitted by a stu-
dent (on the Pex4Fun website [3]) to the array reversal prob-
lem.

1. public static int[] Puzzle(int[] b) {
2. for (int i=1; i<=b.Length/2; i++){
3. int temp = b[i];
4. b[i] = b[b.Length-i];
5. b[b.Length-i] = temp;
6. }
7. return b;
8. }
Our tool [30] can produce the following fixes, each of which
can convert the above attempt into a semantically correct
solution.

• Fix 1: Replace b[i] by b[i-1] (Rule IndF) in lines 3 and
4.

• Fix 2: Replace b[b.Length-i] by b[b.Length-i-1] (Rule
IndF) in lines 4 and 5, and Replace loop initialization
i=1 by i=0 (Rule initF) in line 2.

Search Algorithm.
Given a set of correction rules (abstracted from example

corrections), and a student’s solution, the synthesizer needs
to explore the space of all possible variations to the stu-
dent’s solution based on the correction rules. We reduce the
problem of generating minimal fixes to that of completing a
partial program (programs with holes that take values from
a finite domain). We then use the Sketch synthesizer [31]
that uses a SAT-based algorithm to complete partial pro-
grams based on a given specification.

User Interaction Model.
The teacher picks an ungraded answer script to grade.

The (example) corrections on the graded version of that an-
swer script are abstracted into more general correction rules,
which are then added to the error model (which is initial-
ized to the empty set). The synthesizer then attempts to
grade as many answer scripts as possible with the current
error model. The entire process is then repeated until no
ungraded answer scripts remain.

5. CONCLUSION
General-purpose computational devices, such as smart-

phones and computers, are becoming accessible to people
at large at an impressive rate. In the future, even robots
will become household commodities. Unfortunately, pro-
gramming such general-purpose platforms has never been
easy, because we are still mostly stuck with the model of
providing step-by-step, detailed, and syntactically correct
instructions on how to accomplish a certain task, instead of
simply describing what the task is. The synthesis technol-
ogy has the potential to revolutionize this landscape, when
targeted for the right set of problems and using the right
interaction model.

We believe that the most interesting applications of the
synthesis technology can be in the areas of end-user pro-
gramming, and intelligent tutoring systems. In this paper,
we focused on example based interaction models. Another
effective form of interaction can be based on natural lan-
guage. It remains an open research problem to design intel-
ligent multi-modal interfaces that can take examples, nat-
ural language, speech, touch, etc. as input. The solution
lies in bringing together various inter-disciplinary technolo-
gies that can combine user intent understanding, (possibly
unstructured) knowledge bases, and logical reasoning.

Acknowledgments
I would like to thank all my co-authors on the papers that
are referenced here: William Harris, Susmit Kumar Jha, Vi-
jay Korthikanti, Oleksandr Polozov, Sriram Rajamani, San-
jit Seshia, Armando Solar-Lezama, Rishabh Singh, Rohit
Singh, Ashish Tiwari.

6. REFERENCES
[1] Khan academy. http://www.khanacademy.org/.

[2] Mitx: Mit’s new online learning initiative.
http://mitx.mit.edu/.

[3] Pex4fun. http://www.pex4fun.com/.

[4] Stanford online courses.
http://www.stanford.edu/group/knowledgebase/cgi-
bin/2011/08/19/free-computer-science-courses-offered-
online-by-stanford-engineering-school/.

[5] Udacity: Free online university classes for everyone.
http://www.udacity.com/.

[6] A. Cypher, editor. Watch What I Do: Programming
by Demonstration. MIT Press, 1993.

[7] S. Gulwani. Dimensions in program synthesis. In
PPDP, 2010.

[8] S. Gulwani. Automating string processing in
spreadsheets using input-output examples. In POPL,
2011.

[9] S. Gulwani, W. Harris, and R. Singh. Spreadsheet
data manipulation using examples. Communications
of the ACM, 2012. (To appear).

[10] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan.
Synthesis of loop-free programs. In PLDI, 2011.

[11] S. Gulwani, V. A. Korthikanti, and A. Tiwari.
Synthesizing geometry constructions. In PLDI, pages
50–61, 2011.

[12] W. R. Harris and S. Gulwani. Spreadsheet table
transformations from examples. In PLDI, 2011.

[13] S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv.
A simple inductive synthesis methodology and its
applications. In OOPSLA, 2010.

[14] S. Jha, S. Gulwani, S. Seshia, and A. Tiwari.
Oracle-guided component-based program synthesis. In
ICSE, 2010.

[15] S. Jha, S. Gulwani, S. Seshia, and A. Tiwari.
Synthesizing switching logic for safety and dwell-time
requirement. In ICCPS, 2010.

[16] R. Joshi, G. Nelson, and K. H. Randall. Denali: A
goal-directed superoptimizer. In PLDI, pages 304–314,
2002.

[17] M. L. Khanna. IIT Mathematics.

[18] D. E. Knuth. The Art of Computer Programming,
Volume IV.

[19] A. J. Ko, B. A. Myers, and H. H. Aung. Six learning
barriers in end-user programming systems. In
VL/HCC, 2004.

[20] T. Lau, S. Wolfman, P. Domingos, and D. Weld.
Programming by demonstration using version space
algebra. Machine Learning, 53(1-2), 2003.

[21] H. Lieberman. Your Wish Is My Command:
Programming by Example. Morgan Kaufmann, 2001.

[22] S. L. Loney. Plane Trigonometry. Cambridge
University Press.

[23] Z. Manna and R. J. Waldinger. A deductive approach
to program synthesis. ACM Trans. Program. Lang.
Syst., 2(1):90–121, 1980.

[24] D. Perelman, S. Gulwani, T. Ball, and D. Grossman.
Type-directed completion of partial expressions. In
PLDI, 2012.

[25] O. Polozov, S. Gulwani, and S. Rajamani. Structure
and term prediction for mathematical text. Technical
Report MSR-TR-2012-7, 2012.

[26] J. T. Schwartz. Fast probabilistic algorithms for
verification of polynomial identities. J. ACM,
27(4):701–717, 1980.

[27] R. Singh and S. Gulwani. Learning semantic string
transformations from examples. PVLDB, 5, 2012. (To
appear).

[28] R. Singh and S. Gulwani. Synthesizing number
transformations from input-output examples. In CAV,
2012. (To appear).

[29] R. Singh, S. Gulwani, and S. Rajamani. Automatically
generating algebra problems. In AAAI, 2012. (To
appear).

[30] R. Singh, S. Gulwani, and A. Solar-Lezama.
Automated semantic grading of programs. Technical
Report arXiv:1204.1751, 2012.

[31] A. Solar-Lezama. Program synthesis by sketching,
2008.

[32] A. Solar-Lezama, L. Tancau, R. Bod́ık, S. A. Seshia,
and V. A. Saraswat. Combinatorial sketching for finite
programs. In ASPLOS, pages 404–415, 2006.

[33] S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S.
Foster. Path-based inductive synthesis for program
inversion. In PLDI, 2011.

[34] S. Srivastava, S. Gulwani, and J. Foster. From
program verification to program synthesis. In POPL,
2010.

[35] A. Taly, S. Gulwani, and A. Tiwari. Synthesizing

switching logic using constraint solving. In VMCAI,
2009.

[36] J. Walkenbach. Excel 2010 Formulas. John Wiley and
Sons, 2010.

[37] H. S. Warren. Hacker’s Delight. Addison-Wesley, ’02.

[38] Wiki. Integration Problems. http://www.math10.com/
en/university-math/integrals/2en.html.

