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Abstract. The size-change abstraction (SCA) is an important program
abstraction for termination analysis, which has been successfully imple-
mented in many tools for functional and logic programs. In this paper,
we demonstrate that SCA is also a highly effective abstract domain for
the bound analysis of imperative programs.
We have implemented a bound analysis tool based on SCA for imperative
programs. We abstract programs in a pathwise and context dependent
manner, which enables our tool to analyze real-world programs effec-
tively. Our work shows that SCA captures many of the essential ideas of
previous termination and bound analysis and goes beyond in a concep-
tually simpler framework.

1 Introduction

Computing symbolic bounds for the resource consumption of imperative pro-
grams is an active area of research [17,15,14,13,12,10]. Most questions about
resource bounds can be reduced to counting the number of visits to a certain
program location [17]. Our research is motivated by the following technical chal-
lenges:
(A) Bounds are often complex non-linear arithmetic expressions built from
+, ∗,max etc. Therefore, abstract domains based on linear invariants (e.g. in-
tervals, octagons, polyhedra) are not directly applicable for bound computation.
(B) The proof of a given bound often requires disjunctive invariants that can
express loop exit conditions, phases, and flags which affect program behav-
ior. Although recent research made progress on computing disjunctive invari-
ants [17,14,27,8,5,29,11], this is still a research challenge. (Note that the domains
mentioned in (A) are conjunctive.)
(C) It is difficult to predict a bound in terms of a template with parameters
because the search space for suitable bounds is huge. Moreover the search space
cannot be reduced by compositional reasoning because bounds are global pro-
gram properties.
(D) It is not clear how to exploit the loop structure to achieve compositionality in
the analysis for bound computation. This is in contrast to automatic termination
analysis where the cutpoint technique [8,5] is used standardly.
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SEED and Microsoft Research through a PhD Scholarship.
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In this paper we demonstrate that the size-change abstraction (SCA) by Lee
et al. [24,4] is the right abstract domain to address these challenges. SCA is a
predicate abstraction domain that consists of (in)equality constraints between
integer-valued variables and boolean combinations thereof in disjunctive normal
form (DNF).

SCA is well-known to be an attractive abstract domain: First, SCA is rich
enough to capture the progress of many real-life programs. It has been success-
fully employed for automatic termination proofs of recursive functions in func-
tional and declarative languages, and is implemented in widely used systems
such as ACL2, Isabelle etc. [25,20]. Second, SCA is simple enough to achieve a
good trade-off between expressiveness and complexity. For example, SCA ter-
mination is decidable and ranking functions can be extracted on terminating
instances in PSPACE [4]. The simplicity of SCA sets it apart from other disjunc-
tive abstract domains used for termination/bounds such as transition predicate
abstraction [28] and powerset abstract domains [17,5].

Our method starts from the observation that progress in most software de-
pends on the linear change of integer-valued functions on the program state (e.g.,
counter variables, size of lists, height of trees, etc.), which we call norms. The
vast majority of non-linear bounds in real-life programs stems from two sources
– nested loops and loop phases – and not from inherent non-linear behavior as in
numeric algorithms. For most bounds, we have therefore the potential to exploit
the nesting structure of the loops, and compose global bounds from bounds on
norms. Upper bounds for norms typically consist of simple facts such as size
comparisons between variables and can be computed by classical conjunctive
domains. SCA is the key to convert this observation into an efficient analysis:

(1) Due to its built-in disjunctiveness and the transitivity of the order relations,
SCA is closed under taking transitive hulls, and transitive hulls can be efficiently
computed. We will use this for summarizing inner loops.

(2) We use SCA to compose global bounds from bounds on the norms. To
extract norms from the program, we only need to consider small program parts.
After the (local) extraction we have to consider only the size-change-abstracted
program for bound computation.

(3) SCA is the natural abstract domain in connection with two program trans-
formations – pathwise analysis and contextualization – that make imperative
programs more amenable to bound analysis. Pathwise analysis is used for rea-
soning about complete program paths, where inner loops are overapproximated
by their transitive hulls. Contextualization adds path-sensitivity to the analysis
by checking which transitions can be executed subsequently. Both transforma-
tions make use of the progress in SMT solver technology to reason about the
long pieces of straight-line code given by program paths.

Summary of our Approach. To determine how often a location l of program P can
be visited, we proceed in two steps akin to [17]: First, we compute a disjunctive
transition system T for l from P . Second, we use T to compute a bound on
the number of visits to l. For the first step we recursively compute transition
systems for nested loops and summarize them disjunctively by transitive hulls
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Example 1.
void main (int n){

int i = 0; int j;

l1 : while(i < n) {
i++; j := 0;

l2 : while((i < n) && ndet()){
i++; j++; }

if (j > 0)

i--; } }

begin

l1

l2

end

ρ0

ρ1

ρ2

ρ3 ρ4

ρ5

ρ0 ≡ i = 0
ρ1 ≡ i < n ∧ i′ = i+ 1 ∧ j′ = 0
ρ2 ≡ i < n ∧ i′ = i+ 1 ∧ j′ = j + 1
ρ3 ≡ j > 0 ∧ i′ = i− 1
ρ4 ≡ j ≤ 0
ρ5 ≡ i ≥ n

Fig. 1. Example 1 with its (simplified) CFG and transition relations.

computed with SCA. We enumerate all cycle-free paths from l back to l, and
derive a disjunctive transition system T from these paths and the summaries
of the inner loops using pathwise analysis. For the second step we exploit the
potential of SCA for automatic bound computation by first abstracting T using
norms extracted from the program and then computing bounds solely on the
abstraction. We use contextualization to increase the precision of the bound
computation. Our method thus clearly addresses the challenges (A) to (D)
discussed above. In particular, we make the following new contributions:

– We are the first to exploit SCA for bound analysis by using its ability of
composing global bounds from bounds on locally extracted norms and dis-
junctive reasoning. Our technical contributions are the first algorithm for
computing bounds with SCA (Algorithm 2) and the disjunctive summariza-
tion of inner loops with SCA (Algorithm 1).

– We are the first to describe how to apply SCA on imperative programs. Our
technical contributions are two program transformations: pathwise analysis
(Subsection 5.2), which exploits the looping structure of imperative pro-
grams, and contextualization (Subsection 6.1). These program transforma-
tions make imperative programs amenable to bound analysis by SCA.

– We obtain a competitive bound algorithm that captures the essential ideas of
earlier termination and bound analyses in a simpler framework. Since bound
analysis generalizes termination analysis, many of our methods are relevant
for termination. Our experimental section shows that we can handle a large
percentage of standard C programs. We give a detailed comparison with
related work on termination and bound analysis in Section 8.

2 Examples

We use two examples to demonstrate the challenges in the automatic genera-
tion of transition systems and bound computation, and give an overview of our
approach. In the examples, we denote transition relations as expressions over
primed and unprimed state variables in the usual way.

Example 1: Transition System Generation. Let us consider the source
code of Example 1 together with its (simplified) CFG and transition relations
in Figure 1. Computing a bound for the header of the outer loop l1 exhibits

3



l3l2 l4 l1

l5 l6

ρ1ρ2

ρ1ρ2

ρ3

ρ3 ρ4

ρ4

ρ5 ρ6

ρ5

ρ6

The size-change abstractions of the transition
relations:

ρ1: l > 0 ∧ s′ > s ∧ s′ ≤ 255 ∧ l′ = l
ρ2: l > 0 ∧ s′ < s ∧ s′ ≥ 0 ∧ l′ = l
ρ3 and ρ5: l > 0 ∧ l′ < l ∧ s′ > s ∧ s′ ≤ 255
ρ4 and ρ6: l > 0 ∧ l′ < l ∧ s′ < s ∧ s′ ≥ 0

Fig. 2. The CFG obtained from contextualizing the transition system of Example 2
(left) and the size-change abstractions of the transition relations (right)

the following difficulties: The inner loop cannot be excluded in the analysis of
the outer loop (e.g. by the standard technique called slicing) as it modifies the
counter of the outer loop; this demonstrates the need for global reasoning in
bound analysis. Further one needs to distinguish whether the inner loop has
been skipped or executed at least one time as this determines whether j = 0
or j > 0. This exemplifies why we need disjunctive invariants for inner loops.
Moreover, the counter i may decrease, but this can only happen when i has
been increased by at least 2 before. This presents a difficulty to an automatic
analysis since the used abstract domains need to be precise enough to capture
such reasoning. In particular, a naive application of the size-change abstraction
is too imprecise, since it contains only inequalities.

Our Algorithm 1 computes a transition system for the outer loop with header
l1 as follows: The algorithm is based on the idea of enumerating all paths from
l1 back to l1 in order to derive a precise disjunctive transition system. However,
this enumeration is not possible as there are infinitely many such paths because
of the inner loop at l2. Therefore Algorithm 1 recursively computes a transition
system {i < n∧ i′ = i+ 1∧j′ = j + 1∧n′ = n} for the inner loop at l2, and then
summarizes the inner loop disjunctively by size-change abstracting its transition
system to {n− i > 0∧ n′ − i′ < n− i∧ j < j′} (our analysis extracts the norms
n−i, j from the program using heuristics, cf. Section 7) and computing the reflex-
ive transitive hull {n′ − i′ = n− i ∧ j′ = j, n− i > 0 ∧ n′ − i′ < n− i ∧ j < j′}
in the abstract. (Note that we use sets of formulae to denote disjunctions of
formulae.) Then Algorithm 1 enumerates all cycle-free paths from l1 back to l1.

There are two such paths: π1 = l1
ρ1

−→ l2
ρ3

−→ l1 and π2 = l1
ρ1

−→ l2
ρ4

−→ l1. Algo-
rithm 1 inserts the reflexive transitive hull T of the inner loop on the paths π1, π2

at the header of the inner loop l2 and contracts the transition relations. This
results in the two transition relations {false, n− i− 1 > 0 ∧ n′ − i′ < n− i ∧
j′ > 0} for π1 (one for each disjunct of the summary of the inner loop), and
{n− i > 0 ∧ n′ − i′ = n− i− 1 ∧ j′ = 0, false} for π2. Note that for each path,
false indicates that one transition relation was detected to be unsatisfiable, e.g.
n− i− 1 > 0 ∧ n′ − i′ < n− i− 1 ∧ j′ > 0 ∧ j′ ≤ 0 in π2. Algorithm 1 returns
the satisfiable two transitions as a transition system T for the outer loop.

Our Algorithm 2 size-change abstracts T (resulting in {n− i > 0 ∧ n′ − i′ <

n− i ∧ j′ > 0, n− i > 0 ∧ n′ − i′ < n − i ∧ j′ >= 0}) and computes the bound
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max(n, 0) from the abstraction. The difficult part in analyzing Example 1 is the
transition system generation, while computing a bound from T is easy.

Example 2: Bound Computation. Bound analysis is complicated when a
loop contains a finite state machine that controls its dynamics. Example 2, found
during our experiments on the cBench benchmark [1], presents such a loop.

Example 2. // cBench/consumer_lame/src/quantize-pvt.c

int bin_search_StepSize2 (int r, int s) {

static int c = 4; int n; int f = 0; int d = 0;

do {

n = nondet();

if (c == 1 ) break;

if (f) c /= 2;

if (n > r) {

if (d == 1 && !f) {f = 1; c /= 2; }

d = 2; s += c;

if (s > 255) break; }

else if (n < r) {

if (d == 2 && !f) {f = 1; c /= 2; }

d = 1; s -= c;

if (s < 0) break; }

else break; }

while (1); }

The loop has three different phases: in its first iteration it assigns 1 or 2 to d,
then either increases or decreases s until it sets f to true; then it divides c by 2
until the loop is exited. Note that disjunctive reasoning is crucial to distinguish
the phases!

Our method first uses a standard invariant analysis (such as the octagon anal-
ysis) to compute the invariant c ≥ 1, which is valid throughout the execution of
the loop. Then Algorithm 1 obtains a transition system from the loop by col-
lecting all paths from loop header back to the loop header. Omitting transitions
that belong to infeasible paths we obtain six transitions:

ρ1 ≡ c ≥ 1 ∧ ¬f ∧ d 6= 1 ∧ d′ = 2 ∧ s′ = s+ c ∧ s′ ≤ 255 ∧ c′ = c ∧ f ′ = f

ρ2 ≡ c ≥ 1 ∧ ¬f ∧ d 6= 2 ∧ d′ = 1 ∧ s′ = s− c ∧ s′ ≥ 0 ∧ c′ = c ∧ f ′ = f

ρ3 ≡ c ≥ 1 ∧ ¬f ∧ d = 1 ∧ f ′ ∧ c′ = c/2 ∧ d′ = 2 ∧ s′ = s+ c′ ∧ s′ ≤ 255

ρ4 ≡ c ≥ 1 ∧ ¬f ∧ d = 2 ∧ f ′ ∧ c′ = c/2 ∧ d′ = 1 ∧ s′ = s− c′ ∧ s′ ≥ 0

ρ5 ≡ c ≥ 1 ∧ f ∧ c′ = c/2 ∧ d′ = 2 ∧ s′ = s+ c′ ∧ s′ ≤ 255 ∧ f ′ = f

ρ6 ≡ c ≥ 1 ∧ f ∧ c′ = c/2 ∧ d′ = 1 ∧ s′ = s− c′ ∧ s′ ≥ 0 ∧ f ′ = f

Our bound analysis reasons about this transition system automatically by
applying the program transformation called contextualization, which determines
in which context transitions can be executed, and size-change abstracting the
transitions. By our heuristics (cf. Section 7) we consider s and the logarithm of
c (which we abbreviate by l) as program norms.
Figure 2 shows the CFG obtained from contextualizing the transition system of
Example 2 on the left. The CFG vertices carry the information which transition
is executed next. The CFG edges are labeled by the transitions of the transition
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system, where presence of edges indicates that, e.g., l4 can be directly executed
after l1, and absence of an arc from l4 to l1 means that this transition is infea-
sible. The CFG shows that the transitions cannot interleave in arbitrary order;
particularly useful are the strongly-connected components (SCCs) of the CFG.
Our bound Algorithm 2 exploits the SCC decomposition. It computes bounds for
every SCC separately using the size-change abstracted transitions (cf. Figure 2
on the right) and composes them to the overall bound max(255, s) + 3, which is
precise.

We point out how the above described approach enables automatic bound
analysis by SCA. Note that the variables d and f do not appear in the abstracted
transitions. It is sufficient for our analysis to work with the CFG obtained from
contextualization because the loop behavior of Example 2, which is controlled
by d and f , has been encoded into the CFG. This has the advantage that less
variables have to be considered in the actual bound analysis. Further note that
the CFG decomposition gives us compositionality in bound analysis. Our analysis
is able to combine the bounds of the SCCs to an (fairly complicated) overall
bound using the operators max and + by following the structure of the CFG.

3 Program Model and Size-change Abstraction

Sets and Relations. Let A be a set. The concatenation of two relations
B1, B2 ∈ 2A×A is the relation B1 ◦B2 = {(e1, e3) | ∃e2.(e1, e2) ∈ B1 ∧ (e2, e3) ∈
B2}. Id = {(e, e) | e ∈ A} is the identity relation over A. Let B ∈ 2A×A be a rela-
tion. We inductively define the k-fold exponentiation of B by Bk = Bk−1◦B and
B0 = Id. B+ =

⋃

k≥1 B
k resp. B∗ =

⋃

k≥0 B
k is the transitive- resp. reflexive

transitive hull of B. We lift the concatenation operator ◦ to sets of relations by
defining C1◦C2 = {B1◦B2 | B1 ∈ C1, B2 ∈ C2} for sets of relations C1, C2 ⊆ 2A×A.
We set C0 = {Id}; Ck, C+ etc. are defined analogously.

Program Model. We introduce a simple program model for sequential impera-
tive programs without procedures. Our definition models explicitly the essential
features of imperative programs, namely branching and looping. In Section 5 we
will explain how to exploit the graph structure of programs in our analysis algo-
rithm. We leave the extension to concurrent and recursive programs for future
work.

Definition 1 (Transition Relations / Invariants). Let Σ be a set of states.
The set of transition relations Γ = 2Σ×Σ is the set of relations over Σ. A
transition set T ⊆ Γ is a finite set of transition relations. Let ρ ∈ Γ be a
transition relation. T is a transition system for ρ, if ρ ⊆

⋃

T . T is a transition
invariant for ρ, if ρ∗ ⊆

⋃

T .

Definition 2 (Program, Path, Trace, Termination). A program is a tuple
P = (L,E), where L is a finite set of locations, and E ⊆ L × Γ × L is a finite

set of transitions. We write l1
ρ
−→ l2 to denote a transition (l1, ρ, l2).

A path of P is a sequence l0
ρ0

−→ l1
ρ1

−→ · · · with li
ρi
−→ li+1 ∈ E for all i.

Let π = l0
ρ0

−→ l1
ρ1

−→ l2 · · · lk
ρk−→ lk+1 be a finite path. π is cycle-free, if π does
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not visit a location twice except for the end location, i.e., li 6= lj for all 0 ≤ i <

j ≤ k. The contraction of π is the transition relation rel(π) = ρ0 ◦ ρ1 ◦ · · · ◦ ρk
obtained from concatenating all transition relations along π. Given a location
l, paths(P, l) is the set of all finite paths with start and end location l. A path
π ∈ paths(P, l) is simple, if all locations, except for the start and end location,
are different from l.

A trace of P is a sequence (l0, s0)
ρ0

−→ (l1, s1)
ρ1

−→ · · · such that l0
ρ0

−→ l1
ρ1

−→
· · · is a path of P , si ∈ Σ and (si, si+1) ∈ ρi for all i. P is terminating, if there
is no infinite trace of P .

Note that a cycle-free path π ∈ paths(P, l) is always simple. Further note
that our definition of programs allows to model branching and looping precisely
and naturally: imperative programs can usually be represented as CFGs whose
edges are labeled with assign and assume statements.

Definition 3 (Transition Relation of a Location). Let P = (L,E) be a
program and l ∈ L a location. The transition relation of l is the set P |l =
⋃

simple π∈paths(P,l) rel(π).

3.1 Order Constraints

Let X be a set of variables. Given a variable x we denote by x′ its primed version.
We denote by X ′ the set {x′ | x ∈ X} of the primed variables of X . We denote
by ⊲ any element from {>,≥}.

Definition 4 (Order Constraint). An order constraint over X is an inequal-
ity x⊲ y with x, y ∈ X.

Definition 5 (Valuation). The set of all valuations of X is the set ValX =
X → Z of all functions from X to the integers. Given a valuation σ ∈ ValX we
define its primed valuation as the function σ′ ∈ ValX′ with σ′(x′) = σ(x) for
all x ∈ X. Given two valuations σ1 ∈ ValX1

, σ2 ∈ ValX2
with X1 ∩ X2 = ∅ we

define their union σ1 ∪ σ2 ∈ ValX1∪X2
by (σ1 ∪ σ2)(x) =

{

σ1(x) for x ∈ X1,

σ2(x) for x ∈ X2.

Definition 6 (Semantics). We define a semantic relation |= as follows: Let
σ ∈ ValX be a valuation. Given an order constraint x1⊲x2 over X, σ |= x1⊲x2

holds, if σ(x1)⊲ σ(x2) holds in the structure of the integers (Z,≥). Given a set
O of order constraints over X, σ |= O holds, if σ |= o holds for all o ∈ O.

3.2 Size-change Abstraction (SCA)

We are using integer-valued functions on the program states to measure progress
of a program. Such functions are called norms in the literature. Norms provide us
sizes of states that we can compare. We will use norms for abstracting programs.

Definition 7 (Norm). A norm n ∈ Σ → Z is a function that maps the states
to the integers.

7



We fix a finite set of norms N for the rest of this subsection, and describe
in Section 7 how to extract norms from programs automatically. Given a state
s ∈ Σ we define a valuation σs ∈ ValN by setting σs(n) = n(s).

We will now introduce SCA. Our terminology diverts from the seminal pa-
pers on SCA [24,4] because we focus on a logical rather than a graph-theoretic
representation. The set of norms N corresponds to the SCA “variables” in [24,4].

Definition 8 (Monotonicity Constraint, Size-change Relation / Set,
Concretization). The set of monotonicity constraints MCs is the set of all
order constraints over N ∪N ′. The set of size-change relations (SCRs) SCRs =
2MCs is the powerset of MCs. An SCR set S ⊆ SCRs is a set of SCRs. We
use the concretization function γ : SCRs → Γ to map an SCR T ∈ SCRs to a
transition relation γ(T ) by defining γ(T ) = {(s1, s2) ∈ Σ × Σ | σs1 ∪ σ′

s2
|= T }

as the set of all pairs of states such that the evaluation of the norms on these
states satisfy all the constraints of T . We lift the concretization function to SCR
sets by setting γ(S) = {γ(T ) | T ∈ S} for an SCR set S.

Note that the abstract domain of SCRs has only finitely many elements,
namely 3(2|N |)2. Further note that an SCR set corresponds to a formula in DNF.

Definition 9 (Abstraction Function). The abstraction function α : Γ →
SCRs takes a transition relation ρ ∈ Γ and returns the greatest SCR containing
it, namely α(ρ) = {c ∈ MCs | ρ ⊆ γ(c)}. We lift the abstraction function to
transition sets by setting α(T ) = {α(ρ) | ρ ∈ T } for a transition set T .

Implementation of the abstraction. α can be implemented by an SMT solver
under the assumption that the norms are provided as expressions and that the
transition relation is given as a formula such that the order constraints between
these expressions and the formula fall into a logic that the SMT solver can decide.

Using abstraction and concretization we can define concatenation of SCRs:

Definition 10 (Concatenation of SCRs). Given two SCRs T1, T2 ∈ SCRs,
we define T1 ◦ T2 to be the SCR α(γ(T1) ◦ γ(T2)). We lift the concatenation
operator ◦ to SCR sets by defining S1 ◦ S2 = {T1 ◦ T2 | T1 ∈ S1, T2 ∈ S2} for
SCR sets S1,S2 ∈ 2SCRs . S0 = {Id},Sk,S+,S∗ etc. are defined in the natural
way.

Concatenation of SCRs is conservative by definition, i.e., γ(T1 ◦T2) ⊇ γ(T1)◦
γ(T2) and associative because of the transitivity of order relations. Concatena-
tion of SCRs can be effectively computed by a modified all-pairs-shortest-path
algorithm (taking order relations as weights). Because the number of SCRs is
finite, the transitive hull is computable.

The following theorem can be directly shown from the definitions. We will
use it to summarize the transitive hull of loops disjunctively, cf. Section 5.

Theorem 1 (Soundness). Let ρ be a transition relation and T a transition
system for ρ. Then γ(α(T )∗) is a transition invariant for ρ.
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4 Main Steps of our Analysis

Let P = (L,E) be a program and l ∈ L be a location for which we want to
compute a bound. Our analysis consists of four main steps:

1. Extract a set of norms N using heuristics (Section 7)
2. Compute global invariants by standard abstract domains
3. Compute T = TransSys(P, l) (Section 5)
4. Compute b = Bound(Contextualize(T )) (Section 6)

In Step 1 we extract a set of norms N using the heuristics described in Section 7.
The abstraction function α that we use in Steps 3 and 4 is parameterized by the
set of norms N . In Step 2 we compute global invariants by standard abstract
domains such as interval, octagon or polyhedra. As this step is standard, we
do not discuss it in this paper. In Step 3 we compute a transition system T =
TransSys(P, l) for P |l by Algorithm 1. In Step 4 we compute a bound b =
Bound(Contextualize(T )) for the number of visits to l, where we first use the
program transformation contextualization of Definition 11 to transform T into
a program from which we then compute a bound b by Algorithm 2.

Procedure: TransSys(P, l)
Input: a program P = (L,E), a location l ∈ L
Output: a transition system for P |l
Global: array summary for storing transition invariants

foreach (loop, header ) ∈ NestedLoops(P, l) do
T := TransSys(loop, header );
hull := γ(α(T )∗);
summary[header ] := hull ;

foreach cycle-free path π = l
ρ0−→ l1

ρ1−→ l2 · · · lk
ρk−→ l ∈ paths(P, l) do

Tπ := {ρ0} ◦ ITE(IsHeader(l1), summary[l1], {Id}) ◦ {ρ1}◦
ITE(IsHeader(l2), summary[l2], {Id}) ◦ {ρ2} ◦ · · · ◦
ITE(IsHeader(lk), summary[lk], {Id}) ◦ {ρk};

return
⋃

cycle-free path π∈paths(P,l) Tπ;

Algorithm 1: TransSys(P, l) computes a transition system for P |l

5 Computing Transition Systems

In this section we describe our algorithm for computing transition systems. We
first present the actual algorithm, and then discuss specific characteristics. The
function TransSys in Algorithm 1 takes as input a program P = (L,E) and a
location l ∈ L and computes a transition system for P |l, cf. Theorem 2 below.
The key ideas of Algorithm 1 are (1) to summarize inner loops disjunctively by
transition invariants computed with SCA, and (2) to enumerate all cycle-free
paths for pathwise analysis. Note that for loop summarization the algorithm is
recursively invoked. We give an example for the application of Algorithm 1 to
Example 1 in Section B.1 of the appendix.
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Loop Summarization. In the first foreach-loop, Algorithm 1 iterates over
all nested loops of P w.r.t. l. A loop loop of P is a nested loop w.r.t. l, if it
is strongly connected to l but does not contain l, and if there is no loop with
the same properties that strictly contains loop. Let loop be a nested loop of P
w.r.t. l and let header be its header. (We assume that the program is reducible,
see discussion below.) TransSys calls itself recursively to compute a transition
system T for loop|header .

In statement hull := γ(α(T )∗), α(T ) size-change abstracts T to an SCR set,
α(T )∗ computes the transitive hull of this SCR set, and γ(α(T )∗) concretizes
the abstract transitive hull to a transition set, which is then assigned to hull .
Algorithm 1 stores hull in the array summary, which is a transition invariant for
loop|header by the soundness of SCA as stated in Theorem 1.

After the first foreach-loop, Algorithm 1 has summarized all inner loops,
not only the nested loops, because the recursive calls reaches all nesting levels.
For each inner loop loop with header header a transition invariant for loop|header
has been stored at summary[header ]. Summaries of inner loops are visible to all
outer loops, because the array summary is a global variable.

Pathwise Analysis. In the second foreach-loop, Algorithm 1 iterates over all

cycle-free paths of P with start and end location l. Let π = l
ρ0

−→ l1
ρ1

−→ · · · lk
ρk−→ l

be such a cycle-free path. The expression ITE(IsHeader(li), summary[li], {Id})
evaluates to summary[li] for each location li, if li is the header of an inner loop
loopi, and evaluates to the transition set {Id}, which contains only the identity
relation over the program states, else. Algorithm 1 computes the set Tπ = {ρ0}◦
ITE(IsHeader(l1), summary[l1], {Id})◦{ρ1}◦ITE(IsHeader(l2), summary[l2], {Id})
◦{ρ2}◦· · ·◦ITE(IsHeader(lk), summary[lk], {Id})◦{ρk}, which is an overapprox-
imation of the contraction of π, where the summaries of the inner loops loopi

are inserted at their headers li. The transition set Tπ overapproximates all paths
starting and ending in l that iterate arbitrarily often through inner loops along
π, because for every loop loopi the transition set summary[li] overapproximates
all paths starting and ending in li that iterate arbitrarily often through loopi (as
summary[li] is a transition invariant for loopi|li). Algorithm 1 returns the union
⋃

cycle-free path π∈paths(P,l) Tπ of all those transition sets Tπ.

Theorem 2. Algorithm 1 computes a transition system TransSys(P, l) for P |l.

Proof (Sketch). Let π′ ∈ paths(P, l) be a simple path. We obtain a cycle-free
path π ∈ paths(P, l) from π′ by deleting all iterations through inner loops of
(P, l) from π′. The transition set Tπ overapproximates all paths starting and
ending in l that iterate arbitrarily often through inner loops of (P, l) along π.
As π′ iterates through inner loops of (P, l) along π we have rel(π) ⊆

⋃

Tπ.

Implementation. We use conjunctions of formulae to represent individual tran-
sitions. This allows us to implement the concatenation of transition relations by
conjoining their formulae and introducing existential quantifiers for the interme-
diate variables. We detect empty transition relations by asking an SMT solver
whether their corresponding formulae are satisfiable. We use these emptiness
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checks at several points during the analysis to reduce the number of transition
relations.
Algorithm 1 may exponentially blow up in size because of the enumeration of
all cycle-free paths and the computation of transitive hulls of inner loops. We
observed in our experiments that by first extracting norms from the program
under scrutiny and then slicing the program w.r.t. these norms before continuing
with the analysis normally results into programs small enough for making our
analysis feasible.

Irreducible programs. Algorithm 1 refers to loop headers, and thus implicitly
assumes that loops are reducible. (Recall that in a reducible program each SCC
has a unique entry point called the header.) We have formulated Algorithm 1
in this way to make clear how it exploits the looping structure of imperative
programs. However, Algorithm 1 can be easily extended to irreducible loops by
a case distinction on the (potentially multiple) entry points of SCCs.

5.1 Disjunctiveness in Algorithm 1

Disjunctiveness is crucial for bound analysis. We have given two examples for
this fact in Section 2 and refer the reader for further examples to [17,5,27]. We
emphasize that our analysis can handle all examples of these publications, and
give a detailed comparison with them in Section 8. Our analysis is disjunctive
in two ways:

(1) We summarize inner loops disjunctively. Given a transition system T
for some inner loop loop, we want to summarize loop by a transition invariant.
The most precise transition invariant T ∗ = {Id} ∪ T ∪ T 2 ∪ T 3 ∪ · · · introduces
infinitely many disjunctions and is not computable in general. In contrast to this
the abstract transitive hull α(T )∗ = α({Id}) ∪ α(T ) ∪ α(T )2 ∪ α(T )3 ∪ · · · has
only finitely many disjunctions and is effectively computable. This allows us to
overapproximate the infinite disjunction T ∗ by the finite disjunction γ(α(T )∗).

We underline that the need for disjunctive summaries of inner loops in the
bound analysis is a major motivation for SCA, as it allows us to compute dis-
junctive transitive hulls naturally, cf. definition and discussion in Section 3.2.

(2) We summarize local transition relations disjunctively. Given a program
P = (L,E) and location l ∈ L, we want to compute a transition system for P |l.
For a cycle-free path π ∈ paths(P, l) the transition set Tπ computed in Algo-
rithm 1 overapproximates all simple paths in paths(P, l) that iterate through
inner loops along π. As all Tπ are sets, the set union

⋃

cycle-free path π∈paths(P,l) Tπ
is a disjunctive summarization of all Tπ that keeps the information from different
paths separated. This is important for our analysis which relies on the observa-
tion that monotonic changes of norms can be observed along single paths from
loop header back to the header.

5.2 Pathwise Analysis in Algorithm 1

It is well-known that analyzing large program parts jointly improves the pre-
cision of static analyses, e.g. [7]. Owing to the progress in SMT solvers this
idea has recently seen renewed interested by static analyses such as abstract
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interpretation [26] and software model checking [6], which use SMT solvers for
abstracting large blocks of straight-line code jointly to increase the precision of
the analysis.

We call the analyses of [26,6] and classical SCA [24,4] blockwise, because they
do joint abstraction only for loop-free program parts. In contrast, our pathwise
analysis abstracts complete paths at once: Algorithm 1 enumerates all cycle-
free paths from loop header to loop header and inserts summaries for inner
loops on these paths. These paths are then abstracted jointly in a subsequent
loop summarization or bound computation. In this way our pathwise analysis
is strictly more precise than blockwise analysis. We illustrate this difference in
precision on Example 1 in Section A of the appendix.

Parsers are a natural class of programs which illustrate the need for pathwise
analysis. In our experiments we observed that many parsers increase an index
while scanning the input stream and use lookahead to detect which token comes
next. As in Example 1, lookaheads may temporarily decrease the index. Pathwise
abstraction is crucial to reason about the program progress with SCA.

6 Bound Computation

Our bound computation consists of two steps. Step 1 is the program transfor-
mation contextualization which transforms a transition system into a program.
Step 2 is the bound algorithm which computes bounds from programs.

6.1 Contextualization

Contextualization is a program transformation by Manolios and Vroon [25], who
report on an impressive precision of their SCA-based termination analysis of
functional programs. Note that we do not use their terminology (e.g. “calling
context graphs”) in this paper. Our contribution lies in adopting contextualiza-
tion to imperative programs and in recognizing its relevance for bound analysis.

Definition 11 (Contextualization). Let T be a transition set. The contex-

tualization of T is the program P = (T , E), where E = {ρ
ρ
−→ ρ′ | ρ, ρ′ ∈

T and ρ ◦ ρ′ 6= ∅}.

The contextualization of a transition system is a program in which every
location determines which transition is executed next; the program has an edge
between two locations only if the transitions of the locations can be executed
one after another.

Contextualization restricts the order in which the transitions of the transition
system can be executed. Thus, contextualization encodes information that could
otherwise be deduced from the pre- and postconditions of transitions directly
into the CFG. Since pathwise analysis contracts whole loop paths into single
transitions, contextualization is particularly important after pathwise analysis:
our subsequent bound algorithm does not need to compute the pre- and post-
condition of the contracted loop paths but only needs to exploit the structure
of the CFGs for determining in which order the loop paths can be executed.
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Example 3.
void main (int x, int b){

while (0 < x < 255){

if (b) x = x + 1;

else x = x - 1; } }

ρ1 ≡ 0 < x < 255 ∧ b ∧ x′ = x+ 1 ∧ b′

ρ2 ≡ 0 < x < 255 ∧ ¬b ∧ x′ = x− 1 ∧ ¬b′

l1 l2

ρ1 ρ2

Fig. 3. Example 3 with its transition relations and CFG obtained from contextualiza-
tion.

We illustrate contextualization on Example 3. The program has two paths,
and gives rise to the transition system T = {ρ1, ρ2}. Keeping track of the boolean
variable b is important for bound analysis: Without reference to b not even the
termination of main can be proven. In Figure 3 (right) we show the contextu-
alization of T . Note that contextualization has encoded information about the
variable b into the CFG in such a way that we do not need to keep track of
the variable b anymore. Thus, contextualization releases us from taking the pre-
condition b resp. ¬b and the postcondition b′ resp. ¬b′ into account for bound
analysis.

At the beginning we gave an application of contextualization on the sophisti-
cated loop in Example 2, where contextualization uncovers the control structure
of the finite state machine encoded into the loop. An application of contextu-
alization to the flagship example of a recent publication [14] can be found in
Section B.3 of the appendix.

Note that in our definition of contextualization we only consider the consis-
tency of two consecutive transitions. It would also have been possible to consider
three or more consecutive transitions. This would result in increased precision.
However, we found two transitions to be sufficient in practice.
Implementation. We implement contextualization by encoding the concatenation
ρ1 ◦ ρ2 of two transitions ρ1, ρ2 into a logical formula and asking an SMT solver
whether this formula is satisfiable. Note that such a check is very simple to
implement in comparison to the explicit computation of pre- and postconditions.

Procedure: Bound(P )
Input: a program P = (L,E)
Output: a bound b on the length of the traces of P
SCCs := computeSCCs(P ); b := 0;
while SCCs 6= ∅ do

SCCsOnLevel := ∅;
forall the SCC ∈ SCCs s.t. no SCC ′ ∈ SCCs can reach SCC do

r := BndSCC(SCC );
Let r ≤ bSCC be a global invariant;
SCCsOnLevel := SCCsOnLevel ∪ {SCC};

b := b +maxSCC∈SCCsOnLevel bSCC ;
SCCs := SCCs \ SCCsOnLevel ;

return b;

Algorithm 2: Bound composes the bounds of the SCCs to an overall bound
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6.2 Bound Algorithm

Our bound algorithm reduces the task of bound computation to the computation
of local bounds and the composition of these local bounds to an overall bound.
To this end, we exploit the structure of the CFGs obtained from contextualiza-
tion: We partition the CFG of programs into its strongly connected components
(SCCs) (SCCs are maximal strongly connected subgraphs). For each SCC, we
compute a bound by Algorithm 3, and then compose these bounds to an overall
bound by Algorithm 2.
Algorithm 2 arranges the SCCs of the CFG into levels: The first level consists
of the SCCs that do not have incoming edges, the second level consists of the
SCCs that can be reached from the first level, etc. For each level, Algorithm 2
calls Algorithm 3 to compute bounds for the SCCs of this level. Let SCC be
an SCC of some level and let r := BndSCC(SCC ) be the bound returned by
Algorithm 3 on SCC . r is a (local) bound of SCC that may contain variables of
P that are changed during the execution of P . Algorithm 2 uses global invariants
(e.g. interval, octagon or polyhedra) in order to obtain a bound bSCC on r in
terms of the initial values of P . The SCCs of one level are collected in the set
SCCsOnLevel . For each level, Algorithm 2 composes the bounds bSCC of all
SCCs SCC ∈ SCCsOnLevel to a maximum expression. Algorithm 2 sums up
the bounds of all levels for obtaining an overall bound.

Procedure: BndSCC(P )
Input: strongly-connected program P = (L,E)
Output: a bound b on the length of the traces of P
if E = ∅ then return 1;
NonIncr := ∅; DecrBnded := ∅; BndedEdgs := ∅;
foreach n ∈ N do

if ∀ l1
ρ
−→ l2 ∈ E n ≥ n′ ∈ α(ρ) then

NonIncr := NonIncr ∪ {n};

foreach l1
ρ
−→ l2 ∈ E, n ∈ NonIncr do

if n ≥ 0, n > n′ ∈ α(ρ) then
DecrBnded := DecrBnded ∪ {max(n, 0)};

BndedEdgs := BndedEdgs ∪ {l1
ρ
−→ l2};

if BndedEdgs = ∅ then fail with “there is no bound for P”;
b = Bound((L,E \ BndedEdgs));
return ((

∑
DecrBnded) + 1) · b;

Algorithm 3: BndSCC computes a bound for a single SCC

Algorithm 3 computes the bound of a strongly-connected program P . First Alg. 3
checks if P = (L,E) is trivial, i.e., E = ∅, and returns 1, if this is the case. Next
Alg. 3 collects all norms in the set NonIncr that either decrease or stay equal
on all transitions. Subsequently Alg. 3 checks for every norm n ∈ NonIncr and
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transition l1
ρ
−→ l2 ∈ E, if n is bounded from below by zero and decreases on

ρ. If this is the case, Alg. 3 adds max(n, 0) to the set DecrBnded and l1
ρ
−→ l2

to BndedEdgs . Note that the transitions included in the set BndedEdgs can
only be executed as long as their associated norms are greater than zero. Every
transition in BndedEdgs decreases an expression in DecrBnded when it is taken.
As the expressions in DecrBnded are never increased, the sum of all expressions
in DecrBnded is a bound on how often the transitions in BndedEdgs can be
taken. If DecrBnded is empty, Alg. 2 fails, because the absence of infinite cycles
could not be proven. Otherwise we recursively call Alg. 2 on (L,E \BndedEdgs)
for a bound b on this subgraph. The subgraph can at most be entered as often
as the transitions in BndedEdgs can be taken plus one (when it is entered first).
Thus, ((

∑

DecrBnded) + 1) · b is an upper bound for P .

Role of SCA in our Bound Analysis. Our bound analysis uses the size-change
abstractions of transitions to determine how a norm n changes according to
n ≥ n′, n > n′, n ≥ 0 in Alg. 3. We plan to incorporate inequalities between
different norms (like n ≥ m′) in future work to make our analysis more precise.

Termination analysis. If in Algorithm 2 the global invariant analysis can-
not infer an upper bound on some local bound, the algorithm fails to compute
a bound, but we can still compute a lexicographic ranking function, which is
sufficient to prove termination. The respective adjustment of our algorithm is
straightforward.

We give an example for the application of Algorithm 2 to Example 2 and to
the flagship example of [14] in Section B.2 and B.3 of the appendix.

7 Heuristics for Extracting Norms

In this section we describe our heuristic for extracting norms from programs.
Let P = (L,E) be a program and l ∈ L be a location. We compute all cycle-
free paths from l back to l. For all arithmetic conditions x ≥ y appearing in
some of these paths we take x − y as a norm if x − y decreases on this path;
this can be checked by an SMT solver. Note that in such a case x − y is a
local ranking function for this program path. Similar patterns and checks can
be implemented for iterations over bitvectors and data structures. For a more
detailed discussion on how to extract the local ranking functions of a program
path we refer the reader to [17]. We also compute norms for inner loops on which
already extracted norms are control dependent and add them to the set of norms
until a fixed point is reached (similar to program slicing). We also include the
sum and the difference of two norms, if an inner loop affects two norms at the
same time. Further, we include the rounded logarithm of a norm, if the norm is
multiplied by a constant on some program path. In general any integer-valued
expression can be used as a program norm, if considered useful by some heuristic.
Clearly the analysis gets more precise the more norms are taken into account,
but also more costly.
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8 Detailed Comparison with Related Work

In this section we give a detailed comparison with earlier termination / bound
analyses. We show that our bound analysis captures the essential ideas of these
approaches in a simpler framework.

8.1 Comparison of transition predicate abstraction (TPA) and SCA
by Heizmann et al.

In [18] Heizmann et al. state that SCA is an instance of the more general tech-
nique of TPA [28]. In particular they formally show that when a tail-recursive
functional program F is translated into an imperative program P , then an SCA-
based termination analysis on F can be mimicked by a TPA-based termination
analysis on P whose predicates are order relations.

However, [18] does not

– deal with general imperative programs, but with programs obtained as trans-
lations from functional programs. Since functional programs can be size-
change abstracted more easily (as explained in our comparison with SCA in
Section 8.7), this problem setting is much simpler.

– show how to obtain transition predicates for the independent analysis of im-
perative programs by TPA. It only shows that (as a result of the translation)
TPA is more general than SCA.

– deal with a concrete programming language, and does not deal with practical
issues, or concrete analysis tools.

– make use of the recent progress of the SCA [4], where SCA is extended from
natural numbers to integers, and deals only with natural numbers.

Our paper fills in all these left open gaps. Moreover, our paper clearly goes
beyond the issues discussed in [18] by unifying much of the previous work on
termination and bound analysis, e.g., see our comparison to Terminator in
Section 8.2, SPEED in Section 8.6 etc.

While we find it quite intuitive that SCA as well as our more general approach
are instances of TPA, we are concerned with a different issue in this paper. We
argue that precisely because of its limited expressiveness SCA is suitable for
bound analysis: abstracted programs are simple enough that we can compute
bounds for them. We have shown that imperative programs are amenable to
bound analysis by SCA using appropriate program transformations, whereas [18]
is not concerned with practical issues.

8.2 Termination Analysis by Terminator

The Terminator tool [8] is an automatic termination analyzer of imperative
programs, which uses TPA [28] for constructing a Ramsey based termination
argument [27].

Our approach and Terminator share the idea of extracting progress mea-
sures locally (norms resp. local ranking functions) and composing them for a
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global analysis (bound resp. termination proof). Because of its non-constructive
nature, the Ramsey based termination argument underlying Terminator can-
not be used for extracting a global ranking function out of the termination proof.
In contrast, we use SCA for the first time to compose global bounds from bounds
on norms. Earlier work on SCA [4] already has shown how to compute global
ranking functions from norms.

In order to apply the Ramsey based termination argument, Terminator

needs to analyze the transitive hull of programs. This analysis is the most ex-
pensive step in the analysis of Terminator and has to be repeated many times.
In contrast, we abstract programs first and then analyze only the transitive hull
of the abstract program. This has huge benefits for the speed of the analysis
(further discussed in Section 8.3).

TPA can lose precision in every step of the analysis. In contrast, our path-
wise analysis follows the structure of programs and loses precision only at well-
defined places. Our analysis handles paths precisely by conjoining the formulae
of the statements along the path (using all theories that can be handled by SMT
solvers) and loses precision only when summarizing loops. However, we handle
loops precisely w.r.t. their monotonic behavior of norms: SCA is closed under
taking transitive hulls because of the built-in disjunctiveness of SCA and the
transitivity of the order relations, transitive hulls can be computed effectively.

Terminator is built on top of a full-fledged software model checker, which
implements a complicated CEGAR loop in order to extract predicates and local
ranking functions from programs. In contrast, our simple and lightweight static
analysis relies only on an SMT solver, our set of transition predicates is fixed in
advance (the monotonicity predicates of SCA) and our set of norms is extracted
from the program at the beginning of the analysis. It is an interesting direction
of future work to investigate how to combine these approaches, e.g., by using
coarse abstractions for filtering the “easy cases” and refining the precision for
handling the “hard cases”.

8.3 Termination Analysis by Loopfrog

[22,30] observe that TPA-based approaches such as Terminator [8] spend al-
most all time in analyzing the transitive hulls of programs, i.e., the expensive
step is proving P |+l ⊆

⋃

T for transition sets T . Therefore [22,30] take a different
approach and give algorithms that search for a transitive transition system T
for P |l. A transition set T is transitive, if

⋃

T 2 ⊆
⋃

T . A transitive transition
system T for P |l already implies P |+l ⊆

⋃

T + ⊆
⋃

T by the transitivity of T .
This has the advantage that the expensive direct proof of P |+l ⊆

⋃

T is avoided.
The first version of Loopfrog [22] implements an algorithm that constructs

such transitive transition systems iteratively. In every step Loopfrog adds tran-
sition relations to a candidate transition set T . We argue that the effectiveness
of such an iterative algorithm is limited, and that what the authors of [22] really
want is SCA!

Note that a transitive transition system T for P |l that is precise enough to
prove the termination of P is an overapproximation of P that still terminates.
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Let us consider an example transition set T = {ρ1, ρ2} with ρ1 = x > 0∧x > x′

and ρ2 = y > 0∧y > y′. T does not terminate because ρ1 can increase the value
of y arbitrarily and ρ2 can increase the value of x arbitrarily. Let us assume
that the analyzed program P nevertheless terminates because the variable x can
only be decreased when y stays constant. Let us further assume that Loopfrog
has added ρ1 to T in the first step and ρ2 in the second step of its iteration.
Loopfrog could have added the information about x in the first step by setting
ρ1 = x > 0 ∧ x > x′ ∧ y = y′, but not in the second step. Note that once the
candidate transition set T does not terminate, it cannot be repaired by adding
transition relations. Note further that in later steps the loss of information of
earlier steps cannot be repaired as we have seen on the above example. Thus, we
conclude that a candidate transition set T has to be constructed in one single
step. This is exactly what we do in our analysis. We first compute transition
system for programs, and then size-change abstract the transition relations for
our bound analysis. Alternatively, these abstracted transition relations could be
analyzed for termination by a transitive hull computation using the termination
criterion of SCA [4]. This transitive hull then provides exactly the transitive
transition system T for P |l. From this we conclude that what the authors of [22]
really want is SCA!

The second version of Loopfrog [30] uses relational loop summarization (see
also the next subsection). For this summarization [30] uses template invariants.
Only one of these templates contains disjunction (two disjuncts). [30] states that
these templates are inspired by the more general size-change abstract domain.
We show in this paper how to employ the full SCA domain by using pathwise
analysis for exploiting the looping structure of imperative programs. This allows
us to use the full disjunctive power of SCA. [30] is only concerned with termina-
tion analysis, whereas we show how to use SCA for the more difficult problem
of bound analysis.

8.4 Loop Summarization

Loop summarization as in Algorithm 1 is being recognized as important tool in
program analysis, for example [21] summarizes loops by overapproximations of
the reachable states for automatic proofs of safety properties. Relational summa-
rizations of loops have for the first time been used in the bound analysis of [17].
The termination analysis [30], which is an extension of [21], also uses relational
summaries of loops.

Loop summarization is closely related to procedure summarization, e.g. [16].

8.5 Disjunctive Abstract Domains

The papers [17,5] on bound and termination analysis use abstract interpreta-
tion for computing disjunctive transition invariants. Both papers suggest lifting
a conjunctive abstract domain D to the powerset domain 2D, and refer to the
standard octagon / polyhedra domains as instantiations of D in their implemen-
tation sections.
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However, lifting the octagon / polyhedra domain to the powerset domain is
difficult because it requires an adequate lifting of the join operator: Set union
is the precise join operator of both powerset lattices, but every set union may
increase the number of the base elements of the powerset elements. Note that
both powerset lattices have infinite width. Thus using set union as join operator
does not guarantee the termination of the analysis. A standard way of ensuring
the finiteness of the analysis is by limiting the number of base elements of a
powerset element, such that every time the number of base elements of a powerset
element is over the limit some base elements are merged.

[17] states an algorithm for lifting the join operator to the powerset domain
based on an assumption resembling convex theories that uses the same syn-
tactic merging function in every step of the fixed point computation. However,
[17] proposes to choose the merging function heuristically or to try all merging
functions for a small number of disjuncts and take the best result. [5] remains
vague: “For our present empirical evaluation we use an extraction method after
the fixed-point analysis has been performed in order to find disjunctive invari-
ance/variance assertions.”.

In contrast, SCA is a finite powerset domain that naturally handles disjunc-
tion: SCA has finite width, therefore we never have to merge abstract elements
and can handle disjunction precisely. This releases us from relying on compli-
cated merging algorithms as [17,5]. SCA has finite height, therefore we do not
need widening to compute fixed points (e.g. transitive hulls). This releases us
from lifting the widening operator of conjunctive domains (e.g. octagon, poly-
hedra) to powerset domains.

8.6 Bound Analysis by the SPEED project

In earlier work [17] we have stated proof rules for computing global bounds
from local bounds of transitions. Ad hoc proof rules as in [17] often give rise
to efficient analyses, but do not establish a general theory. This is unsatisfying
because such a theory is crucial for investigating the completeness of the analysis
and the applicability to related problems or other programming paradigms. In
this paper we have identified SCA as a suitable abstraction for bound analysis.
SCA provides the theory that we have been looking for, because all the proof
rules of [17] are instantiations of our more general bound algorithm.

In [17] we stated a so-called enabledness check that detects non-interference
between transitions, which can be used in the composition of the global bound.
Unfortunately, this check is flawed when more than two transitions are consid-
ered. Our program transformation contextualization can soundly detect non-
interference when an arbitrary number of transitions is considered.

[14] proposes to use program transformation before performing bound anal-
ysis. The program transformation stated in [14] is parameterized by an abstract
domain, which is used simultaneously with the actual transformation algorithm
to detect the infeasibility of certain paths. However, [14] is vague about what ab-
stract domains should be used, and the actual transformation algorithm is quite
involved. In contrast, we propose two simple program transformations that are
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easy to implement. Our program transformations only rely on SMT solver calls
and do not require additional abstract domains.

8.7 Size-change Abstraction

Despite its success in functional/declarative languages, e.g. [25], [20], SCA [24,4]
has not yet been applied to imperative programs. We describe the two main ob-
stacles in the application of SCA to imperative programs and how we solve them:
(1) In functional / declarative languages, algorithms typically operate on alge-
braic data structures where constructs and destructs happen in single steps. Due
to this succinctness, SCA achieves sufficient precision on small program blocks.
In imperative programs loops can have many intermediate stages and oftentimes
only the program state at the loop header can be considered as “clean”. There-
fore the abstraction of small program blocks to size-change relations loses too
much precision. (This issue is well-known in the field of invariant computation.)
We solve this issue by our pathwise analysis, which has the effect that large
pieces of code that lie between the “clean” program locations are abstracted
jointly. (2) The intended use of the SCA variables is as local progress measures
of the program. In functional/declarative languages there is a natural set of such
local progress measures such as the size of a data type, the height of a tree, the
length of a list, or any arithmetic expression built up from those. In imperative
programs, it is less clear what the shape of this local progress measures is and
how they can be automatically extracted from programs. We give a solution to
this problem by extracting norms from the conditions of complete loop paths
(as described in our heuristics).

8.8 Other Approaches

A series of works describes a type-based potential-method of amortized analysis
for the estimation of resource usage in first-order functional programs, which re-
duces the problem to linear constraint solving. Recent enhancement includes the
extension to multivariate polynomial bounds [2] and higher-order programs [19].

The embedded and real-time systems community has taken considerable ef-
fort on worst case execution time (WCET) estimation [31]. WCET presents an
orthogonal line of research, which for establishing loop bounds either requires
user annotations or employs simple techniques based on pattern matching and
numerical analysis. We report on a WCET benchmark in our experiments.

9 Experiments

Our tool Loopus applies the methods of this paper to obtain upper bounds on
loop iterations. The tool employs the LLVM compiler framework and performs
its analysis on the LLVM intermediate representation [23]. We are using ideal
integers in our analysis instead of exact machine representation (bitvectors).
Our analysis operates on the SSA variables generated by the mem2reg pass and
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handles memory references using optimistic assumptions. For logical reasoning
we use the yices SMT solver [9]. Our experiments were performed on an Intel
Xeon CPU (4 cores with 2.33 GHz) with 16 GB Ram.

The Mälardalen benchmark is used in the area of worst case execution time
analysis for the comparison and evaluation of methods and tools. It contains 7497
lines of code and 262 loops. In less than 35 seconds total time, we computed a
bound for 93% of the loops. On the loops with more than one path (in the
following called non-trivial loops) we had a success ratio of 72% (42 of 58 loops).
The failure cases had the following reasons: (1) unimplemented modeling of
memory updates [2 loops] (2) arithmetic instructions that cannot be handled by
yices [4 loops] (3) insufficient invariant analysis [4 loops] (4) quantified invariants
on array contents needed [6 loops in 2 programs].

The cBench benchmark was collected for research on program and compiler
optimization. After removing code-duplicates it contains 1027 C source code
files, 211.892 lines of code and a total number of 4302 loops. For 4090 loops our
tool answered within a 1000 seconds timeout (3923 loops in less than 4 seconds).
On 71 loops our tool exceeded the 1000 seconds timeout and 141 loops could
not be analyzed because our current tool does not handle irreducible CFGs.

Our tool computed a bound for 75% of the 4090 analyzed loops in the cBench
benchmark. On the non-trivial loops bound computation was successful in 65%
of the cases (1181 of 1902 loops). For the class of inner loops (e.g. program
location l2 in Example 1) we were able to compute a bound for 65% (830 of
1345) of the loops. This class of loops is especially interesting for evaluating the
precision of the automatically computed bounds in the presence of outer loops.
A manual sample of around 100 loops in this class showed that the bounds by
our tool were precise.

We evaluated our transitive hull algorithm on the class of loops for which
an inner loop had to be summarized in order to compute an iteration bound.
The bound computation was successful in 56% of these cases (578 of 1102). The
relatively low success ratio of 56% is caused by limits of our implementation of
the transitive hull algorithm that currently does not support invariants involving
values of memory locations.

In 992 of the total 1017 failure cases we failed to compute a bound because we
could not find a local ranking function that proves the termination of a single
transition. Recall that such local ranking functions are used as norms in our
bound analysis. A manual analysis revealed that the reasons for failure were: (1)
missing implementation features like pointer calculations and memory updates
(2) insufficient invariant analysis (3) some loops were not meant to terminate,
e.g. input loops (4) complex invariants like quantified invariants on the content of
arrays needed. None of these reasons reveals a general limitation of our method.
All but reason (4) can be solved by systematic engineering work. In the 25
remaining cases our tool computed a bound for each transition but was not able
to compose an overall bound.
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A Comparison between Blockwise and Pathwise SCA
Analysis

Classical papers on termination analysis with SCA [24,3] do not discuss how
one can obtain abstract programs. However, these papers assume that abstract
programs are given as CFGs whose edges are labeled by SCRs. Therefore it
is fair to say that classical SCA uses blockwise analysis. We sketch how this
abstraction strategy differs from our approach: Classical SCA abstracts program
in one step, and then analyzes the abstracted programs by a single transitive hull
computation. In contrast, our pathwise analysis abstracts programs in multiple
steps and computes transitive hulls at multiple times during the analysis. Our
approach is a generalization of classical SCA and strictly more precise.

We illustrate the difference between our pathwise analysis and classical SCA
in the following. Let P be the program in Example 1. As described in Section B.1
we obtain the transition system TransSys(P, l1) = {n − i − 1 > 0 ∧ n′ − i′ <

n− i∧j′ > 0, n− i > 0∧n′− i′ = n− i−1∧j′ = 0} for P |l1 by pathwise analysis.
Note that TransSys(P, l1) establishes that the variable i increases at every loop
iteration and that i < n is an invariant at l1. TransSys(P, l1) is precise enough
so that our Algorithm 2 can further size-change abstract it and compute a bound
from the abstraction.

The blockwise analysis in classical SCA begins with abstracting P . Because
of the inner loop at location l2 of program P , each transition ρ1, ρ2, ρ3, ρ4 consti-
tutes a program block and needs to be abstracted separately. We get the SCRs
α(ρ1) = n− i > 0∧n′− i′ < n− i∧j′ ≥ 0, α(ρ2) = n− i > 0∧n′− i′ < n− i∧j <

j′, α(ρ3) = j > 0∧n′− i′ > n− i, α(ρ4) = j ≤ 0∧n′− i′ = n− i. The termination
analysis with classical SCA computes the transitive hull of these SCRs along the
control flow edges of program P . In particular classical SCA computes the SCR

α(ρ1)◦α(ρ2)◦α(ρ3) = n− i > 0∧ j′ > 0 for the path l1
ρ1

−→ l2
ρ2

−→ l2
ρ3

−→ l1. Note
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that classical SCA cannot establish that n − i increases every time this path is
taken (the concatenation of n′− i′ < n− i and n′− i′ > n− i in α(ρ2) and α(ρ3)
loses all information on n− i) and therefore cannot prove the termination of P .

B Examples

B.1 Example application of Algorithm 1

Let P be the program of Example 1. We want to compute the transition system
for P |l1 and hence call TransSys(P, l1). In the first foreach-loop Algorithm 1

calls itself recursively on the nested loop loop = ({l2}, {l2
ρ2

−→ l2}) with header l2.
In the recursive call Algorithm 1 skips the first foreach-loop because (loop, l2)
does not have nested loops. The second foreach-loop iterates over all cycle-

free paths of paths(loop, l2). There is only one such a path π = l2
ρ2

−→ l2.
Algorithm 1 computes Tπ = {i < n ∧ i′ = i + 1 ∧ j′ = j + 1 ∧ n′ = n} and
returns Tπ as the transition system TransSys(loop, l2). After the return of the
recursive call T = TransSys(loop, l2) Algorithm 1 size-change abstracts T by
α(T ) = {n−i > 0∧n′−i′ < n−i∧j < j′}, computes the reflexive transitive hull in
the abstract α(T )∗ = {n′ − i′ = n− i∧j′ = j, n− i > 0∧n′ − i′ < n− i∧j′ > j}
and stores γ(α(T )∗) in summary[l2]. As there is no other nested loop the first
foreach-loop is finished. The second foreach-loop iterates over all cycle-free
paths of paths(P, l1). There are two such paths π1, π2 as explained in Section 2.
Algorithm 1 computes Tπ1

= {ρ1} ◦ summary[l2] ◦ {ρ3} = {n − i > 0 ∧ i1 =
i + 1 ∧ j1 = 0 ∧ n′ − i′ = n − i ∧ j′ = j1 ∧ j′ > 0, i1 = i + 1 ∧ j1 = 0 ∧ n− i1 >

0∧n′−i′ < n−i∧j′ > j1∧j′ > 0} = {false, n−i−1 > 0∧n′ − i′ < n− i∧j′ > 0},
Tπ2

= {ρ1} ◦ summary[l2] ◦ {ρ4} = {n − i > 0 ∧ i1 = i + 1 ∧ j1 = 0 ∧ n′ − i′ =
n− i1 ∧ j′ = j1 ∧ j′ = 0, i1 = i+ 1 ∧ j1 = 0 ∧ n− i1 > 0∧ n′ − i′ > n− i1 ∧ j′ >

j1 ∧ j′ = 0} = {n − i > 0 ∧ n′ − i′ = n − i − 1 ∧ j′ = 0, false} and returns
Tπ1

∪Tπ2
= {n−i−1 > 0∧n′−i′ < n−i∧j′ > 0, n−i > 0∧n′−i′ = n−i−1∧j′ = 0}

as transition system for P |l1 .

B.2 Example application of Algorithm 2

The CFG in Figure 2 has 5 SCCs: (l1), (l2), (l3), (l4), (l5, l6). Algorithm 3
computes the following bounds on these SCCs: bl1 = max(255 − s, 0), bl2 =
max(s, 0), bl3 = 1, bl4 = 1, bl5,l6 = l = log c. Algorithm 2 composes these
bounds as follows: max(u(bl1), u(bl2)) + max(u(bl3), u(bl4)) + u(bl5,l6), where u

denotes an upper bound on the value of the given expression computed by an
invariant analysis. Assuming that the invariant analysis provides u(bl1) = 255,
u(bl2) = s, u(bl3) = 1, u(bl4) = 1 and u(bl5,l6) = 2, we obtain the precise bound
max(255, s) + 3.

B.3 Flagship Example of [14]

In this subsection we apply our analysis to the flagship example of a recent
publication [14] on the bound problem (Example 4 below). On this example
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the authors of [14] motivate control-flow refinement for bound analysis. Their
algorithm relies on a sophisticated interplay between control-flow refinement and
abstract interpretation. We show that our simpler technique can also handle the
example.

Example 4. void cyclic(int id, int maxId) {

assume(0 <= id <= maxId);

int tmp := id+1;

while(tmp !=id && nondet()){

if (tmp <= maxId) tmp := tmp + 1;

else tmp := 0; } }

We assume an invariant analysis (e.g. octagon analysis) provides the invariant
0 ≤ id ≤ maxid ∧ tmp ≥ 0 at the header of the while-loop. The while-loop
has four paths because we consider the inequality tmp != id as the disjunction
tmp < id∨tmp > id . Algorithm 1 gives us the transition system T = {ρ1, ρ2, ρ3}
(there is no fourth transition because 0 ≤ id ≤ maxid ∧ tmp < id ∧ tmp > maxid
is unsatisfiable), where

ρ1 ≡ 0 ≤ id ≤ maxid ∧ id < tmp ≤ maxid ∧ tmp′ = tmp + 1,

ρ2 ≡ 0 ≤ id ≤ maxid ∧ tmp > maxid ∧ tmp′ = 0,

ρ3 ≡ 0 ≤ id ≤ maxid ∧ 0 ≤ tmp < id ∧ tmp′ = tmp + 1.

l1 l2 l3

ρ1

ρ1 ρ2

ρ3

Fig. 4. Contextualization of Example 4

Contextualization gives us the CFG depicted in Figure 4, which precisely
reflects the different phases of the loop.

The control flow graph given in Figure 4 has 3 SCCs: (l1), (l2), (l3). Algo-
rithm 3 computes the following bounds on these SCCs: bl1 = max(maxId −
tmp, 0), bl2 = 1 and bl3 = max(id− tmp, 0). Algorithm 2 composes these bounds
as follows: u(bl1) + u(bl2) + u(bl3), where u denotes an upper bound on the
value of the given expression. Assuming that the invariant analysis provides
u(bl1) = maxId − id, u(bl2) = 1, u(bl3) = id, we obtain the precise bound
maxId+ 1.

C Proof of Theorem 2

We prove a stronger statement than the one stated in Theorem 2: for every pro-
gram P = (L,E) and location l ∈ L it holds that TransSys(P, l) is a transition
system for P |l and that for every inner loop loop of P w.r.t. l with header header
the transition set summary[header ] is a transition invariant for loop|header (*).
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The stronger statement has the advantage to be inductive, whereas the state-
ment of Theorem 2 is not. Our proof of (*) proceeds by induction on the loop
nesting structure of programs.

Let P = (L,E) be a program and l ∈ L be some location. In the base

case, there are no inner loops of P w.r.t. l. Let π = l
ρ0

−→ l1
ρ1

−→ · · · lk
ρk−→ l ∈

paths(P, l) be a path with start and end location l. Because P does not have
inner loops w.r.t. l, π is cycle free. Thus, no location li is the header of an inner
loop. Therefore we have ITE(IsHeader(li), summary[li], {Id}) = {Id} for all i.
Hence,

{rel(π)} = {ρ0 ◦ ρ1 ◦ ρ2 ◦ · · · ◦ ρk}

= {ρ0} ◦ {Id} ◦ {ρ1} ◦ {Id} ◦ {ρ2} ◦ · · · ◦ {Id} ◦ {ρk}

= {ρ0} ◦ ITE(IsHeader(l1), summary[l1], {Id})◦

{ρ1} ◦ ITE(IsHeader(l2), summary[l2], {Id}) ◦ {ρ2} ◦ · · · ◦

ITE(IsHeader(lk), summary[lk], {Id}) ◦ {ρk}

Therefore,

⋃

TransSys(P, l) =
⋃

cycle-free path π∈paths(P,l)

rel(π)

=
⋃

π∈paths(P,l)

rel(π) = P |l

.
Thus TransSys(P, l) is a transition system for P |l.

In the inductive case, there are nested loops of P w.r.t. l. Let loop be a nested
loop of P w.r.t. l and let header be its header.

We show that summary[header ] is a transition invariant for loop|header . By the
induction hypothesis we have that T = TransSys(loop, header ) is a transition
system for loop|header . Because T is a transition system for loop|header , we have
that γ(α(T )∗) is a transition invariant for loop|header by the soundness of SCA
as stated in Theorem 1. With hull := γ(α(T )∗) and summary[header ] := hull ,
summary[header ] is a transition invariant for loop|header .

By the induction hypothesis we further have that for all inner loops loop′ of
loop w.r.t header with header header ′ the transition set summary[header ′] is a
transition invariant for loop ′|header ′ .

Thus we have that for every inner loop loop of P w.r.t. l with header header
the transition set summary[header ] is a transition invariant for loop|header .

It remains to show that TransSys(P, l) is a transition system for P |l. It
suffices to show that we have rel(π) ⊆

⋃

TransSys(P, l) for every path π ∈

paths(P, l). Let π = l
ρ0

−→ l1
ρ1

−→ · · · lk
ρk−→ l ∈ paths(P, l) be a path of P with

start and end location l. In the following we iteratively remove iterations through
inner loops from π to obtain a cycle-free path. Let i1 be the first index such that
li1 appears multiple times in π. Let loop1 be the innermost loop of P w.r.t. l
that contains li1 . Because P w.r.t. l is reducible, there is a unique loop header
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header of loop1. Because header is a dominator for li1 every path from l to li1
must visit header before. Because loop1 is the innermost loop that contains li1 ,
every path of P that starts and ends in li1 must visit header . Therefore π also
visits header multiple times. As li1 is the first location visited multiple times
we must have li1 = header . Let j1 be the last index such that lj1 = li1 . We

denote by q1 = π[i1, j1] = li1
ρi1−−→ li1+1

ρi1
+1

−−−−→ · · · lj1−1
ρj1−−→ lj1 the subpath of π

from index i1 to index j1. We have that qj ∈ paths(loop1, li1) is some iteration
through the inner loop loop1 with header li1 . Let π1 be the result of deleting
the subpath from index i1 + 1 to index j1 of π. π1 is a path because li1 = lj1 .
Note that π1 does not contain li1 multiple times any more, but does contain li1
exactly once. We iterate this approach to derive indices i2, j2, i3, j3, . . . , im, jm
and paths q2, π2, q3, π3, . . . , qm, πm until πm does not contain a location that
appears multiple times. By induction assumption we have that summary[lij ] is a
transition invariant for loopj |lij for all 1 ≤ j ≤ m. Thus rel(qj) ⊆ loopj |

∗
lij

⊆
⋃

summary[lij ] for all 1 ≤ j ≤ m. This gives us

rel(π) = ρ0 ◦ ρ1 ◦ · · · ◦ ρk

= ρ0 ◦ ρ1 ◦ · · · ◦ ρi1−1 ◦ ρi1 ◦ · · · ◦ ρj1 ◦ ρj1+1 ◦ · · ·

◦ ρim−1 ◦ ρim ◦ · · · ◦ ρjm ◦ ρjm+1 ◦ · · · ◦ ρk

= ρ0 ◦ ρ1 ◦ · · · ◦ ρi1−1 ◦ rel(q1) ◦ ρj1+1 ◦ · · ·

◦ ρim−1 ◦ rel(qm) ◦ ρjm+1 ◦ · · · ◦ ρk

⊆
⋃

({ρ0} ◦ {ρ1} ◦ · · · ◦ {ρi1−1} ◦ summary[li1 ] ◦ {ρj1+1} ◦ · · ·

◦ {ρim−1} ◦ summary[lim ] ◦ {ρjm+1} ◦ · · · ◦ {ρk})

=
⋃

({ρ0} ◦ ITE(IsHeader(l1), summary[l1], {Id}) ◦ {ρ1}

◦ ITE(IsHeader(l2), summary[l2], {Id}) ◦ {ρ2} ◦ · · ·

◦ ITE(IsHeader(lk), summary[lk], {Id}) ◦ {ρk})

=
⋃

TransSys(P, l).

This concludes the proof of (*).
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