Modular Verification of Security Protocol Code by
Typing

Karthikeyan Bhargavan Cédric Fournet

Andrew D. Gordon
Draft of December 2010

Technical Report

Microsoft Research
Roger Needham Building
7 J.J. Thomson Avenue
Cambridge, CB3 OFB
United Kingdom

Publication History

An abridged version of this paper appears in the proceedings of
the 37th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, held in Madrid, Spain, on January 20-
22,2010.

Contents
1 Introduction 1
2 RCF, the Formal Foundation for F7 (Review) 3
3 Invariants for Authenticated RPCs (Example) 4
3.1 Informal Description 4
3.2 Adding Events and Assertions 4
3.3 Implementing the RPC Protocol 5
3.4 Modelling the Opponent 5
3.5 Refinement-Typed Interface for MACs 6
3.6 Logical Invariants for the RPC Protocol 6
3.7 Refinement Types for the RPC Protocol 7
4 Semantic Safety by Modular Typing 7
4.1 Syntactic Safety by Typing (Review) 7
4.2 Inductive Definitions and Semantic Safety by Typing 7
4.3 A Simple Formalization of Modules 8
44 RefinedModules 8
4.5 Composition of Refined Modules 9
4.6 Safety and Robust Safety by Typing for Modules 9
5 Library Modules for Cryptographic Protocols 10
5.1 KeyManagement 10
5.2 Authenticated Encryption 11
5.3 Hybridencryption. 11
54 DerivedKeys 12
5.5 Endorsing Signatures 12
5.6 Example: The Otway-Rees Protocol 12
5.7 Example: Secure Conversations 12
6 Case Study: Windows CardSpace 13
7 Performance Evaluation 14
8 Related Work 15
9 Conclusions 16
A The Core Library (Lib) 16
A.1 Strings and Byte Arrays 16
A.2 CryptographicKeys 17
A.3 Encodings: Strings, Unicode, and Base64 17
A4 Concatenation 18
AS5 FreshBytes 18
A6 Nonces 19
A.7 Message Authentication Codes (MACs) 19
A.8 Network Operations 20
A9 Proofsof Lemmas6and7 20
B The Library Principals 21
B.1 Public and Private Key Pairs 21
B2 MACKeys 22
B.3 Symmetric Encryption Keys 22
C Refined Concurrent FPC (RCF) 22
C.1 Authorization Logics 22
C.2 Expressions, Evaluation, and Safety 23

C.3 A Type System for Safety 24

Modular Verification of Security Protocol Code by Typing

Karthikeyan Bhargavan

Cédric Fournet

Andrew D. Gordon

Microsoft Research

Abstract

We propose a method for verifying the security of protocol imple-
mentations. Our method is based on declaring and enforcing in-
variants on the usage of cryptography. We develop cryptographic
libraries that embed a logic model of their cryptographic structures
and that specify preconditions and postconditions on their functions
S0 as to maintain their invariants. We present a theory to justify the
soundness of modular code verification via our method.

‘We implement the method for protocols coded in F# and verified
using F7, our SMT-based typechecker for refinement types, that
is, types carrying formulas to record invariants. As illustrated by a
series of programming examples, our method can flexibly deal with
arange of different cryptographic constructions and protocols.

We evaluate the method on a series of larger case studies of
protocol code, previously checked using whole-program analyses
based on ProVerif, a leading verifier for cryptographic protocols.
Our results indicate that compositional verification by typecheck-
ing with refinement types is more scalable than the best domain-
specific analysis currently available for cryptographic code.

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Specification techniques.

General Terms Security, Design, Languages.

1. Introduction

Verifying the Code of Cryptographic Protocols The problem of
vulnerabilities in security protocol code is remarkably resistant to
the success of formal methods. Consider, for example, the vulnera-
bility in the public-key protocol of Needham and Schroeder (1978),
first discovered by Lowe (1996) in his seminal paper on model-
checking security protocols. This is the staple example of count-
less talks and papers on tools for analyzing security protocols. It
is hence well known in the formal methods research community,
and many tools can now discover it. In spite of these talks, papers,
and tools, Cervesato et al. (2008) discovered that the IETF issued a
public-key variant of Kerberos, shipped by multiple vendors, con-
taining essentially the same vulnerability.

What to do? Our position is that formal tools are more likely to
find such problems if they run directly on security protocol code.
Most current tools require a model described in some formalism,
such as a process algebra or a modal logic, but designers of new
or revised protocols are resistant to writing such models. They are
more concerned with functional properties like interoperability and
so typically the first (and only) formal descriptions of protocol
behaviour are the implementation code itself. Another reason to
analyze code rather than models arises from gaps between the two:
even if a model is verified, the corresponding code may deviate,
and contain vulnerabilities absent from the model.

Several recent projects tackle the problem of verifying security
protocol code. The pioneers are Goubault-Larrecq and Parrennes
(2005) who use a tool to analyze C code (written in their group) for
the Needham-Schroeder public key protocol. Another early tool is

CardSpace > Windows
/\ CardSpace
Web Servic
WS-Trust Secure XML RPC Seecun'ty’wces
i Protocols
WSs-Security Web Services
Messaging &
‘ XML-Signature | | XML-Encryption ‘ WS-Addressing Security
‘ Crypto Patterns j Principals ‘ SOAP Generic
G Protocol
Crypto Db Xml Net

N‘/ Trusted
Libraries

Data

Figure 1. Modules for the Windows CardSpace Implementation

Fs2pv (Bhargavan et al. 2008c), which compiles implementation
code in F# into the applied pi calculus, for analysis with ProVerif
(Blanchet 2001), a state-of-the-art domain-specific prover. In terms
of lines of code analyzed, the combination of FS2PV and ProVerif
is probably by now the leading tool chain for security protocol
code. Several substantial case studies have yielded F# reference im-
plementations that interoperate with existing implementations and
are verified with FS2Pv and ProVerif; these case studies include
WS-Security (Bhargavan et al. 2006), CardSpace (Bhargavan et al.
2008b), and TLS (Bhargavan et al. 2008a).

Towards Modular Verification 1t is challenging to verify security
properties by compositional analysis. In particular, for systems in-
volving cryptographic communication protocols, realistic attacker
models tend to break modularity and abstraction: the attacker may
interact at different layers in the protocol stack, for instance by
injecting low-level network messages and controlling high-level
actions at the application layer. Moreover, the attacker may com-
promise parts of the system, for instance gaining access to some
cryptographic keys, and we are especially interested in the security
properties that still hold in such situations. Accordingly, all pro-
tocol verification tools to date rely on high-complexity algorithms
that operate on a complete description of the protocol.

The figure above presents the structure of our CardSpace imple-
mentation (our main case study), with one box for each F# module.
Intuitively, the security properties for these modules are largely in-
dependent. Still, the earlier verification using FS2PV ignores this
programming structure and passes a single, giant, untyped pi pro-
cess to ProVerif. On the one hand, ProVerif scales surprisingly well:
it often succeeds on input files orders of magnitude longer than the
examples in its test suite. On the other, its whole-program analy-
sis has long run times on large case studies such as CardSpace and
TLS. Analysis may take hours, or diverge, and small changes in
input files have unpredictable effects on run time.

2010/12/9

In this paper, we aim for a modular and scalable technique that
avoids whole-program analysis. We develop a new methodology,
based on logical invariants for the cryptographic structures arising
in security protocols. We show how to implement this methodology
by typechecking with refinement types, and make several improve-
ments to the existing typechecker F7 (Bengtson et al. 2008).

By proposing a new pattern of using F7 we intend that this paper
may vindicate the promise of our initial work on refinement types
for secure implementations, and establish that F7 supports scalable
and flexible verification. It is flexible because we can formalize
as wide a range of cryptographic operations as in FS2pv, for
example. It is scalable because the time consuming part of analysis,
automated theorem proving, is done compositionally by repeatedly
calling an external solver on relatively small logical problems.

Our Method: Invariants for Cryptographic Structures As in the
standard method originated by Dolev and Yao (1983), we model
cryptographic structures as elements of a symbolic algebra. As in
other logical approaches (for example, Paulson 1998, Cohen 2000,
and Blanchet 2001), we rely on event predicates to record progress
through a protocol and on a public predicate to indicate whether
cryptographic structures are known to the adversary. For example,
abyte array x is known to the adversary only if the predicate Pub(x)
holds. For an example of an event predicate, consider the simple
protocol where a and b share a key k,p,, and a authenticates each
message sent to b by sending also its hash keyed with k,;,. Then the
event predicate Send(a,b,x) holds only if a has started the protocol
with the intention of sending message x to b.

The first key idea of our approach is to rely systematically on
predicates to define invariants on cryptographic structures. For ex-
ample, byte array x exists in a protocol run (whether or not it is
public) only if the predicate Bytes(x) holds. For another example, a
key k,, is shared between principals a and b for the purpose of run-
ning our example protocol only if the predicate KeyAB(kyp,a,b)
holds. Our definitions support deduction of useful properties of
these invariants. For instance, in the simple case when all prin-
cipals are uncompromised and comply with the protocol, our ex-
ample predicates have the property that Bytes(hash kg, x) and
KeyAB(kgp,a,b) imply that Send(a, b, x). This property captures the
intuition that, if we can exhibit a byte array x that has been hashed
with the key k.5, which is known only to the protocol-compliant
principals a and b, then it can only have been hashed by a, during
a run of the protocol in which a intends to send x to b.

The second key idea is to rely on pre- and post-conditions
on cryptographic algorithms to ensure that the actual code of a
security protocol maintains these invariants. In our example, the
precondition on applying the hash function to argument k,;, and x is
the formula KeyAB(k,y,,a,b) ASend(a,b,x), and as a postcondition,
we obtain Bytes(hash kg, x). As a consequence of the implication
stated above, we obtain Send(a,b,x) as a postcondition of hash
verification with a key satisfying KeyAB(kgp,a,b).

We develop our invariants as a collection of predicates defined
by axioms in first-order logic. The axioms form inductive defini-
tions of our predicates; during automated code verification we rely
on the axioms as well as additional formulas proved to hold in all
reachable states. We use first-order logic because it is supported by
a wide range of verification tools for a variety of languages.

Our theory is inspired by prior work on proving secrecy and
authentication by using domain-specific type systems (Abadi 1999;
Gordon and Jeffrey 2003a). Intuitively, the essence of these type
systems is a collection of inductive definitions that define invariants
preserved by computation. Our work can be understood, in part,
as an extraction of this essence as direct inductive definitions of
predicates, largely independent of the host language.

Scalable Verification by Typechecking with F7 We implement
and evaluate our method for F#, a dialect of ML. We use F# for

coding concrete implementations of protocols and libraries and also
for specifying their security. Although most of the code is used for
both purposes, some cryptographic libraries have dual implementa-
tions: one that performs concrete cryptographic computations, and
one that operates instead on their symbolic representations.

We rely on the F7 typechecker, which verifies F# programs
against types enhanced with logical refinements. A refinement type
is a base type qualified with a logical formula; the formula can
express invariants, preconditions, and postconditions. F7 relies on
type annotations, including refinements, provided in specific inter-
face files. While checking code, F7 generates many logical prob-
lems which it solves by submitting to Z3, an external theorem
prover for first-order logic (de Moura and Bjgrner 2008). Finally,
F7 erases all refinements and yields ordinary F# modules and inter-
faces.

Our original paper on F7 (Bengtson et al. 2008) reported the
underlying type theory, and a treatment of cryptography based on
refinement types, public and tainted kinds (Gordon and Jeffrey
2003b), and seals (Morris 1973; Sumii and Pierce 2007). It pro-
posed refinement types as a means for checking security properties
in general; one example showed how to enforce access control by
typing, others concerned a limited repertoire of cryptographic oper-
ations. The cryptographic library described in this paper is far more
expressive.

We adopt F7 as a basis for implementing our method; refine-
ment types are an excellent way to blend typechecking with verifi-
cation. Still, although effective, both the theory of kinds and the use
of seals necessarily depend on details of the host programming lan-
guage. (Kinds are predicates on the syntax of types, and seals are
A-abstractions, only available in certain languages.) Therefore, we
implement our new method, based on invariants for cryptographic
structures, using F7 without seals and without the theory of kinds.
(A detailed comparison of our method to the use of seals is outside
the scope of this paper, but it appears that our method can flexibly
model a wide range of cryptographic primitives, more so perhaps
than can directly be modelled with seals.)

Another reason to choose F# is to enable a direct compari-
son with FS2Pv and ProVerif, using previously-mentioned refer-
ence implementations for WS-Security and CardSpace. We develop
our new method for cryptographic libraries that extend those al-
ready supported by Fs2pv. Thus, we illustrate the flexibility of
our method, and we can experimentally measure its performance
versus ProVerif. Still, our method relies on user-supplied program
invariants (within refinement types), while ProVerif can infer in-
variants. The previous F7 theory based on kinds and seals relied on
a different cryptographic library, which did not allow a comparison
with FS2Pv code. To the best of our knowledge, the reference im-
plementations checked with FS2Pv and ProVerif are currently the
most sizeable body of verified code for security protocols. So im-
plementing our method for F# and the same libraries as used with
Fs2pv allows for a direct comparison against what is probably the
state of the art.

Although we worked through the details of our approach in
the setting of refinement types and F7, it is essentially language-
independent. Hence, it should adapt easily to other settings, such
as verification tools for imperative languages such as C.

Summary of Contributions

(1) A new modular method for verifying the code of security pro-
tocols, based on invariants for cryptographic structures.

(2) An implementation for the F# language by embedding invari-
ants as refinement types, verified by the F7 typechecker. Typing
relies on an external prover for logical entailments, and is com-
positional: the prover is called on a series of small problems.

2010/12/9

(3) A collection of well-typed refined modules for cryptographic
primitives and constructions, more expressive than in previous
work with F7.

(4) Experimental evidence that typechecking is faster and succeeds
on more protocol code than whole-program analysis with the
leading automatic prover ProVerif.

In the long run, we expect the most scalable techniques for
security protocol code to be those that can exploit progress in
tools for proving general-purpose logical invariants. This is the
specification style pioneered by Floyd, Hoare, and Dijkstra in the
1970s. Tools for enforcing and even inferring invariants in code are
likely to get better and better over time.

Structure of the Paper Section 2 reviews RCF. Section 3 intro-
duces our method of invariants for cryptographic structures and our
typed cryptographic library by studying a simple RPC protocol.
Section 4 provides a theory of refined modules to justify proofs of
security by typing implementation code. Section 5 gives some de-
tailed examples of refined modules for cryptography. Section 6 out-
lines our more substantial case studies. Section 7 evaluates the per-
formance of our implementation by comparison with a tool chain
based on whole-program analysis. Section 8 discusses related work
and Section 9 concludes.

Appendix A lists and explains the typed interface for our library
of cryptographic primitives. Appendix C recalls the formal defini-
tion of RCF, the theoretical foundation for F7.

Source code for our libraries and examples is available online at
http://research.microsoft.com/en-us/projects/
£7/.

2. RCF, the Formal Foundation for F7 (Review)

We begin with a review of the syntax and semantics of RCF (Bengt-
son et al. 2008), our core language for F#. RCF consists of the
standard Fixpoint Calculus (Gunter 1992; Plotkin 1985) augmented
with local names and message-passing concurrency (as in the pi
calculus) and with refinement types. Formally, we slightly simplify
the original calculus by omitting the use of public and tainted kinds.
For a detailed tutorial presentation of RCF, see Gordon and Fournet
(2009).

We state some syntactic conventions. Our phrases of syntax may
contain three kinds of identifier: type variables o, value variables x,
and names a. We identify phrases of syntax up to consistent renam-
ing of bound identifiers. We write y{¢ /1} for the capture-avoiding
substitution of the phrase ¢ for each free occurrence of identifier
in the phrase y. We say a phrase is closed to mean that it has no
free type or value variables (although it may contain free names).

Expressions and types of RCF contain formulas C to specify
intended properties. Specification formulas are written in first-order
logic with equality, with atomic formulas, p(My,...,M,), built
from a fixed set of predicate symbols p applied to RCF values.

Syntax of FOL/F Formulas:
I
Cu=pMy,....,My) | (M=M")| (M +#M')| False | True |

CAC' |[CVC [C=C | =C|CeC | VxC|3xC

(This is the logic FOL/F of Bengtson et al. 2008.)

We recall standard definitions for (untyped) first-order logic
with equality (see Paulson 2008 for example). An interpretation
& is a pair (D,I) where D is a set, the domain, and I is an op-
eration that maps function symbols to functions on D and predi-
cate symbols to relations on D. A valuation V is a function from
variables into D. An interpretation .# satisfies a closed formula C,
written |= C when, for all valuations V, we have |= ~ C, which
is defined by structural induction on C, following Tarski. A closed
formula C is valid if all interpretations satisfy the formula.

We are only concerned with RCF-interpretations, that is, in-
terpretations (D,I) where D is the set of closed phrases of RCF
and / maps each function symbol f of arity n to the function
My,..., My, — f(My,...,My), and maps the equality predicate to
syntactic equality. (The only function symbols in our formulas are
the syntactic constructors of RCF. In an RCF-interpretation (D, 1)
we fix the meaning of function symbols and equality, but allow the
meaning of predicates to vary.)

For a given proof system, we write Cy,...,C, = C when C can
be deduced from Cy, ..., C,. We say that the proof system is sound
when, for all formulas Cy, ..., C, and C with free variables xi, ...,
X, if Cy,...,Cy F C, then Vxj..... V. (Cy A< ANCy = C) is valid.
In the following, we rely on a standard, sound proof system for
first-order logic, as implemented by Z3.

Core Syntax of the Values and Expressions of RCF:
I

a,b,c name
h::=inl|inr| fold value constructor
M,N ::= value
X variable
0O unit
funx — A function (scope of x is A)
(M,N) pair
hM construction
AB:= expression
M value
MN application
M=N syntactic equality

letx=AinB
let (x,y) =M inA

let (scope of x is B)
pair split (scope of x, y is A)

match M with 4 x — A else B constructor match (scope of x is A)

(va)A restriction (scope of a is A)

AT B fork: parallel composition

alM transmission of M on channel a
a? receive message off channel
assume C assumption of formula C

assert C assertion of formula C
L 1

Much of RCF is standard functional notation. Expressions are in
the style of A-normal form; let-expressions are for sequencing and
not for polymorphism. In the style of the pi calculus, RCF includes
restriction (name generation), fork, and message transmission and
reception for communication and concurrency. Names range over
countable, pairwise-distinct constants, used to represent channels,
fresh values, and keys, for instance. RCF does not have names as
primitive values, but we encode them as functional values with free
names. For example, a as a pure name is coded as fun - —a?.

An expression context X is an expression with a hole ‘_’. We
write X[A] for the outcome of filling the hole with expression or
expression context A, where variables free in A may be bound by
binders in X. (We use expression contexts to represent modules.)

The expressions assume and assert have no observable effect at
run-time, and are used only to specify logic-based safety properties.
Execution of assume C limits attention to logical interpretations in
which C holds. Assumptions are used to state inductive definitions
or to record events, for example. Execution of assert C indicates
an error unless C holds in interpretations satisfying the previously
executed assumptions.

The type system of RCF is based on FPC, but with dependent
function and pair types, plus refinement types x : T{C}. The values
of this type are the values M of type T such that C{M /x} holds.

Core Syntax of Types of RCF:
I

T,U,V := type
unit unit type

2010/12/9

http://research.microsoft.com/en-us/projects/f7/
http://research.microsoft.com/en-us/projects/f7/

x:T—=U dependent function type (scope of x is U)
x:T+U dependent pair type (scope of x is U)
T+U disjoint sum type

rec .T iso-recursive type (scope of o is T')

a type variable (abstract or iso-recursive)
x:T{C} refinement type (scope of x is C)

As detailed by Bengtson et al. (2008), RCF supports standard
encodings of a wide range of F# programming constructs, including
let-polymorphism (eliminated by code duplication), mutable refer-
ences (channels), and algebraic types (recursive sums of product
types); it is closely related to the internal language of the F7 type-
checker. Our code examples rely on these encodings.

In addition, code written in RCF has access to a few pre-defined
trusted libraries, depicted at the bottom of Figure 1. The library
module Data defines standard datatypes such as strings, byte ar-
rays, lists, options, and provides functions for manipulating and
converting between values of these types; Crypto provides prim-
itive cryptographic operations; Db provides functions for storing
and retrieving values from a global, shared, secure database; Xml
provides functions and datatypes for manipulating XML docu-
ments; Net provides functions for establishing TCP connections
and exchanging messages over them. We write Lib for the com-
position of Data, Net, and Crypto, and LibX for the composition
of Lib, Db, and Xml. These libraries are trusted in the sense that
their concrete implementations are not verified. Instead, we define
idealized symbolic implementations, in the style of Dolev and Yao
(1983), for each of these five modules and show that they meet their

typed RCF interfaces.
Each judgment of the RCF type system is given relative to an
environment, E, which is a sequence Up,...,HU,, where each u;

may be a subtype assumption o, <: o, an abstract type o, or an
entry for a name a § T or a variable x : T. We write E - T to mean
that type T is well-formed in E, and E F ¢ to mean that E is well-
formed (which implies that all types in E are well-formed). The two
main judgments are subtyping, E = T <: U, and type assignment,
E A :T. The full rules for these judgments and the rest of RCF
are in Appendix C.

F7 checks type assignment, where the expression A is obtained
from an F# source file, and the type T is obtained from an F7-
specific interface file.

F7 relies on various type inference algorithms, and calls out to
Z3 to handle the logical goals that arise when checking refinements.
F7 adds the formula C to the current logical environment when
processing assume C, and conversely checks that formula C is
provable when processing assert C.

In Section 4 we discuss the operational semantics, safety prop-
erties, and theorems for proving safety by typing, but first we intro-
duce our new method by example.

3. Invariants for Authenticated RPCs (Example)

We consider a protocol intended to authenticate remote procedure
calls (RPC) over a TCP connection. We first informally discuss
the security of this protocol and identify a series of underlying
assumptions. We then explain how to formalize these assumptions,
and how to verify an implementation of the protocol.

3.1 Informal Description

We have a population of principals, ranged over by a and b. The
security goals of our RPC protocol are that (1) whenever a principal
b accepts a request message s from a, principal a has indeed sent
the message to b and, conversely, (2) whenever a accepts a response
message ¢ from b, principal b has indeed sent the message in
response to a matching request from a.

To this end, the protocol uses message authentication codes
(MACs) computed as keyed hashes, such that each symmetric
MAC key kg, is associated with (and known to) the pair of princi-
pals a and b. Our protocol may be informally described as follows.

An Authenticated RPC Protocol:

I

l.a—b: utf8s| (hmacshal kg, (request s))
2.b—a: utf8t| (hmacshal kg (response st))
|

In this protocol narration, each line indicates the communication
of data from one principal to another. This data is built using five
functions: utfS marshals the strings s and ¢ into byte arrays (the
message payloads); request and response build message digests
(the authenticated values); hmacshal computes keyed hashes of
these values (the MACs); and ‘|” concatenates the message parts.

We consider systems in which there are multiple concurrent
RPCs between any principals a and b of the population. The adver-
sary controls the network. Some keys may also become compro-
mised, that is, fall under the control of the adversary. Intuitively,
the security of the protocol depends on the following assumptions:

(1) The function hmacshal is cryptographically secure, so that
MAC:s cannot be forged without knowing their key.

(2) The principals a and b are not compromised—otherwise the
adversary may just use k,, to form MACs.

(3) The functions request and response are injective and their
ranges are disjoint—otherwise, an adversary may for instance
replace the first message payload with u#f8 s’ for some s' # s
such that request s' = request s and thus get s’ accepted instead
of s, or use a request MAC to fake a response message.

(4) The key k,, is a genuine MAC key shared between a and b, used
exclusively for building and checking MACs for requests from
a to b and responses from b to a—otherwise, for instance, if b
also uses k,;, for authenticating requests from b to a, it would
accept its own reflected messages as valid requests from a.

These assumptions can be precisely expressed (and verified) as
program invariants of the protocol implementation. Moreover, the
abstract specification of hmacshal, request, and response given
above should suffice to establish the protocol invariant, irrespective
of their implementation details.

3.2 Adding Events and Assertions

We use event predicates to record the main steps of each run of
the protocol, to record the association between keys and principals,
and to record principal compromise. To mark an event in code, we
assume a corresponding logical fact:

® Request(a,b,s) before a sends message 1;

® Response(a,b,s,t) before b sends message 2;

e KeyAB(k,a,b) before issuing a key k associated with a and b;
® Bad(a) before leaking any key associated with a.

We state each intended security goal in terms of these events, by
asserting that a logical formula always holds at a given location in
our code, in any system configuration, and despite the presence of
an active adversary. In our protocol, we assert:

® RecvRequest(a,b,s) after b accepts message 1;

® RecvResponse(a,b,s,t) after a accepts message 2;

where the predicates RecvRequest and RecvResponse are defined
by the two formulas:

Ya,b,s. RecvRequest(a,b,s) < (Request(a,b,s) V Bad(a) V Bad(b))

2010/12/9

Va,b,s,t. RecvResponse(a,b,s,t) <
(Request(a,b,s) N\ Response(a,b,s,t)) V Bad(a) V Bad(b)

The disjunctions above account for the potential compromise of ei-
ther of the two principals with access to the MAC key; the disjunc-
tions would not appear with a simpler (weaker) attacker model.

3.3 Implementing the RPC Protocol

We give below an implementation for the two roles of our protocol,
coded in F#. Except for protocol narrations, all the code displayed
in this paper is extracted from F7 interfaces and F# implementa-
tions that have been typechecked.

Code for the Authenticated RPC Protocol:
I

let mkKeyAB a b = let k = hmac_keygen() in assume (KeyAB(k,a,b)); k
let request s = concat (utf8(str "Request™")) (utf8 s)
let response s t = concat (utf8(str "Response™)) (concat (utf8 s) (utf8 t))

let client (a:str) (b:str) (k:keyab) (s:str) =
assume (Request(a,b,s));
let ¢ = Net.connect p in
let mac = hmacshal k (request s) in
Net.send c (concat (utf8 s) mac);
let (pload’ ,mac’) = iconcat (Net.recv c) in
let ¢ = iutf8 pload’ in
hmacshalVerify k (response s t) mac’;
assert(RecvResponse(a,b,s,t))

let server(a:str) (b:str) (k:keyab) : unit =
let ¢ = Net.listen p in
let (pload,mac) = iconcat (Net.recv ¢) in
let s = iutf8 pload in
hmacshalVerify k (request s) mac;
assert(RecvRequest(a,b,s));
let 7 = service s in
assume (Response(a,b,s,t));
let mac’ = hmacshal k (response s t) in

Net.send c (concat (utf8 t) mac’)
L |

(We omit the definition of the application-level service func-
tion.) Compared to the protocol narration, the code details message
processing, and in particular the series of checks performed when
receiving messages. For example, upon receiving a request, server
extracts s from its encoded payload by calling iuzf8, and then ver-
ifies that the received MAC matches the MAC recomputed from k
and s. The code uses concat and iconcat to concatenate and split
byte arrays. (Crucially for this protocol, concat embeds the length
of the first array, and iconcat splits arrays at this length. Otherwise,
for instance, response is not injective and the protocol is insecure.)

In our example, the code assumes events that mark the genera-
tion of a key for our protocol and the intents to send a request from
a to b or a response from b to a. The code asserts two properties,
after receiving a request or a response, and accepting it as genuine.

We test that our code is functionally correct by linking it to a
concrete cryptographic library and performing an RPC between a
and b. The messages exchanged over TCP are:

Connecting to localhost:8080

Sending {BgAyICsgMj9mhJa7iDAcW3Rrk...} (28 bytes)
Listening at ::1:8080

Received Request 2 + 2°?

Sending {AQAONccjcuL/WOaYSO0GGtOtPm...} (23 bytes)
Received Response 4

3.4 Modelling the Opponent

We model an opponent as an arbitrary program with access to a
given public interface that reflects all its (potential) capabilities.
Thus, our opponent has access to the network (modelling an active

adversary), to the cryptographic library (modelling access to the
MAC algorithms), and to a protocol-specific setup function that
creates new instances of the protocol for a given pair of principals.
This function returns four capabilities: to run the client with some
payload, to run the server, to corrupt the client, and to corrupt the
server (that is, here, to get their key). We detail the code for setup
below: it allocates a key, specializes our client and server functions,
and leaks that key upon request after assuming an event that records
the compromise of either a or b.

Protocol-Specific Implementation for the Opponent Interface:
I 1

let setup (a:str) (b:str) =
let k = mkKeyAB a b in
(fun s —clienta b k s),
(fun _ —servera b k),
(fun _ — assume (Bad(a)); k),

| (fun _ — assume (Bad(b)); k) |

Formally, the opponent ranges over arbitrary F# code well-typed
against an interface that includes (at least) the declarations below.
(Demanding that the opponent be well-typed is innocuous as long
as the interface only operates on plain types such as bitstrings.) Let
an opponent O be an expression containing no assume or assert.
Our opponent interfaces declare functions that operate on types of
the form x:T { Pub(x)}; intuitively, these types reflect the global
invariant that the opponent may obtain and construct at most the
cryptographic values tracked as public in our logic model. Hence,
bytespub is defined as x: bytes {Pub(x)}. The types strpub and
keypub of public strings and public keys are defined similarly.

In our method, we explicitly give an inductive definition of Pub,
and the typechecker ensures that, whenever an expression is given a
public type (for instance when sending bytes on a public network),
the fact that the value will indeed be public logically follows from
that inductive definition.

Opponent Interface (excerpts):
I

type port = A of string * string
type conn = C of string

val http: string — string — port
val connect: port — conn

val listen: port — conn

val close: conn — unit

val send: conn — bytespub — unit
val recv: conn — bytespub
val hmacshal : keypub — bytespub — bytespub
val hmacshal Verify : keypub — bytespub — bytespub — unit
val setup: strpub — strpub —
(strpub — unit) * (unit — unit) * (unit —keypub) * (unit — keypub)
L

(The adversary is not given access to the key-generating function
hmac _keygen because it can directly build public keys from public
bytes.)

As explained next, we write more refined interfaces for type-
checking our code: each value declaration will be given a refined
type that is a subtype of the one listed in the opponent interface.

We are now ready to formally state our target security theorem
for this protocol. We say that an expression is semantically safe
when every executed assertion logically follows from previously-
executed assumptions. Let /7 be the opponent interface for our li-
brary (introduced precisely in Appendix A.9). Let Ig be the oppo-
nent interface for our protocol (the setup function displayed above).
Let X be the expression context representing the composition of the
library with the protocol implementation. (We give a precise defi-
nition of X in Section 4.6.)

2010/12/9

THEOREM 1 For any opponent O, if Ir.,Ig - O : unit, then X[O] is
semantically safe.

With the specification of events and formulas given in Sec-
tion 3.2, semantics safety for the RPC protocol entails in partic-
ular two protocol-verification correspondence properties (Goll-
mann 2003) between “end” events marking message accepts (the
RecvRequest and RecvResponse assertions) and “begin” events
marking message sends (the Request and Response assumptions).

3.5 Refinement-Typed Interface for MACs

Our example theorem relies on typechecking our library and pro-
tocol code against their opponent interfaces. For the library, this
is done once for all, using an intermediate, more refined interface
that operates on values that are not necessarily public. This inter-
face and its logical model are explained in Appendix A, so here we
only outline their declarations and formulas as regards MACs. So
the main task for verifying the RPC protocol is to typecheck it.
We first outline the refined interface for MACs, then explain
how to define and enforce a logical model for the RPC protocol.

Refinement Types for MACs (from the Crypto library):
I

val imac _keygen: unit — k:key{MKey(k)}
val hmacshal:
k:key —
b:bytes{ (MKey(k) NMACSays(k,b)) V (Pub(k) A\ Pub(b)) } —
h:bytes{ IsMAC(h.k,b) N (Pub(b) = Pub(h)) }
val hmacshal Verify:
k:key{MKey(k) V Pub(k)} — b:bytes — h:bytes — unit{IsMAC(h.k,b)}

(C1. By expanding the definition of ISMAC)
Vh,k,b. IsMAC(h,k,b) A\ Bytes(h) = (MKey(k) = MACSays(k,b)) V Pub(k)
(C2. MAC keys are public iff they may be used with any logical payload)

Vk. MKey(k) = (Pub(k) < Vm. MACSays(k,m))
L |

This interface defines functions for creating keys, computing
MAC:s, and verifying them. (The private modifier indicates that
a value is not included in the opponent interface.) It is designed
for flexibility; simpler, more restrictive interfaces may be obtained
by subtyping, for instance, when key compromise need not be
considered. Its logical model is built from the following predicates:

e MKey(k) records that k has been produced by hmac _keygen; the
adversary can produce other public keys from public values.

® MACSays(k,b) is defined by the protocol that relies on k, as
its precondition for computing a MAC and its postcondition
after verifying a MAC. Intuitively, this predicate represents the
logical payload of MACs with key k.

e [sMAC(h,k,b) holds when verification that 4 is a MAC for b
under k succeeds; it implies either MACSays(k,b) or Pub(k).

The precondition of hmacshal is a disjunction that covers two
cases for the key: either it is a correctly-generated key, or the
key is public. The latter case is necessary to type MAC compu-
tations using a key received from the opponent, and to show that
hmacshal has the type declared in the opponent interface. (In type
systems without formulas, such disjunctions in logical refinements
could instead be expressed using union types.) The postcondition
Pub(b)= Pub(h) states that the MACs produced by the protocol are
public (hence can be sent) provided the plaintext is public. Crypto-
graphically, this reflects that MACs provide payload authentication
but not secrecy.

The precondition of hmacshal Verify similarly covers the two
cases for the key. A call hmacshal Verify k b h raises an exception in
case the supplied hash / does not in fact match the MAC of b with
the key k. (At present, F7 does not support exception handling, and
treats an exception as terminating execution.) Otherwise, its post-

condition also leads to a disjunction (corollary C1), so the protocol
that verifies a MAC must also know that Pub(k)= MACSays(k,b),
for example because k is not public, to deduce that MACSays(k,b).
The library also assumes definitions and theorems relating these
predicates, and in particular the inductive definition of Pub. For
convenience, the display above includes two properties for MACs
that are corollaries of these definitions: C1 just inlines the defini-
tion of IsMAC; C2 expresses a secrecy invariant for MAC keys: a
key k is public if and only if its associated logical payload holds for
any value. Hence, as a prerequisite for releasing a key k as a pub-
lic value, a protocol must ensure that all potential consequences of
MAC verification with key k hold. Depending on how the protocol
defines MACSays, this may be established by assuming some com-
promise at the protocol level (predicate Bad(a) in our protocol).

3.6 Logical Invariants for the RPC Protocol

To verify a protocol, we state some of its intended logical prop-
erties (both defining its specific usage of cryptography and stating
theorems about it), we typecheck the protocol code under those as-
sumptions, and, if need be, we prove protocol-specific theorems, as
illustrated below.

We first introduce two auxiliary predicates for the payload for-
mats: Requested and Responded are the (typechecked) postcondi-
tions of the functions request and response; we omit their defi-
nition. Typechecking involves the automatic verification that our
formatting functions are injective and have disjoint ranges, as ex-
plained in informal assumption (3). Verification is triggered by as-
serting the formulas below, so that Z3 proves them.

Properties of the Formatting Functions request and response:
I 1

(request and response have disjoint ranges)

Yv',s,8°, 1. (Requested(v,s) \Responded(v’,s’ 1)) = (v #V’)
(request is injective)

Yvv',s,8°. (Requested(v,s) N\ Requested(v’,s') A\v=V") =(s=5")
(response is injective)

Yo v',s,s e

(Responded(v,s,t) AResponded(v’',s’,t') A\v=v")=(s=5 At=1")
L |

For typechecking the rest of the protocol, we can instead as-
sume these formulas; this confirms that the security of our protocol
depends only on these properties, rather than a specific format. In
addition, typechecking involves the following three assumptions:

Formulas Assumed for Typechecking the RPC protocol:
I

(KeyAB MACSays)

Ya,b,k,m. KeyAB(k,a,b) = (MACSays(k,m) <

((3s. Requested(m,s) A\ Request(a,b,s)) V
(3s,t. Responded(m,s,t) A Response(a,b,s,t)) V
(Bad(a) V Bad(b))))

(KeyAB Injective)
Vk,a,b,a’,b’. KeyAB(k,a,b) \NKeyAB(k,a’,b’) = (a=a’) \(b=D")

(KeyAB Pub Bad)

Ya,b.k. KeyAB(k,a,b) N\ Pub(k) = Bad(a) \V Bad(b)
L |

The formula (KeyAB MACSays) is a definition for the library
predicate MACSays. It states the intended usage of keys in this
protocol by relating MACSays to the protocol-specific predicates
Request, Requested, Respond, Responded, and Bad. The definition
has four cases: the MAC is for an authentic request s formatted by
function request, the MAC is for an authentic response to a prior
request formatted by function response, or the sender is compro-
mised, or the receiver is compromised.

The formula (KeyAB Injective) is a theorem stating that each
key is used by a single pair of principals. Our informal invariant on
key usage (assumption (4)) directly follows, since KeyAB(k,a,b) is

2010/12/9

a precondition of both client and server. The proof is by induction
on any run of a program that assumes KeyAB only in the body
of mkKeyAB. It follows from a more general property of our
library: hmac_kgen returns a key built from a fresh name, hence this
key is different from any value previously recorded in any event.
Whenever a new event KeyAB(k,a,b) is assumed, and for any event
KeyAB(k’,a’,b’) previously assumed, we have k # k’, so any new
instance of (KeyAB Injective) holds. Conversely, we would not be
able to prove the theorem if mkKeyAB also (erroneously) assumed
KeyAB(k,b,a), for instance, as that might enable reflection attacks.

The formula (KeyAB Pub Bad) is a secrecy theorem for the
MAC keys allocated by the protocol, stating that those keys remain
secret until one of the two recorded owners is compromised. This
theorem validates our key-compromise model, but is not needed for
typechecking. Its proof goes as follows. Relying on the postcondi-
tion of the call to hmac_keygen within mkKeyAB, we always have
MKey(k) when KeyAB(k,a,b) is assumed, hence we establish the
lemma Va,b.k. KeyAB(k,a,b)= MKey(k). By corollary C2, KeyAB(
k,a,b) and Pub(k) thus imply that V. MACSays(k,m). By inspect-
ing (KeyAB MACSays), it suffices to show that there always ex-
ists at least one value M such that we have neither Requested(M,s)
nor Responded(M,s,t), for any s, t. This trivially follows from the
definitions of these two predicates; not every bytestring is a well-
formatted request or response.

3.7 Refinement Types for the RPC Protocol

Using F7, we check that our protocol code (with the Net and Crypto
library interfaces, and the assumed formulas above) is a well-typed
implementation of the interface below.

Typed Interface for the RPC Protocol:
I

type payload = strpub

val request: s:payload — m:bytespub{Requested(m,s)}

val response: s:payload — t:payload — m:bytespub{Responded(m,s,)}
val service: payload — payload

type (;a:str,b:str)keyab = k:key { MKey(k) A KeyAB(k,a,b) }

val mkKeyAB: a:str — b:str — k: (;a,b)keyab

val client: a:str — b:str — k: (;a,b)keyab — payload — unit

val server: a:str — b:str — k: (;a,b)keyab — unit
L |

This interface is similar but more precise than the one in F#. The
type payload is a refinement of string (str) that also states that the
payload is a public value, so that in particular it may be sent in the
clear. The value-dependent type keyab is a refinement of key that
also states that the key is a MAC key for messages from a to b.

We briefly comment on the (fully automated) usage of our
logical rules during typechecking.

e To type the calls to hmacshal, the precondition follows from
the refinement in the type of k from either the first or the second
disjunct of (KeyAB MACSays).

To type the calls to send, we rely on the postcondition of
hmacshal to show that the computed MAC is public.

To type the leaked key k as keypub within setup, we need to
show Pub(k). This follows from MKey(k) (from the refinement
in the type of k), corollary C2, and the definition of MACSays,
using the just-assumed formula Bad(a) or Bad(b) to satisfy
either the third or the fourth disjunct of (KeyAB MACSays).

To type the RecvRequest protocol assertion, we must prove
the formula Request(a,b,s)V Bad(a)V Bad(b) in a context where
we have KeyAB(k,a,b), Requested(v,s), and IsMAC(h.k,v). By
corollary C1, we have MACSays(k,v)V Pub(k). By corollary C2,
we have MKey(k)\ Pub(k)=-¥v. MACSays(k,v), so we obtain
MACSays(k,v) in both cases of the disjunction. By definition
of (KeyAB MACSays), this yields

(Requested(v,s) A 3s. (Requested(v,s) N\ Request(a,b,s))) V
(Requested(v,s) A 3s,t. (Responded(v,s,t) A Response(a,b,s,t))) V
Bad(a) V Bad(b)

which implies Request(a,b,s)V Bad(a)V Bad(b) by using the
properties of our formatting functions.

4. Semantic Safety by Modular Typing

This section develops the theory underpinning our verification tech-
nique. First, we introduce semantic safety, which allows us to make
inductive definitions of predicates in RCF. Second, we formalize
F7 modules within RCF, and in particular introduce refined mod-
ules, which are modules packaged with inductive definitions of
predicates and associated theorems.

4.1 Syntactic Safety by Typing (Review)

We recall the operational semantics and notion of syntactic safety
for RCF, together with one of the main theorems of Bengtson et al.
(2008). (In the original paper, syntactic safety is known simply as
safety.)

The semantics of expressions is defined by a small-step reduc-
tion relation, written A — A’, which is defined up to structural re-
arrangements, written A = A’. We represent all reachable run-time
program states using expressions in special forms, named struc-
tures, ranged over by S. A structure is a parallel composition of
active subexpressions running in parallel, within the same scope
for all restricted names. (We say a subexpression is active to mean
that it occurs in evaluation context, that is, nested within restriction,
fork, or let-expressions.) In particular, from a given structure, one
can extract a finite set of active assumptions and assertions. (This
extraction is defined for the whole structure, up to injective renam-
ings on the restricted names.)

e A C-structure is a structure whose active assumptions are ex-
actly {assume Cj,...,assume C,} with C=C| A---ACp.

e A C-structure is syntactically statically safe if every RCF-
interpretation to satisfy C also satisfies each active assertion.

e An expression A is syntactically safe if and only if, for all
expressions A’ and structures S, if A —* A’ and A’ = S, then
S is syntactically statically safe.

THEOREM 2 (Bengtson et al. 2008)
If o= AT, then A is syntactically safe.

PROOF: The Safety Theorem of Bengtson et al. (2008) is formu-
lated in terms of safety and static safety, which are equivalent to our
syntactic safety and syntactic static safety, but defined in terms of a
sound inference system FOL/F. We detail the argument for our re-
formulated theorem. To show that A is syntactically safe, consider
any expression A’ and structure S with A —* A’ and A’ = S. Sup-
pose S is a C-structure. It remains to show that S is syntactically
statically safe, which is to say that for every RCF-interpretation .#,
and for every active assertion assert C’ occurring in S, if .# satisfies
C then .# satisfies C'. By the Safety Theorem (Theorem 6 in Ap-
pendix C), @ A : T implies that the C-structure S is statically safe,
which means that C - C’ is derivable in the logic FOL/F for each
active assertion assert C’' occurring in S. By soundness of FOL/F,
every RCF-interpretation to satisfy C also satisfies C’. Thus, S is
syntactically statically safe. |

4.2 Inductive Definitions and Semantic Safety by Typing

A key technique in this paper is to consider in RCF predicates given
by inductive rules, such as the predicates Bytes and Pub mentioned
in the previous section. We intend to define these predicates in RCF
by assuming Horn clauses corresponding to the inductive rules.
Formally, we introduce a standard notion of logic program, which

2010/12/9

is guaranteed by the Tarski-Knaster fixpoint theorem to have a least
interpretation.

® A Horn clause is a closed formula Vx,...,x;.(Ci A+ ACyp =
C) where Cy, ..., C, range over atomic formulas and equations
and C ranges over atomic formulas.

e A logic program, P, is a finite conjunction of Horn clauses.

e Consider RCF-interpretations .# and .#’. We let .# < .’ mean
that, for all predicate symbols p, if R, and R’p are the relations
assigned to p by .# and .# then R, C R),.

e If P is a logic program, let .Zp be the least RCF-interpretation
to satisfy P (which exists uniquely, by Tarski-Knaster).

We construct the least RCF-interpretation of a logic program P
as follows.

LEMMA 1 IfPis alogic program, there is a least RCF-interpretation
to satisfy P, obtained as the least fixpoint of a certain function on
RCF-interpretations.

PROOF: Given a logic program P, we construct a function Fp
on RCF-interpretations as follows. Given input .# = (D,[), let
Fp(#) be the RCF-interpretation (D, I’) such that I’ associates each
predicate p of arity n to the relation R C D" given by:

{(NV,...,N,V) | valuation V € {X} = Dand =y y C
where (VX.C = p(Ny,...,Ny)) is a Horn clause from P}

We say that .# is Fp-closed to mean that Fp(.9) < .7.

So .7 is Fp-closed if and only if for all predicates p of arity n, for
all Horn clauses (VX.C = p(Ny,...,N,)) from P, for all valuations
Ve{x} =D, if =y y Cthen =y p(NV,...,N,;V).

Slightly rephrased, we have that .# is Fp-closed if and only if for
all Horn clauses (VX.C = p(Ny,...,Ny)) from P, for all valuations
Vel =D, sy (C=p(Ni,....Nn)).

This shows that .# is Fp-closed if and only if .# satisfies P.

The set of RCF-interpretations under the ordering < forms a
lattice. Since P is a collection of Horn clauses, the function Fp
is monotone, that is, if] < % then Fp(.#)) < Fp(.%). Let
uX.Fp(X) = ({4 | Fp(#) < #}. We have that uX.Fp(X) is
the least Fp-closed interpretation. By the Tarski-Knaster theorem
(see Davey and Priestley (1990), for example), uX.Fp(X) is the
least fixpoint of Fp, that is, the least RCF-interpretation .# such
that Fp(.#) = .#. The corresponding induction principle is that
UX.Fp(X) C .# for any Fp-closed RCF-interpretation .#. O

Syntactic safety asks assertions to hold in all interpretations
that satisfy the assumptions. Instead, if we move to considering
assumptions as inductive definitions, we want a weaker notion,
which we name semantic safety, that asks assertions to hold only in
the least interpretation that satisfies the assumptions. Considering
only the least interpretation allows us to prove safety by exploiting
theorems proved by induction and case analysis on the inductive
definitions.

e An expression is factual if and only if each of its assumptions
(active or not) is a logic program.

e A C-structure is semantically statically safe if the least RCF-
interpretation to satisfy C also satisfies each asserted formula.

e An expression A is semantically safe if and only if, for all
expressions A’ and structures S, if A —* A’ and A’ = S, then
S is semantically statically safe.

Semantic safety may not be well-defined if least interpretations
do not exist. A sufficient condition for semantic safety of expres-
sion A to be well-defined is when A is factual, for then the active as-
sumptions in each reachable structure form a logic program. Given

this condition, syntactic safety implies semantic safety, but not the
converse, since semantic safety may rely on properties of the least
interpretations.

In the following, we call such a property a “theorem of A”, and
state a new result for proving semantic safety for A.

e Let C be a theorem of A if and only if A is factual and, for all P,
#p satisfies C for all P-structures reachable from A.

THEOREM 3 Consider closed expression A and formula C where:

(1) the expression assume C T A is syntactically safe; and
(2) C is a theorem of A.

Then A is semantically safe.

PROOF: Consider any A’ and S and P, such that A —* A’ and
A’ = S. We are to show that S is semantically statically safe. Sup-
pose that S is a P-structure. The formula P must be a logic program
since, by assumption (2), A is factual, and all expressions reachable
from a factual expression are themselves factual. Moreover, by that
assumption, we have that .#p satisfies C, and recall that %p is the
least RCF-interpretation to satisfy P. Consider any active assertion
assert C' in S. To see that S is semantically statically safe, we must
show that the interpretation .#p satisfies the formula C’. We have
that assume C " A —* assume C " A’ and assume C 1" A’ = §'
where S’ is the same as the P-structure S but for the additional as-
sumptions assume C. Hence, S’ is a (C A P)-structure. By assump-
tion (1), assume C T A is syntactically safe. It follows that S’ is syn-
tactically statically safe, and hence that every RCF-interpretation to
satisfy C A P also satisfies C’. By assumption (2), .#p satisfies C. By
definition, .#p satisfies the logic program P. Since, then, .Zp is an
RCF-interpretation to satisfy C A P, it also satisfies the formula C’,
as desired. O

4.3 A Simple Formalization of Modules

We formalize F7 modules (including whole programs) and inter-
faces as RCF expression contexts and environments.

e A module X is an expression context of the form let x; =
Ajin ...letx, = A, in _where n > 0 and the bound variables x;
are distinct. We let bv(X) = {xj,...,x,}. We treat the concrete
syntax for composing F# modules as syntactic sugar, writing
X X; for the module X; [X»[_]].

e Aninterface I is a typing environment [y, ..., i, where each ;
is either an abstract type ; or a variable typing x; : ;.

e We lift subtyping to interfaces by the following axioms and
rules, plus reflexivity and transitivity, and well-formedness con-
ditions (so that I <: I’ always implies I ¢ and I’ - o).

Io, (I {T/a}) <:Io, .1y
103”711 <:IOaIl

Ih-T<:U
lo,x: T, <:Iy,x:U,I

e A module X implements I in E, written E - X ~» I, when
EFEX[(x1,. . yxn)]: (x1: Ty % ocoxxy: Ty) and (x 2 T;) =1 <2 1.

LEMMA 2 (Modular Typechecking). IfE,IFA:T and E-X ~> 1,
then E & X[A] : U where U is T for some instantiation of the type
variables of I.

We have a similar lemma for composing two modules, rather than
a module and an expression.

4.4 Refined Modules

We use an expression context assume P " Y to formalize the idea
of a module Y packaged with a (closed) logic program P to make
inductive definitions of predicates. We call such contexts refined
modules. We want to exploit theorems following from P when

2010/12/9

typechecking Y. To do so, we introduce the notion of a contex-
tual theorem, a theorem that holds in any expression containing
assume P Y as a component.

e The support of a logic program is the set of predicate symbols
occurring in the head of any clause. The support of an expres-
sion or expression context is the support of its assumptions.
(Intuitively, the support is the set of predicates being defined.)
Logic programs, expressions, or expression contexts are inde-
pendent when their supports are disjoint.

e Let C be a contextual theorem of expression context assume P I’
Y if and only if C is a theorem of assume P I’ Z[Y [A]] whenever
Z and A are factual and independent of assume P Y.

LEMMA 3 Suppose C is a contextual theorem of expression context
assume PT Y. If P, Y', and Y" are independent of P then C is a
contextual theorem of assume (PAP') T Y'[Y[Y"]].

PROOF: Let Z =assume P' "Y' and A =Y" so that the reach-
able structures of assume P " Z[Y[A]] are the same as the reach-
able structures of assume (PAP') P Y'[Y[Y"]], up to structural rear-
rangements. Hence, since C is a contextual theorem of assume P I’
Y, it is also a contextual theorem of assume (PAP') 7 Y/[Y[Y"]].0

LEMMA 4 If Cy and C, are contextual theorems of expression
context assume PT Y, then so is C; ACy.

PROOF: Immediate from the definitions. O

When the following lemma applies, we can prove contextual
theorems from the inductive definitions P of assume P Y, without
explicit consideration of the operational semantics.

LEMMA 5 (Contextual). Let C be a formula and P a logic pro-
gram such that, for all Q independent from P, the least RCF-
interpretation to satisfy P A\ Q also satisfies C. If Y is an expres-

sion context independent from P, then C is a contextual theorem of

assume PT Y.

PrROOF: Consider expression context Z and expression A that are
factual and independent of assume P " Y. We are to show that
C is a theorem of assume P I Z[Y[A]]. Since Z, Y, and A are all
independent of P, it follows for every R, that is an R-structure is
reachable from assume P " Z[Y [A]] then R takes the form R=PAQ
where Q is independent from P. By assumption, the least RCF-
interpretation to satisfy P A Q also satisfies C. Hence, C is a theorem
of assume P " Z[Y [A]], as required. o

e Let a refined module be a triple M = (E,X,I) such that there
are closed formulas M“¢ and M””", and a module Y where:

(1) X is factual and X = assume M7/ P Y;
(2) E, M9 Mt y s 1,
(3) M is a contextual theorem of X.

(When we write a formula such as M/ as an environment entry,
we mean it as a shorthand for _: {M%/} where the type {M%/} = _:
unit{M“¢}, where each occurrence of _ stands for a fresh variable.
This type is only populated when M?/ holds, so the effect of the
entry is simply to add M9¢/ as a logical assumption.)

Our example relies on Lib, the composition of the library mod-
ules Data, Net, and Crypto, which together form a refined mod-
ule. Let Lib be the F# code of the library, that is, the composi-
tion Data Net Crypto of the code of the libraries. Let IZ be the
F7 interface, which includes, for example, the functions labelled
“Refinement Types for MACs” in Section 3. The inductive defi-
nitions Lib?% include formulas defining the Pub and Bytes predi-
cates, while Lib”" includes the corollaries C1 and C2 in Section 3.

LEMMA 6 Lib = (@, assume Lib® Lib,1]) is a refined module.

As another example, our RPC protocol consists of a refined
module of the form: RPC = (1], assume RPC/ 1" RPC, (I1,,Iy)).
Let RPC be the F# code for the protocol. The inductive defini-
tions RPC? include the right to left form of (KeyAB MACSays)
from Section 3. The theorems RPC”"" include (KeyAB Injective),
(KeyAB Pub Bad), and the left to right form of (KeyAB MACSays)
from Section 3. The exported interface (I, Ig) is made available to
the opponent. Let /7 be the library’s opponent interface, which is
excerpted in Section 3. Let I be the protocol-specific opponent
interface from Section 3. As mentioned in that section, the mod-
ule below imports IZ and exports its members at the more abstract
interface Iz, by introducing abstract types such as bytespub with
representation type x: bytes { Pub(x)}.

LEMMA 7 RPC is a refined module.

The proofs of Lemmas 6 and 7 are in Appendix A.9, and rely
on Lemma 5 (Contextual).

4.5 Composition of Refined Modules
e We say M| = (E1,X1,11) composes with My = (E»,X5,1,) iff
11 <: Ep and X| and X; are independent.
e For any triples M; = (E;,assume M‘lief rY,) and Mp =
(E,,assume Mgef I Ya,h) their composition M;Mj is the
triple (E/,assume (lelef A M‘Zlef)PV, h).

LEMMA 8 (Composition). If refined module M| composes with
refined module M, then M ;M is a refined module.

PROOF: For i € 1.2, we have M; = (E;,X;,l;) where X; =
assume M%/ 1Y, is factual, E;, M% M b Y, ~ I;, and M/
is a contextual theorem of X;. Since M| composes with Mj, we
have I <: E; and X and X, are independent, that is, the supports
of X; and X are disjoint.

Consider the composition Mj; My = (E1,X12,l) where Xi =
assume MY 1 v, [v3] with M% = (M4 A M),

To see that M ;M is a refined module, we must show that:
(1) Xy, is factual;
2) Eq, M A M3 M A ME™ E Yy [Vy] ~ D
(3) MY AMY"™ is a contextual theorem of Xj5.

Point (1) follows because the constituent parts of X;, come from
X and Xp, which are themselves factual.

Point (2) follows from E I,Mfgf M -y~ and 1 <
E, and E2,M‘zlef , M’zh’” F Y, ~ I, by weakening and substitution
properties of the RCF type system.

For point (3), by Lemma 3, since X; and X, are independent,
M’lh’” is a contextual theorem of Xj;. By symmetric reasoning,
M’zhm is a contextual theorem of X|,. By Lemma 4, M’{"" A M’zhm is
a contextual theorem of Xi,. O

For example, the triple Lib;RPC is: (&,assume (Lib%/ A
RPC%) " Lib[RPC), (Ir,,Ig)). By Lemma 8 (Composition), Lib; RPC
is a refined module.

4.6 Safety and Robust Safety by Typing for Modules

e A refined module (&,X, @) is semantically safe if and only if,
the expression X[()] is semantically safe.

e An [-opponent is an opponent O such that / - O : unit.

e A refined module (&,X,1) is robustly safe if and only if, the
expression X [O] is semantically safe for every I-opponent O.

2010/12/9

The proofs of the following rely on Theorem 2 and Theorem 3.

THEOREM 4 (Safety).
Every refined module (2,X ,9) is semantically safe.

PROOF: Consider a refined module M = (&,X,). We are to
show that expression X[()] is semantically safe. Since M is a refined
module, there is M™" such that @, M™" | X ~» &, and therefore,
@ F assume M7 P X[()] : unit. By Theorem 2, assume M
X[()] is syntactically safe. Since M is a refined module, M is a
contextual theorem of X, which implies that M is a theorem of
X[()]- Hence, by Theorem 3, we conclude that X[()] is semantically
safe. a

THEOREM 5 (Robust Safety).
Every refined module (2,X,1) is robustly safe.

PROOF: We know that X = assume M“¢/ P ¥ for some M““ and
Y. We consider any opponent O such that / - O : unit. We are to
show that X[O] is semantically safe.

Let O = (I,Xp,o) where 0% = Trye and O = True and
Xo = assume 0%/ P Y, and Yy = (let x = O in _). We have that O
is a refined module because:

(1) Xp is factual (because no assume occurs in the opponent O)
and has the form assume Q% Yo

(2) I,0% 0™ 1 ¥, ~» & (because I - O : unit); and

(3) M™™ is trivially a contextual theorem of Xp.

We have that (&,X,I) composes with O and both are refined
modules. By Lemma 8 (Composition), their composition

(,assume (MY A\ True) 1 Y[Yp)],)

is a refined module. Hence, by Theorem 4 (Safety), their composi-
tion is semantically safe, that is, the following expression is seman-
tically safe:

assume (MY A\ True) P Ylet x = O in ()]
Hence, it follows that the expression X[O], that is,
assume M% 1 y|[0]

is semantically safe. a

We can now prove Theorem 1. We have that Lib;RPC =
(,X,(I,Ig)) where X = assume (Lib% A RPCY) P Lib[RPC]
is a refined module. By Theorem 5 (Robust Safety), (&, X, (Ir,1g))
is robustly safe, which is to say that X[O] is semantically safe for
every opponent O with Iy, Iz I O : unit.

5. Library Modules for Cryptographic Protocols

In this section, we describe intermediate refined modules, built on
top of the Crypto module, that implement derived mechanisms
and composite patterns commonly used in cryptographic protocol
implementations. (Section 3 also presents its interface for MACs.)

e Keys can be encrypted, authenticated, and selectively released
(modelling key compromises).

e All derived modes for authenticated encryption are obtained by
composing MACs and symmetric encryption.

e Hybrid encryption is obtained by composing symmetric and
public-key encryption.

e Multiple keys can be derived from a secret seed, yielding sepa-
rate keys for authentication and encryption.

e MACs and signatures can be nested, enabling multiple princi-
pals to jointly authenticate parts of a message.

Relying on these libraries, their logical definitions, and their
theorems, we build (and verify) a series of modular protocols,
leading to Windows CardSpace.

5.1 Key Management

The Principals library generalizes the treatment of keys and prin-
cipals illustrated in the example protocol of Section 3. (To fa-
cilitate the comparison, we illustrate here mostly the treatment
of MAC keys.) Instead of a fixed population of principals and
keys, the library maintains a database of keys shared between
an extensible set of principals. Pragmatically, this functionality
may be implemented using some existing public-key infrastruc-
ture, or an in-memory database recording the outcome of prior key-
exchange protocols. Formally, our implementation of Principals
relies on Db, a channel-based abstraction for databases.The main
purpose of the library is to systematically link cryptographic keys
to application-level principals, while keeping track of their poten-
tial compromise.

Principal identifiers are represented by a type prin defined as
a public string. Each principal may have a number of MAC keys,
encryption keys, and public/private key pairs. The library maintains
a database that may be used by multiple protocols to store and
retrieve keys. Keys are grouped by usage (set by the protocol that
generates the key) to distinguish between the intended usage of
each key, and associated with one (for public/private keypairs) or
two principals.

For instance, a MAC key mk managed by the library for some
usage "RPC" shared between principals a and b is given the type
(mk:key){MACKey("rRPC",a,b,mk)} (where key is the type of keys
in Crypto). For managed MAC keys, Principals provides func-
tions:

val mkMACKey: u:usage — a:prin — b:prin —
mk:key{ MACKey(u,a,b,mk)}

val genMACKey: u:usage — a:prin — b:prin — unit

private val getMACKey: u:usage — a:prin — b:prin —
mk:key{ MACKey(u,a,b,mk)}

The function mkMACKey generates a fresh MAC key, associates
it with a particular usage and pair of principals, and returns the key.
The function genMACKey calls mkMACKey to generate a key then
stores it in the database. The function getMACKey retrieves a key
from the database. Of these three functions, only genMACKey is
available in the opponent interface.

Managed keys can be used for standard cryptographic opera-
tions. To this end, Principals links key-level predicates used in
Crypto (defined by Principals) to principal-level predicates used
in Principals (to be defined by the protocol): Send(u,a,b,s) means
that the principal a intends to MAC s before sending it to b; Encrypt
(u,a,b,s) records that s may be encrypted towards b using symmet-
ric encryption; SendFrom and EncryptTo similarly record intended
asymmetric signatures and encryption with a managed key.

The Principals library also provides functions for compromis-
ing keys. Compromise is dealt with at the level of principals: Bad
(a) indicates that principal a has been compromised, and thus that
all the keys it could access may have been leaked. For each kind
of key, the module has a function that can be used for modelling
compromises. For compromised MAC keys, for instance, it has a
function

val leakMACKey: u:usage — a:prin — b:prin —
mk:keypub{Bad(a) A Bad(b) NMACKey(u,a,b,mk)}

For MAC:s, for instance, the library interface assumes the for-
mulas below.

MAC Key Usage:
I

2010/12/9

(MACKey MACSays Send)
Yu,a,b,mk,m. MACKey(u,a,b,mk) N\ Send(u,a,b,m) = MACSays(mk,m)
(MACKey MACSays Bad)
Yu,a,b,mk,m.
MACKey(u,a,b,mk) N\ (Bad(a) V Bad(b)) = MACSays(mk,m)
(Inv MACKey MACSays)
Yu,a,b,mk,m. MACKey(u,a,b,mk) N MACSays(mk,m) =
(Send(u,a,b,m) V Bad(a) V Bad(b))
(MACKey Secrecy)
Yu,a,b,mk. MACKey(u,a,b,mk) N\ Pub(mk) =
| (Bad(a) V Bad(b) V (Vv. Send(u,a,b,v)))

The two first clauses are definitions, enabling hmacshal to be
called with a managed MAC key once the protocol has assumed
an adequate definition of Send, with a more liberal precondition
in case of compromise. The third and fourth clauses are theorems:
MAC verification with a managed key yields a principal-level guar-
antee; and a MAC key shared between two principals remains se-
cret until one of them gets compromised.

Our model of key compromise is among the most general mod-
els for protocol verification. It supports three kinds of keys: those
generated by the attacker, those generated by the principals library
and kept secret, and those generated by the principals library and
leaked to the attacker. It allows cryptographic operations to be per-
formed with all three categories of keys. Moreover, all keys may be
encrypted, MACed, or signed under other keys. For instance, if a
key is used to encrypt some collection of other keys (as tracked by
Send), our logical model rightfully demands, as a precondition for
compromising any principal with access to that key, that the condi-
tions for leaking each of these encrypted keys be also recursively
satisfied. Although this leads to complex refinement types and as-
sumptions, most of this complexity is factored out in the library and
can be used with a low overhead.

Recall that LibX is the composition of Lib, Db, and Xml.

LEMMA 9 LibX;Principals is a refined module.

5.2 Authenticated Encryption

The Crypto module provides plain (unauthenticated) symmetric
encryption:

Refinement Types for Encryption (from the Crypto library):
I

private val aes_keygen: unit — k:key{SKey(k) }
val aes_encrypt: (x AES CBC x)
k:key —
b:bytes{(SKey(k) A CanSymEncrypi(k,b)) \ (Pub(k) A Pub(b))} —
e:bytes{IsEncryption(e,k,b)}
val aes_decrypt: (x AES CBC «x)
k:key{SKey(k) V Pub(k)} — e:bytes —
| b:bytes{(Vp. IsEncryption(e.k,p) = b = p) A (Pub(k) = Pub(b))}

The function aes_keygen generates symmetric keys, logically
tracked by SKey. The function aes_encrypt can be called in two
ways; either with a “good” key k generated by aes_keygen and a
plaintext b such that CanSymEncrypt(k,b) holds, or with any pub-
lic k and b (known to or provided by the attacker). In both cases,
it returns encrypted bytes e, tracked by IsEncryption. The function
aes_decrypt takes a key k and bytes e and extracts a plaintext b.
Since encryption is unauthenticated, if e is not a valid encryption
under k, decryption may still succeed and return some unspecified
(garbage) bytes. Hence, the postcondition of aes_decrypt just says
that (1) if the caller knows that e is the valid encryption of some
(possibly unknown) plaintext p under e, then decryption does re-
turns p; and besides (2) if the key is public, so is the plaintext.

The Patterns module shows how to derive authenticated en-
cryption, for each of the three standard composition methods for
encryption and MACs (see, e.g., Bellare and Namprempre 2008).

Encrypt-then-MAC (as in IPSEC in tunnel mode):
I

a—b: e | hmacshal k!l e where e = aes kS, t

|

MAC-then-Encrypt (as in SSL/TLS):
I
a— b: aes kS, (t | hmacshal Ky, t)

MAC-and-Encrypt (as in SSH):

I

a—b: aes k¢, t | hmacshal k], t
|

Depending on the method, the message is first encrypted, then
the encryption is MACed, or the message is first MACed and then
both the message and the MAC are encrypted, or the message is
first MACed but the MAC is left unencrypted. For each method,
the goal is to securely communicate plaintexts ¢ from a to b relying
on pre-established shared keys, but the underlying cryptographic
assumptions slightly differ. Cryptographers prefer the first method,
as it prevents chosen-ciphertext attacks and does not require se-
crecy assumptions on the MAC function. We implemented and ver-
ified all three (using a secrecy-preserving MAC in the third case,
as expected). We focus on encrypt-then-MAC, since this was not
implementable in our previous work with F7.

Authenticated Encryption API:
I

1
val authenc_keygen: unit — (ek:key * mk:key){AuthEncKeyPair(ek,mk)}
val encrypt_then_mac: ek:key — mk:key —
b:bytes{(AuthEncKeyPair(ek,mk) N\ CanSymEncrypi(ek,b)) V
(Pub(ek) A\ Pub(mk) \Pub(b))} —
e:bytes{IsAuthEncryption(e,ek,mk,b)}
val verify_then_decrypt:
ek:key —
mk:key{ (AuthEncKeyPair(ek,mk) \V (Pub(ek) N Pub(mk)))} —
e:bytes —
| b:bytes{(CanSymEncrypt(ek,b) V Pub(ek)) N\ (Pub(ek) = Pub(b))}

The function AuthEncKeyPair links pairs of keys for the method;
encryption returns a concatenation of an encryption and a MAC,
tracked by IsAuthEncryption. verify_then_decrypt has a stronger
postcondition than aes_decrypt; its result must have been encrypted
using encrypt_then_mac, thereby excluding garbage. To verify these
functions and obtain both integrity and confidentiality for b, for
each key pair (AuthEncKeyPair(ek,mk)), we link MACSays(mk.,b)
and CanSymEncrypt(ek,e) to get both integrity and confidentiality
for b:

Authenticated Encryption Key Usage:
I

(AuthEncKeyPair MACSays)
Vmk,ek,c,p. AuthEncKeyPair(ek,mk) N IsEncryption(c,ek,p) N

CanSymEncrypt(ek,p) = MACSays(mk,c)
L |

The correctness of verify_then_decrypt relies on theorems stat-
ing that this is the only use of these keys, and linking their potential
compromise.

5.3 Hybrid encryption

Hybrid encryption is the standard method of implementing public-
key encryption for large plaintexts: generate a fresh symmetric key;
use it to encrypt the plaintext; then encrypt the key using the public
key of the intended receiver.

2010/12/9

Hybrid Encryption:
I

a—b:
L

rsa_oaep pky kg | aes kgp t
1

This hybrid encryption combines authenticated asymmetric en-
cryption (RSA-OAEP) with unauthenticated symmetric encryption,
and provides unauthenticated asymmetric encryption (analogous to
RSA without OAEP). The library has three functions for it:

Hybrid Encryption API:
I

val hybrid_keygen: unit — (pk:key * sk:key)
{HyPubKey(pk) N\ HyPrivKey(sk) N\ PubPrivKeyPair(pk,sk)}
val hybridEncrypt: k:key — b:bytes
{(HyPubKey(k) \ CanHyEncrypt(k,b)) V (Pub(k)\ Pub(b)) } —
e:bytes{IsHyEncryption(e,k,b)}
val hybridDecrypt: sk:key —
e:bytes{ HyPrivKey(sk)V (Pub(sk)\ Pub(e))} —
b:bytes{ (Vpk,x. (PubPrivKeyPair(pk,sk)
| AIsHyEncryption(e,pk,x)) = x = b) A (Pub(sk) = Pub(b))}

Their code is straightforward, but their verification is chal-
lenging (since it must rely on the assumption that the symmetric
key is used for a single hybrid encryption). Predicates HyPubKey,
HyPrivKey, and HySymKey track the three kinds of keys used in the
code. The protocol-defined precondition of hybridEncrypt is linked
to the underlying CanSymEncrypt and CanAsymEncrypt crypto-
graphic predicates as follows:

Hybrid Encryption Key Usage:
I

(HyPubKey CanAsymEncrypt)

Vpk,kb. HyPubKey(pk) N\ HySymKey(SymKey(kb),pk) =
CanAsymEncrypt(pk,kb)

(HySymKey CanSymEncrypt)

IVpk,k,b. HySymKey(k,pk) A\ CanHyEncrypt(pk,b) = CanSymEncrypt(k,b) |

To typecheck hybridDecrypt, we establish theorems stating that
hybrid encryption keys are used only as above, and linking the com-
promise of the inner symmetric encryption key to that of the outer
private key. After hiding auxiliary predicates, hybrid encryption has
exactly the same interface as plain RSA in Crypto, showing that
the derivation does not entail any loss of flexibility.

5.4 Derived Keys

Cryptographic protocols often use key derivation functions to ob-
tain separate keys from the same shared secret. For instance, our
library supports the use of the cryptographic hash function pshal
to derive a MAC key from a shared secret seed and a fresh nonce.
The sample protocol below applies it to secure a single message .

Using a Derived MAC Key:
t | n| hmacshal (pshal kg, n) t

I 1
a—b:
L 1

A new key predicate keeps track of secret seeds that may be used
for key derivation. Derived MAC keys may be used anywhere a
MAC key is expected; their logical properties are encoded within
the definition of MKey.

5.5 Endorsing Signatures

Much like hybrid encryption, we can compose symmetric and
asymmetric authentication mechanisms. An endorsing signature is
a (private-key) signature of a MAC over a message. It provides the
same authentication as a signature of the message, with the addi-
tional flexibility of signing later, for instance to endorse a received
message.

MAC-then-Sign: Endorsing a MAC

a—b: h | rsashal sky h where h = hmacshal mkg, t
| |

The API and proofs of this mechanism are quite similar in spirit
to hybrid encryption. We define a set of endorsing signature
key pairs (sk,mk); for such keys we link SignSays(sk,mac) with
MACSays(mk,m) and IsMAC(mac,Kab,m).

LEMMA 10 LibX;Patterns is a refined module.

5.6 Example: The Otway-Rees Protocol

Using the Principals and Patterns libraries, we can build up sev-
eral protocol implementations and establish their security with min-
imal effort. We outline our implementation of the Otway-Rees pro-
tocol, a well-known protocol for establishing a fresh short-term key
between two principals a and b (Otway and Rees 1987).

IOtway-Rees Protocol:
l.a—b: id|a|b|aencka (nalid|a|b)
2.b—s: id|a|b|aencka (nalid|alb)

| aenc kb (nb | id | a|b)
3.5 = b: id|aenc ka (na | kab) | aenc kb (nb | kab)
I4. b— a: id|aenc ka (na | kab)

Here, aenc k x stands for the authenticated encryption of x
under the key pair k, implemented using the Encrypt-Then-MAC
mechanism. Using Principals we create a population of principals,
ranged over by p, together with a server s. The server shares a set
of long-term key pairs with principals. Each long-term key pair kp
is associated with and known to principal p and to s.

The main authentication goal is that a, b, and s agree on all the
main parameters of the protocol: the principals involved a, b, s, the
session identifier id, and the established key kab. The main secrecy
goal is that kab must be known only to a, b, and s. These goals are
established mainly by typing the code against the Principals and
Patterns interfaces. The only theorems proved by hand state the
freshness of nonces and keys generated in the protocol.

The proof of the following is in Appendix ??.

LEMMA 11 LibX;Patterns; Principals; OtwayRees is a refined
module.
5.7 Example: Secure Conversations

Next, we build a protocol for authenticated conversations between
two principals. To illustrate compositionality, the key k is estab-
lished by the Otway-Rees protocol, then used for authenticated en-
cryption, as described above.

Session Sequence Integrity (initially i = 1):
I

i .a—b:
i+1.b—a:
L

id | aenc k (i | m;)
id|aenck (i+1|miyq)

After key establishment, the conversation protocol loops be-
tween request and response messages, incrementing a sequence
number at each step. The authentication goal is that @ and b must
agree on the full sequence of messages (m;);>] sent and received
(possibly excluding the last message in transit). Verification of such
unbounded protocols is typically beyond the reach of automated
verification tools, since it requires a form of induction. Nonethe-
less, we are able to implement and verify this protocol by typing,
relying on recursive predicates that record the entire history of the
session, and show that the local histories at both a and b are consis-
tent.

We use event predicates as follows to record the full session at
each participant. Each participant maintains the current sequence
number 7 and a list / of all the messages sent and received so far.

2010/12/9

Identity Provider IP
(Security Token Service)

1. Token Request{card}

2. Issued Token (token)

3. Request (token, Q)

4. Response (R}

Client C Relying Party RP
(Windows Cardspace) (Web Server)

Figure 3. Windows CardSpace Protocol

o We assume Message(id,i,m;) before sending message .

e We define a history predicate Messages(id,i,l) where [is the
sequence of messages up to sequence number i exchanged in
the session:

(Empty Log)

Vid. Messages(id,0,[]).

(Cons Log)

Vid,i,m,t. Message(id,Succ(i),m) N\
Messages(id,i,t) = Messages(id,Succ(i),m::t)

In any system configuration, in the presence of an active adver-
sary, we intend that the following assertions are safe:

e After accepting message i, the receiving principal b asserts:

(Messages(id,i,1) V Pub(kab))

Hence, the session sequence is authenticated unless the key is
public. In particular, if kab were established using Otway-Rees, this
means that the session sequence at a and b agree with each other
unless one of them is Bad.

The proof of the following is in Appendix ??.

LEMMA 12 LibX;Patterns; Principals; OtwayRees; Sessions is a
refined module.

6. Case Study: Windows CardSpace

We describe our main case study, verifying an implementation of
the federated identity-management protocol Windows CardSpace.
The protocol consists of three roles, a client C, a web server (named
relying party) RP, and an identity provider /P. To access RP, C
first obtains an identity token from IP, and then uses this token
to authenticate its messages to RP. Hence, the protocol uses two
message exchanges, between C and /P then between C and RP.
Structurally, CardSpace is similar to many other server-based iden-
tification protocols, such as Kerberos, Passport, and SAML. A dis-
tinguishing feature is that it is built using the standard mechanisms
of web services security.

Our code is written in F# and was developed for an earlier
verification case study (Bhargavan et al. 2008b) using ProVerif.
Its modular structure is shown in the figure on the first page. In
addition to the trusted libraries LibX and the protocol libraries
Principals and Patterns, the implementation consists of library
modules implementing various web services security specifications
and modules implementing the CardSpace protocol. (We added
type annotations, but did not need to change any code for the XML
protocol stack.)

Flexible Message Formats: XML Digital Signatures In stan-
dardized protocols such as CardSpace, most of the programming

effort is in correctly implementing the message formats for inter-
operability. Protocols built on web service security must also deal
with the inherently flexible nature of the XML message format.

An XML signature is far more than a few bytes containing a
MAC or signature value; it carries XML metadata indicating how
those bytes were computed (in two stages) and how to use the
signature. For the first stage, it embeds a list of references to the
XML elements it is authenticating, a cryptographic hash of each of
these elements, and the names of algorithms used to canonicalize
and hash those elements; for the second stage, it embeds a signature
computed on those hashes, its algorithm, and a reference to its
signing key. For example, a typical signature of n elements ¢/, ...,
tn using an RSA signing key ska takes the form:

<Signature>
si= <SignedInfo>
<CanonicalizationMethod Algorithm=Cl4n />
<SignatureMethod Algorithm=RSA-SHAl />
<Reference uri="#1">
<Transforms> <Transform Algorithm=Cl4n /> </>
<DigestMethod Algorithm=SHAl />
<DigestValue> base64 (shal (utf8 (cl4n tl))) </>
</Reference>

<Reference uri="#n">

</Reference>
</SignedInfo>
<SignatureValue> base64 (rsa-sign ska (utf8 (c14n si)))</>
<KeyInfo>..a’'s X.509 Certificate ...</>
</Signature>

To process such a signature, the verifier retrieves the elements,
verification key, and the algorithms, and reconstructs the signature
value. The signature may include any number of target elements,
so the verifier may have to check a signature of unbounded length.
This is beyond most cryptographic verification techniques: earlier
analyses of XML signature protocols limit the maximum num-
ber of signed elements, essentially treating lists as tuples (Bhar-
gavan et al. 2006; Kleiner and Roscoe 2005). With explicit type
annotations, however, we capture the full flexibility of XML signa-
tures. We use a recursive predicate IsReferenceList to represent the
list of <Reference> elements, and use it to define a predicate
IsSignedInfo that reflects the schema of the <SignedInfo> ele-
ment. We enforce the invariant that all messages signed with XML
signature keys have the structure defined in IsSignedinfo.

Using similar predicates, we verify modules implementing
each of the needed web services security specifications. We write
LibWS for our web services security library composed of LibX,
Principals, Patterns, SOAP, WS-Addressing, XML-Signature,
XML-Encryption, WS-Security, and WS-Trust.

LEMMA 13 LibWS is a refined module.

Composing Cryptographic Patterns: Secure XML Request/Re-
sponse Each message exchange in CardSpace implements a se-
cure request/response protocol built on top of the web services se-
curity library. Unlike the RPC protocol of Section 3, this protocol
guarantees both authentication and confidentiality, and uses many
of the composite cryptographic patterns introduced in Section 5.
XML flexibility also has a cost: the messages we verify are large
(up to 15k) and complex (up to 17 cryptographic operations).

We describe an instance of the protocol using asymmetric keys.
Assume principal a has a private key ska, b has a public key pkb,
and both a and b have exchanged their public keys using X.509
certificates. The protocol below uses four cryptographic patterns
implemented for XML: derived keys, hybrid encryption, sign-then-
encrypt, and endorsing signatures.

Secure XML Request/Response (X.509 Mutual Authentication):
I 1

a: Generate kab, nl, n2

2010/12/9

Protocols and Libraries F# Program F7 Typechecking Fs2pv Verification
Modules | Implementation Interface Checking Time || Queries [Verifying Time
Trusted Libraries (Symbolic) 5 926 lines™ 1167 lines 29s (Not Verified Separately)
RPC Protocol (Section 3) 5+1 +91 lines | + 103 lines 10s 4 [6.65s
Principals (Section 5) 1 207 lines 253 lines 9s (Not Verified Separately)
Cryptographic Patterns (Section 5) 1 250 lines 260 lines 17.1s (Not Verified Separately)
Otway-Rees (Section 5.6) 2+1 + 234 lines | + 255 lines 1m 29.9s 10 8m 2.2s
Otway-Rees (No MACs) 2+1 + 265 lines - | (Type Incorrect) 10 2m 19.2s
Secure Conversations (Section 5.6) 2+1+1 + 123 lines | + 111 lines 29.64s (Cannot Be Verified)
‘Web Services Security Library 7 1702 lines 475 lines 48.81s (Not Verified Separately)
X.509-based Client Auth (Section 6) T+1 + 88 lines + 22 lines +10.8s 2 20.2s
Password-X.509 Mutual Auth 7+1 + 129 lines + 44 lines +12.0s 15 44m
X.509-based Mutual Auth (Section 6) | 7+1 + 111 lines + 53 lines +10.9s 18 51m
Windows CardSpace (Section 6) T+1+1 + 1429 lines | + 309 lines + 6m 3s 6 66m 21s*

Figure 2. Verification Times and Comparison with ProVerif

a: Derive k1 = pshal kab nl, k2 = pshal kab n2
l.a—b: rsa pkb kab|nl |n2
| XML-Encrypt k2 S1 (where S1 = XML-Sign k1 [m1])
| XML-Encrypt k2 S2 (where S2 = XML-Sign ska [S1])
| XML-Encrypt k2 m1

b: Generate n3, n4
b: Derive k3 = pshal kab n3, k4 = pshal kab n4
2.b—a: n3|n4
| XML-Encrypt k4 S3 (where S3 = XML-Sign k3 m2)
| XML-Encrypt k4 m2

Before sending the request (message 1), a generates a fresh
keyseed kab and two nonces n1 and n2. It uses kab and the nonces
to derive a MAC key k1 and an encryption key k2. It signs the
message m1 with k1 to obtain the XML signature S1, and then signs
S1 with ska to obtain the endorsing XML signature S2. Finally, it
separately encrypts S1, S2, and m1 with the encryption key k2. The
response (message 2) is simpler; b derives two keys k3 and k4 and
uses them to sign and then encrypt the response message m?2.

The security goals are mutual authentication of a and b, plus
authentication and secrecy of m1 and m2. These goals are verified
by typechecking the protocol code against the web services security
library LibWS (including Patterns).

LEMMA 14 LibWS;SecureRPC is a refined module.

In traditional protocol verification techniques, each layer of en-

cryption or signature can add significant complexity to the proof.
Indeed, when analyzing this protocol using ProVerif, each addi-
tional cryptographic pattern significantly increases the verification
time. Our compositional proof technique, however, is particularly
suited to verify such protocols.
Composing Protocols: CardSpace We assemble CardSpace by
composing two XML request/response exchanges. To avoid repeat-
ing the message formats, we abstractly represent each request mes-
sage by Request; k1 k2 [m1;...;mn|, where k1 and k2 are the keys
of the sender and recipient (ska and pkb in the XML request/re-
sponse protocol above), and [m1;...;mn] is the list of message el-
ements protected by the protocol (m1 above). The corresponding
responses are represented by Response; [ml;...;mn].

CardSpace Protocol (using X.509 Mutual Authentication):

1. C — IP: Request, skC pkIP [TokenRequest(RP, pkRP)]
IP: Issue token ¢t = Token(id,C,RP,kt)

2. IP — C: Response; [t; XML-Encrypt pkRP t

3. C — RP: Request, kt pkRP [t;m]]

I4. RP — C: Response, [m2]

In the first exchange, the client C requests a token from identity
provider /P for use at RP. The IP responds with a signed token # (in

the syntax of SAML), containing C’s identity information id, and
a key kt that C may use at RP to prove its possession of ¢. The /P
also encrypts ¢ for RP and sends it to C; C forwards this token in
its subsequent request to RP, and uses the key kz to authenticate the
request (m1). The RP decrypts the token ¢ and checks /P’s signature
on it to convince itself of C’s identity, before responding with m?2.
The security goal of the protocol is the authentication of C’s
identity id at RP, and the secrecy and authentication of m1 and m2.

LEMMA 15 LibWS; SecureRPC; CardSpace is a refined module.

7. Performance Evaluation

Figure 2 summarizes our verification results for the protocols and
libraries described in this paper. Each row lists the number of mod-
ules and lines of code in the F# protocol implementation, the num-
ber of lines in the F7 typed interface, and the time for verification
by typechecking. The F7 interface extends the F# module interface
with security assumptions, theorems, and goals, as well as type an-
notations needed for verification. For comparison, the table also
lists, where applicable, the results of verifying the protocol imple-
mentation through the FS2PV/ProVerif tool chain: it lists the num-
ber of queries (security goals) proved and their verification time.
All experiments were performed on an Intel Xeon workstation with
two processors at 2.83 GHz, with 32GB memory, and running Win-
dows Server 2008. (Most of these ProVerif results have been pub-
lished in earlier work.)

The first part of the table corresponds to the RPC protocol
of Section 3. The first row is for the trusted libraries Lib; the *
indicates that we verify their idealized symbolic implementation,
not their concrete code. The second row is for the RPC protocol;
since the libraries are verified once and for all, this row shows only
the incremental lines of code and type checking for verifying RPC.
In contrast, ProVerif verifies both Lib and RPC together. For small
examples such as this, we find that the domain-specific analysis of
ProVerif is faster than F7.

The second part corresponds to the libraries and protocols of
Section 5. The first and second rows are for Principals and Pat-
terns. The third row corresponds to the Otway-Rees protocol. We
find that the incremental typechecking time of Otway-Rees is only
Im 29.9s, whereas ProVerif takes 8m 2.2s to verify the protocol.
Even adding verification times for the libraries, we find that type-
checking with F7 is much faster than ProVerif. Our typed cryp-
tography is more realistic than typical ProVerif models; for in-
stance it tells the difference between authenticated and unauthen-
ticated encryption: with unauthenticated encryption, typechecking
fails to verify Otway-Rees (fourth row) but ProVerif still succeeds.
(Weaker assumptions can sometimes be coded in ProVerif but are
not provided by default.) The protocol in the fifth row implements

2010/12/9

the unbounded secure conversations protocol. The typechecker eas-
ily verifies this recursive code, but ProVerif cannot, and fails to
terminate. For recursive code, typechecking lets the programmer
provide hand-written (recursive) invariants; fully automated model
checkers and theorem provers (like ProVerif) lack this facility.

The third part corresponds to protocols of Section 6, arranged
in increasing complexity leading up to the CardSpace protocol.
The first row presents verification results for the web services se-
curity libraries LibWS. We then present verification results for
a single-message client authentication protocol, two secure re-
quest/response protocols, and the CardSpace protocol. We find that
the incremental typechecking time scales almost linearly with the
size of the protocol code. In contrast, the ProVerif verification time
increases exponentially with the protocol complexity (for each ex-
tra layer of encryption or signature, or each extra message). For
instance, ProVerif takes less than a minute to analyze the client
authentication protocol but up to an hour to verify mutual authen-
tication protocols. The jump in analysis time is primarily because
ProVerif has to account for all possible dependencies between the
two messages, such as whether the adversary may use the second
message of a session to compromise the first message of another
session. The increase in verification complexity makes it infeasi-
ble to verify the whole CardSpace protocol using ProVerif. Indeed,
in the last row of the table, the * indicates that the ProVerif ver-
ification only applies when the number of clients and servers are
limited to at most two each (one honest and one compromised prin-
cipal for each role) and when the full XML message formats in the
web services security libraries are abstractly represented as tuples.
Even with these restrictions, ProVerif takes 66m 21s to verify the
protocol implementation. In contrast, typechecking incrementally
verifies CardSpace in a few minutes.

We conclude that typechecking scales far better than whole-
program analyses for security protocols. As a trade-off, the pro-
grammer must declare their usage of cryptography by providing
annotations in the typed interface of each protocol.

8. Related Work

This paper builds on the method and type system of the original F7
reported by Bengtson et al. (2008). We believe this paper is a major
improvement, for the following reasons:

(1) The use of semantic safety and logical invariants for crypto-
graphic structures is new. In the original F7, we had to rely in-
stead on global rules for kinding. For instance, the built-in kind
Public is now replaced with a library-defined predicate Pub,
yielding more modularity and expressivity.

(2) The cryptographic libraries presented in the paper are entirely
new. They support a broader range of primitives and coding
patterns, which we could not encode in the style of the original
F7.

(3) We report verification of substantial preexisting code, not writ-
ten with refinement types in mind. That was not possible with
the seal-based library of the original F7, which we used only
to verify sample protocols written to illustrate our type system.
(To give a rough comparison, the examples verified in this pa-
per amount to 5405 lines of code, compared to 740 lines in the
original F7.)

(4) We are pleased to re-use a proper subset of RCF, obtained
by eliminating kinds (saving the need to develop yet another
dependent type system). Kinds are the only security-specific
feature of RCF. Hence, our new libraries can also be used
from other languages, in conjunction with any general-purpose
verification tool that can check pre- and post-conditions. This is

a big improvement over any specialized cryptographic tool, not
just ProVerif or RCF with kinds.

Code Verification for Cryptographic Protocols We discuss some
approaches to code verification for security protocols not men-
tioned in Section 1.

Poll and Schubert (2007) verify safety properties of an imple-
mentation of SSH in Java. They show that the Java code imple-
ments the protocol as defined by finite state machines based on the
SSH specification. Their analysis shows that the code never throws
an exception. Pistachio (Udrea et al. 2008) checks C code, includ-
ing code for SSH, against rules describing its intended behaviour.
These tools are aimed at showing compliance with protocol specifi-
cations, rather than to directly show security properties of the code.

Elyjah (O’Shea 2008) extracts Lysa models from Java imple-
mentations of some abstract protocols.

Fs2cv (Bhargavan et al. 2008a) is the first tool to verify proper-
ties in the computational model of implementation code of security
protocols. FS2CV generates inputs to Crypto Verif (Blanchet 2006)
from the implementation code in F#. It has been applied to an F#
implementation of TLS.

ASPIER (Chaki and Datta 2009) has been applied to verify
code of the central loop of OpenSSL. It performs no interproce-
dural analysis and relies on unverified user-supplied abstractions
of all functions called from the central loop. ASPIER is based
on software model-checking techniques, and proves properties of
OpenSSL assuming bounded numbers of active sessions (up to
three servers and clients).

Backes et al. (2009, 2010) extend RCF with intersection and
union types to check code that uses zero-knowledge proofs. Their
work extends the original theory including its use of public and
tainted kinds.

Code Verification for Cryptographic Algorithms Our work tar-
gets cryptographic protocols, while assuming the correct imple-
mentation of the underlying cryptographic algorithms. Domain
specific languages such as Cryptol (Lewis 2007; Pike et al. 2006)
and CAO (Barbosa et al. 2005) support the development of verified
implementations of cryptographic algorithms.

Extraction of Code from Verified Models Our stance is to verify
user-written code in a general purpose language, rather than to
build a compiler for some custom description language designed
for ease of verification. Still, there are several studies (Lukell et al.
2003; Muller and Millen 2001; Perrig et al. 2001; Pozza et al.
2004) of how to extract executable code from verified models
of cryptographic protocols. Mukhamedov et al. (2009) show how
to extract C, suitable for direct unmanaged execution, from F#
code verified with FS2pv and ProVerif. The most accomplished
work in this direction is by Pironti (2010), whose tool, spi2java,
produces implementations—of some standard protocols, including
SSH and TLS—that pass interoperability tests with several pre-
existing implementations. Pironti also develops runtime filters that
pre-existing implementations only send messages in compliance
with verified descriptions of protocols.

Bhargavan et al. (2009) develop a a high-level graphical nota-
tion for describing multiparty sessions; their compiler synthesises
a suitable cryptographic protocol, and compiles to ML code whose
security properties are verified using F7.

Refinement Types The RCF system of refinement types is similar
to that of systems such as DML (Xi 2007), SAGE (Flanagan 2006)
and Dsolve (Rondon et al. 2008), although neither of these systems
allows full first-order formulas as refinements. Still, we expect with
a little adaptation tools such as these could support our method.

In future work, we aim to reduce the annotation burden by ap-
plying techniques from prior studies of inference for refinement
types restricted to base types (Knowles and Flanagan 2007; Rondon

2010/12/9

et al. 2008; Terauchi 2010; Unno and Kobayashi 2009). In particu-
lar, a recent paper (Bhargavan et al. 2010) makes progress towards
type inference for F7. Techniques for inferring types and effects in
cryptographic models (Kikuchi and Kobayashi 2007) may also be
useful.

Other recent dependently typed systems for security, if not for
writing cryptographic protocols, include Aura (Jia et al. 2008),
Fable (Swamy et al. 2008), and Fine (Swamy et al. 2010).

9. Conclusions

We proposed a modular, compositional approach to verifying the
code of security protocols. We have empirical evidence that the
method scales better than the best prior work, a whole-program
analysis relying on ProVerif.

With the intent to verify security properties of protocol code,
we developed a method of invariants for cryptographic structures
in the setting of a formal model of cryptography. For the purpose
of a direct comparison with prior work on whole-program analysis
of security protocol code, we worked with the formal model imple-
mented by FS2PV and ProVerif.

In future, we may consider alternative, more accurate formal
models, such as ones sensitive to message length. Another natural
next step is to recast our method in the computational model.

Acknowledgements Aslan Askarov, Frangois Dupressoir, Na-
taliya Guts, and Citdlin Hritcu suggested improvements to the

paper.
A. The Core Library (Lib)

This appendix describes the library Lib, which is the composition
of Data, Net, and Crypto. The library is based on one developed
for use with F# and the FS2PV tool (Bhargavan et al. 2008c).

The interface exported by the library specifies a collection of
operations, including cryptographic algorithms and functions for
network-based communication, on abstract types of strings, byte
arrays, and keys:

e str is the type of text strings;
e bytes is the type of variable-length byte arrays;
e key is the type of cryptographic keys.

We use this interface for writing additional libraries and reference
implementations of protocols.

The library interface has two distinct implementations. One im-
plementation relies on actual cryptography and is used for execu-
tion, for interoperability testing or actual production use. The other
library implementation is a symbolic model of cryptography in
terms of algebraic types for strings and bytes, in the style of Dolev
and Yao (1983). This symbolic implementation is the formal basis
for verification.

Our verification results hold in spite of an attacker in possession
of public data, which includes all messages exchanged by protocol
participants, and also the key material and other private data known
to any principals that become compromised. To this end, we model
the attacker as an arbitrary F# program with access to an attacker
interface providing operations on the following abstract types:

e strpub is the type of public text strings;
e bytespub is the type of public byte arrays;
e keypub is the type of public cryptographic keys.

We view the attacker as well-typed F# code that manipulates
these abstract types of strings, bytes, and keys only via the func-
tions exported in the attacker interface. Although the attacker ac-
cesses the same symbolic implementation code as the trusted proto-
col code, the type assigned to each function in the attacker interface

is expressed in terms of the public types above, and is a supertype
of the type exposed to the trusted protocol code.

In the following, for each group of cryptographic primitives, we
give both the programming interface (for verified protocol code),
and the attacker interface (modelling its capabilities). The types,
logical assumptions, and functions labelled private are available
only when typechecking the library implementation, and are ex-
ported neither to the protocol code nor to the attacker.

A.1 Strings and Byte Arrays

At the core of our model are the following algebraic types, inherited
from FS2Pv, for symbolic cryptography. (We explain our represen-
tation of keys in the next section.) We use a primitive type Pi.name,
whose values are atoms in the style of pi calculus names; the only
operations on names are to test for equality and to freshly generate
new names.

Underlying Type of Strings and Bytes:
I

type dstr =
| Literal of string
| Base64 of dbytes

and dbytes =

Concat of dbytes = dbytes
Utf8 of dstr

Fresh of Pi.name

Bin of blob

and blob =

Hash of dbytes

DerivedKey of dbytes dbytes

DerivedSKey of dbytes x dbytes

MAC of dbytes * dbytes

SymEncrypt of dbytes * dbytes

PK of dbytes

AsymsSign of dbytes * dbytes

AsymEncrypt of dbytes x dbytes

| | X509Cert of dstr dstr * dstr * dstr x dbytes

(The auxiliary type blob gathers the dbytes constructors meant
to be opaque, such as Hash, in contrast with those meant to be
transparent, such as Concat.)

We are not concerned with all possible values of these types,
but only those that preserve certain invariants. (For example, as
described in Section 3 we only consider a value Bin(MAC(k, b)) of
type dbytes when k is a MAC key and the intuitive logical payload
MACSays(k,b) holds.) We represent these invariants by predicates
with the following intended meanings:

e String(s) holds when string s appears in the protocol run;
e Bytes(b) holds when bytes b appear in the protocol run;

® Pub(x) holds when the data x may be known to the opponent.
(This predicate is overloaded in that x may have type dstr,
dbytes, and indeed other types introduced below.)

The predicates String, Bytes, and Pub are the least relations
closed under the inductive rules in the tables in the remainder of
this appendix.

Our types of strings and bytes are defined as follows:

Types with Invariants:
I

type str = s:dstr {String(s)}
type bytes = b:dbytes { Bytes(b)}
type strpub = s:str { Pub(s)}

type bytespub = x:bytes { Pub(x)}
L I

The types str and bytes represent data manipulated by known
protocol code, while the types strpub and bytespub are the im-
plementations of abstract types of public strings and public bytes

2010/12/9

manipulated by the unknown attacker. By construction, we have
the following subtype relationships, that bytespub <: bytes and
strpub <: str. Moreover, we can show that Pub(b) implies Byres(b)
when b : dbytes, and that Pub(s) implies String(s) when s : dstr.

The programming interface hides the implementation of dstr,
dbytes, and the full definitions of the predicates String and Bytes,
but exports the refinement type definitions shown above, together
with a set of functions acting on these types. In other words,
protocol code cannot directly access the constructors (like Literal,
Concat, Hash, and so on) either to create new values or to pattern-
match existing data. The attacker sees a more limited interface, just
the abstract types strpub and bytespub, and the functions in the
Attacker Interfaces listed below.

A.2 Cryptographic Keys

The Fs2pv library relies on an abstract type to package the byte
arrays used as cryptographic keys. This is the type of all keys used
as parameters of cryptographic operations. By distinguishing key
material from other byte arrays, we prevent some basic program-
ming errors (although we obtain no strong security guarantees from
this distinction). Keys are implemented as an algebraic type, with a
constructor for each kind of key:

Type of Tagged Keys:
I

type key =
| SymKey of bytes
| AsymPrivKey of bytes

| AsymPubKey of bytes
L |

e SymKey(b) contains the bytes b of a key used for symmetric
encryption or for keyed cryptographic hashes.

o AsymPrivKey(b) contains the bytes b of the private part of a key
pair, for signing or for decrypting.

e AsymPubKey(b) contains the bytes b of the public part of a key
pair, for verifying signatures or for encrypting.

The following inductive rules define the public predicate Pub(x)
when x is a key.

Inductive Rules:
I

(Pub SymKey)

Vb. Pub(b) = Pub(SymKey(b))
(Pub AsymPubKey)

Vb. Pub(b) = Pub(AsymPubKey(b))
(Pub AsymPrivKey)

Vb. Pub(b) = Pub(AsymPrivKey(b))
L |

By inspection of the other inductive clauses that define Pub, we
prove the following inversion theorems.

Theorems:
I

(Pub SymKey)

Vb. Pub(SymKey(b)) = Pub(b)
(Pub AsymPubKey)

Vb. Pub(AsymPubKey(b)) = Pub(b)
(Pub AsymPrivKey)

Vb. Pub(AsymPrivKey(b)) = Pub(b)
L |

Having extended the Pub predicate to the key type, we imple-
ment the abstract type keypub, of keys known to the attacker, with
the following refinement type.

Types with Invariants:
I

type keypub = k:key { Pub(k) }
L

We have introduced the key type deliberately to reduce the
abilities of protocol code accidentally to use arbitrary byte arrays as
key material. Still, we need to avoid restricting the abilities of the
symbolic attacker, who can use byte arrays as they wish. Hence, as
part of the attacker interface, we provide the following functions,
to allow the attacker to access the underlying bytes within a key,
and also to turn any bytes into a key tagged with any of the three
key constructors.

Attacker Interface:
I

val symkey: bytespub — keypub
val asympubkey: bytespub — keypub
val asymprivkey: bytespub — keypub

val bytesofkey: keypub — bytespub
L |

Typechecking these functions against their public interface relies
on the six logical implications listed above; for instance (Pub
SymKey) enables us to type let symkey x = SymKey(x).)

A.3 Encodings: Strings, Unicode, and Base64

The functions in the programming interface below deal with com-
mon message formats. For instance, base64 and utf8 are standard
encodings; whereas ibase64 and iutf8 are their partial inverse (they
throw an exception if decode fails). The functions str and istr trans-
late between strings and the refined str datatype.

The programming interface includes refinements, using predi-
cates with the following intended meanings.

e IsLiteral(s,[) holds when string s represents the literal /;

e [sBase64(s,b) holds when string s is the Base64 encoding of
the bytes b;

e IsUtf8(b,s) holds when bytes b are the Utf8 encoding of the
string b.

Programming Interface:
I

val str: [:string — s:strpub{IsLiteral(s,l)}
val istr: s:str — Lstring{IsLiteral(s,]) }

val base64: b:bytes — s:str{IsBase64(s,b)}
val ibase64: s:str — b:bytes{IsBase64(s,b)}
val utf8: s:str — b:bytes{IsUtf8(b,s) }

val iutf8: b:bytes — s:str{IsUtf8(b,s)}
L I

For example, using this interface, F7 verifies that the function
fun s — iutf8(utf8(s)) can be typed as s: str —s”:str{ s =" }.
The corresponding attacker interface is as follows.

Attacker Interface:
I 1

val str: string — strpub

val istr: strpub — string

val base64: bytespub — strpub
val ibase64: strpub — bytespub
val utf8: strpub — bytespub
Ival iutf8: bytespub — strpub

The symbolic implementation relies on the following internal
representations (with constructors defined in Section A.1), recorded
in the logical definition of the three predicates above.

e String Literal(c) represents a string constant c.
e String Base64(b) represents the Base64 encoding of bytes b.
e Bytes Urf8(s) represents the Utf8 encoding of string s.

Equational Abbreviations:
I

2010/12/9

(IsLiteral)

Vs,l. IsLiteral(s,l) < s=Literal(l)
(IsBase64)

Vs,b. IsBase64(s,b) < s=Base64(b)
(IsUtf8)

| Vb,s. IsUtf8(b,s) < b=Utf8(s) |

The inductive rules below define the predicates String, Bytes,
and Pub, on strings of the form Literal(c) and Base64(b) and bytes
of the form Utf8(s).

Inductive Rules:
I

private (String Literal)

Ve. String(Literal(c))
private (String Base64)

Vb. Bytes(b) = String(Base64(b))
private (Bytes Utf8)

Vs. String(s) = Bytes(Utf8(s))
(Pub Literal)

Ve. Pub(Literal(c))
(Pub Base64)

Vb. Pub(b) = Pub(Base64(b))
(Pub Utf8)
| Vs. Pub(s) = Pub(Utf8(s))

Theorems:
I

private (Bytes Base64)

Vb. String(Base64(b)) = Bytes(b)
private (String Utf8)

Vs. Bytes(Utf8(s)) = String(s)
(Pub Base64)

Vb. Pub(Base64(b)) = Pub(b)
(Pub Utf8)

Vs. Pub(Utf8(s)) = Pub(s)
L |

(IsConcat)
Ye,bl,b2. IsConcat(c,bl,b2) < c=Concat(bl,b2)
L

Inductive Rules:
I 1

private (Bytes Concat)

Vb1,b2. Bytes(bl) N Bytes(b2) = Bytes(Concat(b1,b2))
(Pub Concat)
| Vb1,b2. Pub(bl) N\ Pub(b2) = Pub(Concat(bl,b2))

Theorems:
I

(Bytes Concat Invert)
Vb1,b2. Bytes(Concat(bl,b2)) = (Bytes(bl) N\ Bytes(b2))
(Pub Concat Invert)
Vb1,b2. Pub(Concat(bl,b2)) = (Pub(bl) N\ Pub(b2))
(Concat Injective)
| Vb1,b2,b3,b4. Concat(bl,b2) = Concat(b3,b4) = bl=b3 Nb2=b4

A.5 Fresh Bytes

Next, we explain the generation of fresh values, such as nonces or
different sorts of key. The programming interface uses the follow-
ing predicate to record the usage.

® FreshBytes(b,u) holds when the bytes b have been freshly gen-
erated with intended usage u.

The usage datatype lists all such kinds of byte arrays. Calling
the function freshbytes with usage u generates the event FreshBytes
(b,u). This event applies only to freshly created byte arrays. So
no fresh byte array satisfies more than one usage. The function
freshbytes is used to implement other functions in the library, such
as those for creating nonces or keys.

The logical assumptions on Byfes and String are marked as pri-
vate, since the corresponding types are abstract after typechecking
the libraries. Conversely, the assumptions on Pub are visible when
typechecking protocol code, and used for instance to show that the
messages they form are public.

A.4 Concatenation
The programming interface relies on the following predicate.
e [sConcat(c,by,b;) holds when the bytes ¢ represent by paired
with by, with sufficient length information to retrieve b1 and b;.

Programming Interface:
I

val concat: bl:bytes — b2:bytes — c:bytes{ IsConcat(c,b1,b2)}
val iconcat: c:bytes — (bI:bytes * b2:bytes){ IsConcat(c,b1,b2) }
L

The corresponding attacker interface is as follows.

Attacker Interface:
I

val concat: bytespub — bytespub — bytespub

val iconcat: bytespub — bytespub * bytespub
L |

The symbolic implementation relies on the following represen-
tation, with corresponding logical clauses.

e Bytes Concat(by,b;) represents the concatenation of the bytes
by and b,.

Equational Abbreviations:
I

Programming Interface:
I

type usage =
| KeySeedName
| MKeyName
| SKeyName
| SingleUseKeyName of bytes
| PKeyName
| PasswordName
| GuidName
| NonceName
| AttackerName

val freshbytes : u:usage — string — b:bytes{ FreshBytes(b,u)}
L |

The following function allows the attacker to generate fresh byte
arrays. Each call to mkbytespub returns the result of the expression
freshbytes AttackerName "attacker".

Attacker Interface:
I

val mkbytespub: unit — bytespub
L |

Rather than use randomized generation of actual byte arrays,
our symbolic implementation uses abstract new names, and also
records the intended usage of each fresh value. If a : Pi.name is a
freshly generated name, then the value Fresh(a) : bytes represents
arandomly generated byte array.

o Bytes Fresh(a) such that FreshBytes(Fresh(a),u) represents a
randomly generated byte array with usage u.

In general, proofs about clients of the library are on the basis
of the pre- and post-conditions of functions. When reasoning about
freshness, however, it is convenient to expose implementation de-
tail. In particular, we expose the symbolic implementation of the

2010/12/9

[freshbytes function as follows. (The string parameter s is ignored;
we have an alternative implementation which uses s for debugging
purposes.)

Transparency Theorem:

I
let freshbytes u s = (va)assume FreshBytes(Fresh(a),u); Fresh(a)
L

The equation above is an example of a transparency theorem,
an equation of the form f = A, where A is the implementation
code for the value f. A transparency theorem is simply a logical
formula exported by the module, but since its purpose is to export
the implementation code of a function it is convenient to state
the theorem using the code itself. We read a function definition
let f x = B as defining the transparency theorem f = funx — B.

In particular, the equation above exposes that our symbolic
implementation of key generation relies on the restriction primitive,
(va)A, a primitive inherited by RCF from the pi calculus, and
whose operational semantics picks the name a to be fresh and
globally unique.

The following inductive rule asserts that the bytes generated by
the attacker are always public.

Inductive Rules:
I

(Pub Attacker)

Vn. FreshBytes(Fresh(n),AttackerName) = Pub(Fresh(n))
L |

We have the following theorems concerning the FreshBytes
predicate. They follow from the fact that the only way for FreshBytes
to hold is following a call to the function freshbytes.

Theorems:
I

private (Bytes Fresh)

Vb,u. FreshBytes(b,u) = Bytes(b)
(Name Constraint)

Vb,u,u’. FreshBytes(b,u) \ FreshBytes(b,u’) = u=u’
(FreshBytes Fresh)

Vb,u. FreshBytes(b,u) = 3n. b = Fresh(n)
L |

A.6 Nonces

Nonces represent large, fresh values generated at random. They are
initially secret. The postcondition of functions that generate fresh
nonces is the following:

o Nonce(b) holds iff bytes b satisfy FreshBytes(b, NonceName).

Equational Abbreviations:
I

private (Nonce)
Vb. Nonce(b) < FreshBytes(b,NonceName)
L

Programming Interface:
I

val mkNonce: unit — b:bytes{Nonce(b)}

val mkNonce256: unit — b:bytes{Nonce(b)}
L I

There is no specific attacker interface for nonces, as the attacker
can use mkpubbytes from Appendix A.5 to create fresh byte arrays.

We have the following representation in the symbolic imple-
mentation of our library.

e Bytes Fresh(n) such that FreshBytes(Fresh(n),NonceName)
represents a random nonce.

The inductive rule below allows nonces to become public only
when the user-defined predicate PubNonce holds.

Inductive Rules:
I

(Pub Nonce)
Vb. Nonce(b) N\ PubNonce(b) = Pub(b)
L

Theorems:
I

(Inv Pub Nonce)
Vb. Nonce(b) N\ Pub(b) = PubNonce(b)
L

A.7 Message Authentication Codes (MACs)

We support the keyed hash algorithm HMACSHALI1 for generating
and verifying MACs, and also provide an algorithm for deriving
keys from a secret seed (such as a strong password).

® MKey(k) means that & is a valid MAC key, that is, either k has
been generated pseudo-randomly with hmac_keygen or by key
derivation from an existing key with shal.

® MACSays(k,b) means that the logical property to be conveyed
by key k holds of the bytes b. This predicate is defined by clients
of the library.

® IsMAC(h,k,b) means that the bytes & match the outcome of
applying the MAC algorithm to bytes b with key k.

Programming Interface:
I

val hmac_keygen: unit — k:key{MKey(k)}
val hmacshal:
k:key —
b:bytes{ (MKey(k) NMACSays(k,b)) V (Pub(k) N\ Pub(b)) } —
h:bytes{ IsMAC(h.k,b) A (Pub(b) = Pub(h)) }
val hmacshal Verify:
k:key{MKey(k) V Pub(k)} — b:bytes — h:bytes — unit{IsMAC(h.k,b)}
val hmac keyseed: unit — b:bytes{ KeySeed(b) }
val pshal:
bI:bytes{KeySeed(bl) V Pub(bl)} —
b2:bytes —
| k:key{IsDerivedKey(k,b1,b2)}

Attacker Interface:
I 1

val hmacshal : keypub — bytespub — bytespub
val hmacshal Verify : keypub — bytespub — bytespub — unit

val pshal : bytespub — bytespub — keypub
L |

We have the following representations in the symbolic imple-
mentation of our library.

® Bytes Fresh(n) such that FreshBytes(Fresh(n),MKeyName)
represents a pseudorandom MAC key.

e Bytes Fresh(n) such that FreshBytes(Fresh(n),KeySeedName)
represents a pseudorandom keyseed.

e Bytes Bin(DerivedKey(b, bs)) where by is a pseudorandom key-
seed, represents a MAC key derived from by via b.

® Bytes Bin(MAC(by,b,)) represents the MAC of b, with MAC
key bk~

The following transparency theorem exposes that the symbolic
implementation of hmac_keygen relies on the freshbytes function,
which itself uses the RCF restriction operator to model a freshly
generated key as a new name.

Transparency Theorem:
I

let hmac _keygen () =
let kb = freshbytes MKeyName "hkey" in
SymKey(kb)

2010/12/9

Given these representations, we make the following predicate
definitions. Predicates Data.IsMAC, Data.lIsDerivedKey, IsMAC,
and IsDerivedKey capture the syntactic structure of MACs and de-
rived keys. The predicate MACVerified tracks verified MAC pay-
loads.

Equational Abbreviations:
I

(Data.IsMAC)

Vm,k,b. Data.IsMAC(m.k,b) < m=Bin(MAC(k,b))
(Data.IsDerivedKey)

Vk,nl,n2. Data.IsDerivedKey(k,nl,n2) < k=Bin(DerivedKey(nl,n2))

private (ISMAC)
Vm,k,b. IsSMAC(m.k,b) < 3kb. k=SymKey(kb) A Data.IsMAC(m,kb,b)

private (MAC Verified)
Vk,b. MACVerified(k,b) <
Bytes(b) N(MACSays(k,b) V (Pub(k) N MKey(k)))

private (MCompKey)
Vk. MCompKey(k) < (MKey(k) N Pub(k))

private (IsDerivedKey)
Vk,b1,b2. IsDerivedKey(k,b1,b2) <
3b. k=SymKey(b) N Data.IsDerivedKey(b,b1,b2)

private (KeySeed)
Vb. KeySeed(b) <> FreshBytes(b,KeySeedName)
L

Inductive Rules:
I

private (MKey MKeyName)

Vb. FreshBytes(b,MKeyName) = MKey(SymKey(b))
(Pub MKey)

Vk. MKey(k) N (VYb. MACSays(k,b)) = Pub(k)

private (Bytes ISMAC)
Vm,k,b. MKey(k) N MACVerified(k,b) N IsMAC(m.k,b) = Bytes(m)
(Pub IsMAC)
Vm,k,b. Pub(b) NIsMAC(m.k,b) N MKey(k) N MACVerified(k,b)
= Pub(m)

private (Bytes ISMAC Pub)
Vm,kb,b. Bytes(kb) A\ Pub(SymKey(kb)) A Bytes(b) N\ Pub(b) A
IsMAC(m,SymKey(kb),b) = Bytes(m)

(Pub IsMAC Pub)
Vm,k,b. Pub(b) N IsMAC(m.k,b) N\ Pub(k) = Pub(m)
L

The bytes clauses for MAC cover two construction cases, by the
protocol and by the adversary, respectively. The public clauses for
MAC conservatively specify that MACs never protect the secrecy
of b, only its integrity. The public clause for MKey states that a
valid MAC key becomes public only if it is explicitly leaked by
the protocol, which is tracked by the predicate MCompKey. The
definition of MACVerified covers two cases: either this is a genuine
text for the protocol, or the key is public.

Additional Inductive Rules for Derived Keys:
I

20

private (Bytes IsDerivedKey)
Vb1,b2,b. Bytes(bl) A Bytes(b2) A Data.IsDerivedKey(b,b1,b2)
= Bytes(b)
(Pub IsDerivedKey)
Vb1,b2,k. Pub(bl) N\Bytes(b2) N\ Data.IsDerivedKey(k,b1,b2)
= Pub(k)

(Pub KeySeed)
Vks. KeySeed(ks) N
(Vk,n. IsDerivedKey(k,ks,n) =Vb. MACSays(k,b)) N
(Vk,n. IsDerivedSKey(k.ks,n) = (Vb. CanSymEncrypt(k,b) = Pub(b)))
= Pub(ks)

private (MKey IsDerivedKey)
Vb1,b2,k. KeySeed(bl) N Bytes(b2) NIsDerivedKey(k,b1,b2) = MKey(k)
L |

Theorems:
I 1

(IsSMAC Injective)
Vm,k,k* ,b,b’. IsMAC(m.k,b) NIsMAC(m,k’,b*) = k=k’ \b=b’

(MKey Inversion)
Vk. MKey(k) =
(3kb. k = SymKey(kb) N FreshBytes(kb,MKeyName)) V
(3b1,b2. KeySeed(bI) N Bytes(b2) NIsDerivedKey(k,b1,b2))

(IsMAC MAC Verified)
Vm,k,b. IsMAC(m.k,b) N\ Bytes(m) A MKey(k) = MAC Verified(k,b)

(Inv MKey Pub)

Vk,b. Pub(k) N MKey(k) = MACSays(k,b)
L |

(MKey Inversion) states that possession of a MAC with a valid key
(e.g., just after a MAC verification) entails that its payload b is
valid. (MKey MCompKey) states that a MAC key is public only
if it has been compromised.

A.8 Network Operations

We list (most of) our programming interface for networking. The
interface requires that all exchanged messages be public; it can also
be used by the attacker. (For simplicity, we use the plain string type
instead of strpub for network addresses and port numbers.)

Programming Interface (and Attacker Interface):
I

type port = A of string * string
type conn = C of string

val http: string — string — port
val connect: port —conn

val listen: port —conn

val close: conn — unit

val send: conn — bytespub — unit
val recv: conn — bytespub
L

A.9 Proofs of Lemmas 6 and 7

RESTATEMENT OF LEMMA 6
Lib = (@,assume Lib®/ 1 Lib,1]) is a refined module.

PROOF: Recall the notations:

e [et Lib be the Fi# code for the library.

e Let IZ consist of the declarations displayed as Programming
Interface in this appendix.

e Let /7 consist of the declarations displayed as Attacker Interface
in this appendix.

e Let Lib% consist of all the formulas displayed as Inductive
Rules in this appendix.

2010/12/9

e Let Lib”" consist of all the formulas displayed as Theorems in
this appendix.

To show that Lib is a refined module, it suffices to show:

(1) assume Lib% P Lib is factual;
(2) @,Lib% Lib"™ & Lib ~ I} ;
(3) Lib™" is a contextual theorem of assume Lib® " Lib.

For (1), we have by construction that each of the assumptions
(active or not) of assume Lib%/ " Lib is a logic program, which is
to say that assume Lib® P Lib is factual.

For (2), we have @, Lib%/ Lib™ |- Lib ~» I] by running F7.

For (3), we begin by noting that the following formulas are
contextual theorems of assume Lib%/ 1" Lib.

private (Bytes Fresh)

Vb,u. FreshBytes(b,u) = Bytes(b)
(Name Constraint)

Vb,u,u’. FreshBytes(b,u) A FreshBytes(b,u’) = u=u’
(FreshBytes Fresh)

Vb,u. FreshBytes(b,u) = 3n. b = Fresh(n)

Let R be the conjunction of (Name Constraint) and (FreshBytes
Fresh). We must show that R is a theorem of assume Lib% p
Z|Lib|A]] whenever Z and A are factual and independent of the ex-
pression assume Lib?® P Lib. The only occurrence of the predicate
FreshBytes in Lib is in the following definition of freshbytes, dis-
played in Appendix A.7 as a transparency theorem.

let freshbytes u s = (va)assume FreshBytes(Fresh(a),u); Fresh(a)

Since each call to the function freshbytes generates a fresh name
a (disjoint from any previous name), the two conjuncts of R hold in
all reachable states.

Let P be the conjunction of the formulas in Lib% apart from
those in R. Note that Lib% is a logic program with support disjoint
from that of Lib. By Lemma 5 (Contextual), to prove that R = Pis a
contextual theorem of assume Lib%/ 1 Lib, it suffices to show that
for all Q independent of Lib%?/, the least interpretation of Lib%/ A Q
satisfies R = P. We can prove this by assuming R, and proving
each conjunct of P individually. We have mechanised the proofs
using the Coq proof assistant. By interpreting the formulas Lib%e
as inductive definitions and the conjuncts of R as logical parameters
we have built a Coq module with proofs for all the theorems in P.
Thus, we obtain that both R and R = P are contextual theorems
of assume Lib%/ P Lib, that therefore that Lib”"" is a contextual
theorem of assume Lib%/ " Lib. a

RESTATEMENT OF LEMMA 7
RPC is a refined module.

PROOF: The proof is similar to that of the previous lemma. The
code of RPC is checked by running F7. We have mechanised proofs
using the Coq proof assistant. The following are the contextual
theorems that need to be proved by code inspection.

(KeyAB Injective)
Vk,a,b,a’,b’. KeyAB(k,a,b) N KeyAB(k,a’,b’) = (a=a’) N\(b=b")
(not every message is a request or response)

Jv. Vs,s°,t’. not (Requested(v,s)) Anot (Responded(v,s’,t’))

The only occurrence of the predicate KeyAB in RPC is in the
following definition of mkkeyAB (displayed already in Section 3.3).

let mkKeyAB a b =
let k = hmac_keygen() in assume (KeyAB(k,a,b)); k

21

The transparency theorems of Appendix A.7 constrain the im-
plementation of the function hmac_keygen in the Lib interface to
be in terms of code using a restriction to generate a fresh name.
It follows that in any run, whenever assume(KeyAB(k,a,b)) is
reached, we have that k = Fresh(a) for some new name a. There-
fore, (KeyAB Injective) is indeed a contextual theorem.

It remains to note that the second formula displayed above, fol-
lows at once from the definitions of the Requested and Responded
predicates, shown below, since not every byte array has the form of
either a request or a response.

Definitions:
I

(Requested)
Vm,s. Requested(m,s) <
m = Concat(Utf8(Literal("Request™)),Utf8(s))
(Responded)
Vm,s,t. Responded(m,s,t) <

| m = Concat(UtfS(Literal("Response™")),Concat(Utf8(s),UtfS(t)))

This completes the proof that RPC is a refined module. O

B. The Library Principals

We provide additional details on Principals, our library for man-
aging keys (and their compromise) by principals; we refer to Sec-
tion 5.1 for an overview of the library.

The interface uses a single predicate for compromise:

® Bad(a) records that principal a has been corrupted, and hence
that all the keys it could access are potentially compromised.
(This fact is dynamically assumed by each of the key-leaking
functions formally included in the attacker interface.)

B.1 Public and Private Key Pairs

We begin with asymmetric keys used for (potentially both) signing
and encryption. Our model keeps track of the principal a that owns
the private key.

® PublicKeyPair(u,a,pk,sk) records that (pk,sk) is a public/pri-
vate key pair for principal a, with intended usage u; it is dy-
namically assumed by mkPublicKeyPair.

SendFrom(u,a,m) records that principal a intends to sign mes-
sage m for usage u; it is defined by the protocol that uses man-
aged keys.

e EncryptTo(u,a,m) records that the message m can be encrypted
towards a for usage u; it is defined by the protocol that uses
managed keys.

Public Key Programming Interface:
I

private val mkPublicKeyPair: u:usage — a:prin —
(pk:key * sk:key){ PublicKeyPair(u,a,pk,sk)}

val genPublicKeyPair: u:usage — a:prin — unit

private val getPublicKeyPair: u:usage — a:prin —
(pk:key * sk:key){ PublicKeyPair(u,a,pk,sk)}

private val getPrivateKey: u:usage — a:prin —
sk:key{3pk. PublicKeyPair(u,a,pk,sk)}

val getPublicKey: u:usage — a:prin —
pk:key{3sk. PublicKeyPair(u,a,pk,sk)}

val leakPrivateKey: u:usage — a:prin —

| sk:keypub{Bad(a) A (3pk. PublicKeyPair(u.a,pk,sk))}

Public Key Definitions:
I

2010/12/9

(SignSays SendFrom)

Yu,x,pk,sk,m. PublicKeyPair(ux,pk,sk) A

SendFrom(u,x,m) = SignSays(sk,m)
(SignSays Bad)

Yu,x,pk,sk,m. PublicKeyPair(u,x,pk,sk) A\ Bad(x) = SignSays(sk,m)
(CanAsymEncrypt EncryptTo)

Yu,x,pk,sk,m. PublicKeyPair(u.x,pk,sk) N\

EncryptTo(u.x,m) N\ (Bad(x) = Pub(m)) = CanAsymEncrypt(pk,m)
(CanAsymEncrypt Bad)

Yu,x,pk,sk,m. PublicKeyPair(u.x,pk,sk) N\
| Bad(x) A Pub(m) = CanAsymEncrypt(pk,m)

Public Key Theorems:
I

(PublicKeyPair PubPrivKeyPair)
Yu,x,pk,sk. PublicKeyPair(ux,pk,sk) = Crypto.PubPrivKeyPair(pk,sk)
(Inv PublicKeyPair SignSays)
Yu,x,pk,sk,m. PublicKeyPair(u,x,pk,sk) A
SignSays(sk,m) = ((SendFrom(u,x,m)) V Bad(x))
(Inv PublicKeyPair CanAsymEncrypt 1)
Yu,x,pk,sk,m. PublicKeyPair(u,x,pk,sk) A
CanAsymEncrypt(pk,m) = ((EncryptTo(u,x,m)) V Bad(x))
(Inv PublicKeyPair CanAsymEncrypt 2)
Yu,x,pk,sk,m. PublicKeyPair(u,x,pk,sk) A
CanAsymEncrypt(pk,m) A Bad(x) = Pub(m)
(PrivKey Secrecy)
Yu,a,sk. PrivateKey(u,a,sk) N\ Pub(sk) =
| (Bad(a) V ((Yv. SendFrom(u,a,v)) A\ (Vv. EncryptTo(u,a,v) = Pub(v))))

B.2 MAC Keys

Managed keys are shared between pairs of principal, a “sender” a
(that creates MACs) and a “receiver” b (that verifies MACs); see
also Section 5.1.

® MACKey(u,a,b,k) records that k is a MAC key generated for
protecting messages from a to b with intent u; it is dynamically
assumed by mkMACKey.

e Send(u,a,b,m) records that m is a message (potentially) sent
from a to b with intent u; this predicate is defined by the
protocol.

MAC Key Programming Interface:
I

val mkMACKey: u:usage — a:prin — b:prin —
mk:key{ MACKey(u,a,b,mk)}

val genMACKey: u:usage — a:prin — b:prin — unit

private val getMACKey: u:usage — a:prin — b:prin —
mk:key{ MACKey(u,a,b,mk)}

val leakMACKey: u:usage — a:prin — b:prin —

| mk:keypub{Bad(a) A Bad(b) N\ MACKey(u,a,b,mk)}

MAC Key Definitions
I

(MACKey MACSays Send)

Yu,a,b,mk,m. MACKey(u,a,b,mk) N\ Send(u,a,b,m) = MACSays(mk,m)
(MACKey MACSays Bad)

Yu,a,b,mk,m.
| MACKey(u,a,b,mk) N\ (Bad(a) V Bad(b)) = MACSays(mk,m)

MAC Key Theorems
I

(Inv MACKey MACSays)
Yu,a,b,mk,m. MACKey(u,a,b,mk) N MACSays(mk,m) =
(Send(u,a,b,m) Vv Bad(a) V Bad(b))

(MACKey MKey)
Yu,a,b,mk. MACKey(u,a,b,mk) = Crypto.MKey(mk)

L

22

B.3 Symmetric Encryption Keys

Similarly, encryption keys are shared between a sender and a re-
ceiver.

e EncryptionKey(u,a,b,k) records that k is a key for encrypting
messages from a to b with intent u; it is dynamically assumed
by mkEncryptionKey.

e Send(u,a,b,m) records that m is a message (potentially) en-
crypted from a to b with intent u; this predicate is defined by
the protocol.

Symmetric Encryption Key Programming Interface:
I

val mkEncryptionKey: u:usage — a:prin — b:prin —
ek:key{EncryptionKey(u,a,b,ek)}

val genEncryptionKey: u:usage — a:prin — b:prin — unit

private val getEncryptionKey: u:usage — a:prin — b:prin —
ek:key{EncryptionKey(u,a,b,ek)}

val leakEncryptionKey: u:usage — a:prin — b:prin —

| ek:keypub{Bad(a) A Bad(b) N EncryptionKey(u,a,b,ek)}

Encryption Key Definitions:
I

(EncryptionKey CanSymEncrypt Encrypt)
Yu,x1,x2,ek,m. EncryptionKey(u,x1,x2,ek) A
Encrypt(u.x1,x2,m) A((Bad(x1) V Bad(x2)) = Pub(m)) =
CanSymEncrypt(ek,m)

(EncryptionKey CanSymEncrypt Bad)
Yu,x1,x2,ek,m. EncryptionKey(u,x1,x2,ek) \

| (Bad(x1) V Bad(x2)) A\ Pub(m) = CanSymEncrypt(ek,m)

Encryption Key Theorems:
I

(EncryptionKey SKey)
Yu,xl,x2,ek. EncryptionKey(u,x1,x2,ek) = Crypto.SKey(ek)
(Inv EncryptionKey CanSymEncrypt)
Yu,x1,x2,ek,m. EncryptionKey(u,x1,x2,ek) N\ CanSymEncrypt(ek,m) <
((Encrypt(u,x1,.x2,m) \VVm = encryptionSecret N Bad(x1) V Bad(x2))
A
(Bad(x1) V Bad(x2)) = Pub(m))
(EncryptionKey Secrecy)
Yu,x1,x2,ek. EncryptionKey(u,x1,x2,ek) A\ Pub(ek) = (Bad(x1) V Bad(x2)
)

C. Refined Concurrent FPC (RCF)

We recall the subset of RCF from Bengtson et al. (2008) obtained
by omitting the syntax and rules for public and tainted kinds.
We introduce a notion of expression safety, and the development
culminates in a safety-by-typing result, Theorem 6, that well-typed
expressions are safe. We do not directly use this notion of safety
in the main body of the paper, but instead use a closely connected
notion of syntactic safety. Theorem 2 in the main body of the paper
is essentially Theorem 6, but reformulated in terms of syntactic
safety rather than safety.

C.1 Authorization Logics

The calculus relies on logical formulas to specify correctness prop-
erties. These formulas are drawn from any choice of authorization
logic, a logic satisfying the properties below. (In our initial imple-
mentation, the authorization logic is simply first-order logic with
equality.)

An authorization logic is given as a set of formulas defined by
a grammar that includes the one given below and a deducibility
relation S + C, from finite multisets of formulas to formulas that
meets the properties listed below. (The set of values, ranged over
by M, is defined in Section C.2.)

2010/12/9

Minimal Syntax of Formulas:
I

)4 predicate symbol
C:= formula
p(My,...,My) atomic formula
M=M equation
CAC conjunction
cvc disjunction
-C negation
Vx.C universal quantification
dx.C existential quantification

True = () = ()

False £ =True

M#M 2 ~(M=M)
(C=C)=(-CcvC)
(CeCd)2(C=C)NC =C)

Properties of Deducibility: S+ C

I 1
S,C stands for S,{C}; in (Subst), ¢ ranges over substitutions of
values for variables and permutations of names.

(Axiom) (Mon) (Subst) (Cut)
SEC SEC SFC S,CHC
CcCHC S,C'+-C SotkCo SHC'
(And Intro) (And Elim) (Or Intro)
SEFCy SEC; SECyAC SHC; — 0.1
SFCoAC) SFC SkGve
(Eq) (Ineq) (Ineq Cons)
M#N h N =M forno N
PMN)=2 fM)=0
gFM=M GFM#N D FVx.hx#M
(Exists Intro) (Exists Elim)
SFC{M/x} Sk3Ix.C S,CHC' x¢f(S,C)
St 3dx.C Sk’

FOL/F, which is first-order logic with the axiom schemas dis-
played below, is an example of an authorization logic. (The in-
tended model consists of the phrases of syntax of RCF identified
up to consistent renaming of bound names and variables. A syn-
tactic function symbol is one used to represent the phrases of RCF
as a term, using the locally nameless representation of de Bruijn.
RCF variables are identified with the variables of the logic, while
each RCF name is a constant, that is, a nullary syntactic function
symbol.)

Additional Rules for FOL/F:

I
(F Disjoint) (F Injective)
f # f syntactic f syntactic

SEVERSE) A L) SEHRSE) = /() > 5 =7

C.2 Expressions, Evaluation, and Safety
Syntax of Values and Expressions:
I

a,b,c name

X, 9,2 variable

ho= value constructor
inl left constructor of sum type
inr right constructor of sum type
fold constructor of recursive type

M,N ::= value

23

X variable
0O unit
funx — A function (scope of x is A)
(M,N) pair
hM construction
AB:= expression
M value
MN application
M=N syntactic equality

letx=AinB let (scope of x is B)

let (x,y) =M in A pair split (scope of x, y is A)

match M with constructor match
hx—Aelse B (scope of x is A)

(va)A restriction (scope of a is A)

AT B fork

alM transmission of M on channel a

a? receive message off channel

assume C assumption of formula C

assert C assertion of formula C

Itrue = inl () false = inr ()

The formal syntax of expressions is in an intermediate, reduced
form (reminiscent of A-normal form (Sabry and Felleisen 1993))
where let x = A in B is the only construct to allow sequential eval-
uation of expressions. As usual, A;B is short for let - = A in B.
(The notation _ denotes an anonymous variable that by conven-
tion occurs nowhere else.) More notably, if A and B are proper
expressions rather than being values, the application A B is short
forlet f =Ain (letx =Bin f x).

Examples: Communication and Concurrency
I
(T)chan = (T — unit) x (unit — T)

chan Aé fun_— (va)(funx — alx,fun_ — a?)

send = func x — let (s,r) =cinsx send x on ¢
recv = func — let (s,r) =cinr() block for x on ¢
fork=funf — (f()r () run f in parallel

Structures and Static Safety:

I

ex=M|MN|M=N|let (x,y) =M inA |
match M with /1 x — A else B | a? | assert C

Hiel“nAi: O PAIT...T A,

Zu2={}|(letx = ZinB)

S:=(vay)...(vay)

((I] assumeCi)r ([T ¢;'Mj) v ([] “de}))

icl..m jel.n kel..o

Let structure S be statically safe if and only if, for all k € 1..0 and
IC, if e; = assert C then {Cy,...,Cy} - C.

Structures formalize the idea that a state has three parts: (1)
the log, a multiset [];c; ,, assume C; of assumed formulas; (2) a
series of messages M; sent on channels but not yet received; and
(3) a series of elementary expressions e, being evaluated in parallel
contexts.

Heating: A = A’
I
Axioms A=A’ areread asboth A = A’ and A’ = A.

A=A (Heat Refl)

A=A" fA=>A andA' = A" (Heat Trans)

A=A =letx=AinB=letx=A"inB (Heat Let)

A A = (va)A = (va)A (Heat Res)

A=A = (AT B)= (AT B) (Heat Fork 1)

A=A = (BrA)= (BrA) (Heat Fork 2)
2010/12/9

Ora=A (Heat Fork ())
alM=aMr () (Heat Msg ()
assume C = assume C " () (Heat Assume ())
aéfn(A)=A'r ((va)A) = (va)(A'T A) (Heat Res Fork 1)
aéf(A)= ((va)A)r A’ = (va)(AT A) (Heat Res Fork 2)

a ¢ fu(B) =
letx = (va)Ain B= (va)letx = Ain B

(Heat Res Let)

(Ar AT A"=Ar (AT A") (Heat Fork Assoc)
(Ar AT A"= (AT A A (Heat Fork Comm)
letx = (AT A')inB= (Heat Fork Let)

AT (letx = A’ in B)

LEMMA 16 (Structure). For every expression A, there is a struc-
ture S such that A = S.

Reduction: A — A’
I 1

(funx — A) N — A{N/x} (Red Fun)
(let (xl ,XQ) = (Nl ,Nz) in A) — (Red Split)
A{N /xi H{N2/x2 }

(match M with 4 x — A else B) — (Red Match)

A{N/x} if M =hN for some N

B otherwise

true ifM=N

M=N— { false otherwise (Red Eq)
aMr7a? M (Red Comm)
assert C — () (Red Assert)
letx = MinA — A{M/x} (Red Let Val)
A—A =letx=AinB —letx=A'inB (Red Let)
A— A = (va)A — (va)A (Red Res)
A=A = (AP B) = (A7 B) (Red Fork 1)
A=A = (BrA)— (Br A (Red Fork 2)
A=A ifA=BB—B.B=A (Red Heat)
|

A closed expression A is safe if and only if, in all evaluations
of A, all assertions succeed.

Expression Safety:
I

1
An expression A is safe if and only if, for all A’ and S, if A —* A’
Iand A’ = S, then S is statically safe.

C.3 A Type System for Safety

ISyntax of Types: |
H,T,U,V ::= type
unit unit type
x:T—=>U dependent function type (scope of x is U)
x:TxU dependent pair type (scope of x is U)
T+U disjoint sum type
rec o.T iso-recursive type (scope of o is T')

a iso-recursive type variable
x:T{C} refinement type (scope of x is C)

ISome Derivable Types:

{C} = _: umit{C}

booi £ unit + unit

int = rec o.unit+

(T)list = rec o.unit + (T x o)

T—U=_:T—U

[x1 : Tﬂ{cl} —U=x; :XA ZTl{Cl} —U

(x1: Ty % xx,: T,){C} =
xp Ty xyoy Ty % : T{C} ifn>0
{C} otherwise

(ok-type)

24

Syntax of Typing Environments:
I

= environment entry
a type variable
a<: o subtype (@ # ')
alT name of a typed channel
x:T variable

S=UY, . environment

dom(a) ={a}

dom(o <: o) = {a, 0

dom(alT)={a}

dom(x:T)={x

dom(ly,...,Uy) =dom(uy)U---Udom(y,)

recvar):7{06, "(a<:a')eE}U{a|(a:Vv)EE} |

The type system consists of five inductively defined judgments.

IJudgments: |
Eto E is syntactically well-formed

E-T in E, type T is syntactically well-formed
EFC formula C is derivable from E

EFT < U in E, type T is a subtype of type U

|E FA:T in E, expression A has type T

Rules of Well-Formedness and Deduction:
I
(Env Empty) (Env Entry)

(Type)
Eto
fafv(u) C dom(E) EtFo

dom(i) "dom(E) = & fufv(T) C dom(E)

Io Euto EFT
(Derive)
Ero fufv(C) Cdom(E) forms(E)FC
EFC
forms(E) =
{C{y/x}}Uforms(y:T) ifE=(y:x:T{C})
forms(Ey)Uforms(Ey) if E = (E,Ep)
@ otherwise
L]
General Rules:
I 1
(Sub Refl)
EFT recvar(E)Nfufv(T) = @
EFT < T
(Val Var) (Exp Subsum)
Eto (x:T)EE EFA:T EFT<T
Ebx:T EFA:T
(Exp Eq)

E-M:T EFN:U x¢fv(M,N)

EFM=N:{x:bool|(x=trueAM =N)V
(x=false A\AM # N)}

(Exp Assume) (Exp Assert)
EtFo fufv(C) C dom(E) EF-C

E-assume C: _:unit{C} EF assertC : unit

(Exp Let)
EFA:T Ex:THB:U x¢fU)

Etletx=AinB:U

2010/12/9

Rules for Unit Type:

I
(Sub Unit) (Val Unit)
Eto Eto

E b unit <:unit EF () : unit
|

Rules for Function Types:

I

(Sub Fun)

EFT <:T Ex:T'FU<U
EF(x:T—=U)<: (x:T' = U

(Val Fun)

Ex:THA:U
Etrfunx —>A: (x:T—=U)
(Exp Appl)

EF-M:(x:T—U) EEN:T
EFMN:U{N/x}

Rules for Pair Types:

I

(Sub Pair)

E-T<T Ex:THFU<U
EF(x:T*U)<:(x:T'xU")

(Val Pair)

E-M:T EFN:U{M/x}
EF(M,N):(x:TxU)

(Exp Split)

EFM:(x:T=U)

Ex:T,y:U,_:{(x,y) =M}FA:V

{xy}np(V) =2

Rules for Sums and Recursive Types:

I
(Sub Sum) (Sub Var)
EFT<T' EFU<U Ebo (a<dd)€EE

EF(T+U) < (T'+U") Eta<:d
(Sub Rec)
Ea<:od+-T<T a¢mi(T) o ¢fm(T)
E (rec a.T) <: (rec o'.T")
inl:(T,T+U) inr:(U, T+U) fold:(T{rec .T /a},rec c.T)
(Val Inl Inr Fold)
h:(T,U) EFM:T EFU
E-hM:U
(Exp Match Inl Inr Fold)
E-M:T h:(H,T)
Ex:H,_:{hx=M}+-A:U x¢&fU)
E, :{Vxhx#M}+-B:U
EFmatch M withh x — Aelse B: U
|

Rules for Refinement Types:

I

(Sub Refine Left)

Ebx:T{C} EFT<:T
EFx:T{C}<: T

(Val Refine)

E-M:T EFC{M/x}
EFM:x:T{C}

(Sub Refine Right)
EFT<:T' Ex:T-C

EFT <:x:T'{C}

25

Rules for Concurrency:

I(Epres)
E,alTHA:U a¢fmU)
EF(va)A:U
(Exp Send) (Exp Recv)
EF-M:T (alT)eE Evro (alT)€E
E+ a!M : unit Eta?:T
(Exp Fork)

E,_{A}FA:T E,_:{A|}FAy: D
E+ (A] "’Az) : T2
(va)A = (3a.A) - AT Ay = (A] ANA7)
letx=A;inA; =4, assume C =C
A = True if A matches no other rule
L

Let E be executable if and only if recvar(E) = @.
LEMMA 17 (Static Safety). If @ =S : T then S is statically safe.

PROPOSITION 18 (= Preserves Types). If E is executable and
EFA:TandA= A then EF-A': T.

PROPOSITION 19 (— Preserves Types). If E is executable, fv(A) =
O, and EFA:TandA — A’ then EFA': T.

THEOREM 6 If @ = A : T then A is safe.

References

M. Abadi. Secrecy by typing in security protocols. JACM, 46(5):749-786,
1999.

M. Backes, C. Hritcu, M. Maffei, and T. Tarrach. Type-checking imple-
mentations of protocols based on zero-knowledge proofs. In Workshop
on Foundations of Computer Security, 2009.

M. Backes, C. Hritcu, and M. Maffei. Union and intersection types for
secure protocol implementations. Unpublished draft, 2010. URL
http://www.infsec.cs.uni-saarland.de/~hritcu/
publications/rcf-and-or-cog-submitted.pdf.

M. Barbosa, R. Noad, D. Page, and N. P. Smart. First steps toward
a cryptography-aware language compiler. Available at http://
eprint.iacr.org/2005/160.pdf, 2005.

M. Bellare and C. Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. Jour-
nal of Cryptology, 21(4), 2008.

J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis.
Refinement types for secure implementations. Technical Report MSR—
TR-2008-118, Microsoft Research, 2008. A preliminary, abridged
version appears in the proceedings of CSF’08.

K. Bhargavan, C. Fournet, and A. D. Gordon. A semantics for web services
authentication. T'CS, 340(1):102-153, 2005.

K. Bhargavan, C. Fournet, and A. D. Gordon. Verified reference imple-
mentations of WS-Security protocols. In 3rd International Workshop
on Web Services and Formal Methods (WS-FM 2006), volume 4184 of
LNCS, pages 88-106. Springer, 2006.

K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu. Cryptographically
verified implementations for TLS. In ACM Conference on Computer and
Communications Security, pages 459-468, 2008a.

K. Bhargavan, C. Fournet, A. D. Gordon, and N. Swamy. Verified imple-
mentations of the Information Card federated identity-management pro-
tocol. In Proceedings of the ACM Symposium on Information, Computer
and Communications Security (ASIACCS’08), pages 123-135. ACM
Press, 2008b.

2010/12/9

http://www.infsec.cs.uni-saarland.de/~hritcu/publications/rcf-and-or-coq-submitted.pdf
http://www.infsec.cs.uni-saarland.de/~hritcu/publications/rcf-and-or-coq-submitted.pdf
http://eprint.iacr.org/2005/160.pdf
http://eprint.iacr.org/2005/160.pdf

K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Verified interoperable
implementations of security protocols. ACM TOPLAS, 31:5:1-5:61,
December 2008c.

K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, and J. J. Leifer. Cryp-
tographic protocol synthesis and verification for multiparty sessions. In
CSF, pages 124-140. IEEE Computer Society, 2009.

K. Bhargavan, C. Fournet, and N. Guts. Pre- and post-conditions for
security typechecking. Draft available from the authors, 2010.

B. Blanchet. An efficient cryptographic protocol verifier based on Prolog
rules. In IEEE Computer Security Foundations Workshop (CSFW’01),
pages 82-96, 2001.

B. Blanchet. A computationally sound mechanized prover for security
protocols. In IEEE Symposium on Security and Privacy, pages 140-154.
IEEE Computer Society, 2006.

S. Cantor, J. Kemp, R. Philpott, and E. Maler. Assertions and protocols for
the oasis security assertion markup language (saml) v2.0, 2005.

I. Cervesato, A. D. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad. Break-
ing and fixing public-key Kerberos. Information and Computation, 206
(2-4):402-424, 2008.

S. Chaki and A. Datta. ASPIER: An automated framework for verifying
security protocol implementations. In IEEE Computer Security Founda-
tions Symposium, pages 172—185, 2009.

E. Cohen. TAPS: A first-order verifier for cryptographic protocols. In /3th
1IEEE Computer Security Foundations Workshop, pages 144—158, 2000.

B. A. Davey and H. A. Priestley. Introduction to lattices and order. CUP,
1990.

L. de Moura and N. Bjgrner. Z3: An efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’08),
volume 4963 of LNCS, pages 337-340. Springer, 2008.

D. Dolev and A. Yao. On the security of public key protocols. [EEE
Transactions on Information Theory, IT-29(2):198-208, 1983.

D. Eastlake, J. Reagle, T. Imamura, B. Dillaway, and E. Si-
mon. XML Encryption Syntax and Processing, 2002a. W3C
Recommendation, at http://www.w3.0rg/TR/2002/
REC-xmlenc-core-20021210/.

D. Eastlake, J. Reagle, D. Solo, M. Bartel, J. Boyer, B. Fox, B. LaMac-
chia, and E. Simon. XML-Signature Syntax and Processing,
2002b. W3C Recommendation, at http://www.w3.o0rg/TR/
2002/REC-xmldsig-core-20020212/.

C. Flanagan. Hybrid type checking. In ACM Symposium on Principles of
Programming Languages (POPL’06), pages 245-256, 2006.

D. Gollmann. Authentication by correspondence. IEEE Journal on Selected
Areas in Communication, 21(1):88-95, 2003.

A. D. Gordon and C. Fournet. Principles and applications of refine-
ment types. Technical Report MSR-TR-2009-147, Microsoft Research,
2009. To appear in the proceedings of the 2009 Marktoberdorf Summer
School.

A. D. Gordon and A. S. A. Jeffrey. Authenticity by typing for security
protocols. Journal of Computer Security, 11(4):451-521, 2003a.

A. D. Gordon and A. S. A. Jeffrey. Types and effects for asymmetric
cryptographic protocols. Journal of Computer Security, 12(3/4):435—
484,2003b.

J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on
real C code. In VMCAI’05, pages 363-379, 2005.

C. Gunter. Semantics of programming languages. MIT Press, 1992.

L. Jia, J. A. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr, and
S. Zdancewic. Aura: a programming language for authorization and
audit. In ICFP ’08: Proceeding of the 13th ACM SIGPLAN international
conference on Functional programming, pages 27-38, New York, NY,
USA, 2008. ACM. ISBN 978-1-59593-919-7. doi: http://doi.acm.org/
10.1145/1411204.1411212.

D. Kikuchi and N. Kobayashi. Type-based verification of correspondence
assertions for communication protocols. In APLAS, volume 4807 of
LNCS, pages 191-205. Springer, 2007.

26

E. Kleiner and A. W. Roscoe. On the relationship between web services
security and traditional protocols. In Mathematical Foundations of
Programming Semantics (MFPS XXI), 2005.

K. W. Knowles and C. Flanagan. Type reconstruction for general refinement
types. In ESOP, volume 4421 of LNCS, pages 505-519. Springer, 2007.

J. Lewis. Cryptol: specification, implementation and verification of high-
grade cryptographic applications. In FMSE ’07: Proceedings of the 2007
ACM workshop on Formal methods in security engineering, page 41.
ACM, 2007.

G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In TACAS, volume 1055 of Lecture Notes in Computer
Science, pages 147-166. Springer, 1996.

S. Lukell, C. Veldman, and A. C. M. Hutchison. Automated attack analysis
and code generation in a multi-dimensional security protocol engineer-
ing framework. In Southern African Telecommunication Networks and
Applications Conference (SATNAC), 2003.

J. H. Morris, Jr. Protection in programming languages. Commun. ACM, 16
(1):15-21, 1973.

A. Mukhamedov, A. D. Gordon, and M. Ryan. Towards a verified reference
implementation of a Trusted Platform Module. In Seventeenth Inter-
national Workshop on Security Protocols, LNCS. Springer, 2009. To
appear.

F. Muller and J. Millen. Cryptographic protocol generation from CAPSL.
Technical Report SRI-CSL-01-07, SRI, 2001.

A.Nanda. A Technical Reference for the Information Card Profile V1.0. Mi-
crosoft Corporation, December 2006. At http://go.microsoft.
com/fwlink/?LinkId=87444.

R. Needham and M. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12):993-999, 1978.

N. O’Shea. Using Elyjah to analyse Java implementations of cryptographic
protocols. In FCS-ARSPA-WITS 08, pages 211-226, 2008.

D. Otway and O. Rees. Efficient and timely mutual authentication. Oper-
ating Systems Review, 21(1):8-10, Jan. 1987.

L. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6:85-128, 1998.

L. C. Paulson. Logic and proof. University of Cambridge lecture notes,
2008.

A. Perrig, D. Song, and D. Phan. AGVI — automatic generation, verifica-
tion, and implementation of security protocols. In /3th Conference on
Computer Aided Verification (CAV), LNCS, pages 241-245. Springer,
2001.

L. Pike, M. Shields, and J. Matthews. A verifying core for a cryptographic
language compiler. In ACL2 '06: Proceedings of the sixth international
workshop on the ACL2 theorem prover and its applications, pages 1-10,
2006.

A. Pironti. Sound Automatic Implementation Generation and Monitoring of
Security Protocol Implementations from Verified Formal Specifications.
PhD thesis, University of Turin, 2010.

G. D. Plotkin. Denotational semantics with partial functions. Unpublished
lecture notes, CSLI, Stanford University, July 1985.

E. Poll and A. Schubert. Verifying an implementation of SSH. In WITS 07,
pages 164-177, 2007.

D. Pozza, R. Sisto, and L. Durante. Spi2Java: automatic cryptographic pro-
tocol Java code generation from spi calculus. In /8th International Con-
ference on Advanced Information Networking and Applications (AINA
2004), volume 1, pages 400—405, 2004.

P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In Program-
ming Language Design and Implementation (PLDI’08), pages 159—169.
ACM, 2008.

A. Sabry and M. Felleisen. Reasoning about programs in continuation-
passing style. LISP and Symbolic Computation, 6(3—4):289-360, 1993.

E. Sumii and B. Pierce. A bisimulation for dynamic sealing. TCS, 375
(1-3):169-192, 2007. Extended abstract at POPL’04.

2010/12/9

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://go.microsoft.com/fwlink/?LinkId=87444
http://go.microsoft.com/fwlink/?LinkId=87444

N.

N.

Swamy, B. J. Corcoran, and M. Hicks. Fable: A language for enforcing
user-defined security policies. In IEEE Symposium on Security and
Privacy, pages 369-383, 2008.

Swamy, J. Chen, and R. Chugh. Enforcing stateful authorization and
information flow policies in fine. In ESOP, pages 529-549, 2010.

T. Terauchi. Dependent types from counterexamples. In ACM Symposium

on Principles of Programming Languages (POPL’10), pages 119-130,
2010.
Udrea, C. Lumezanu, and J. S. Foster. Rule-based static analysis of

network protocol implementations. Inf. Comput., 206(2-4):130-157,
2008.

. Unno and N. Kobayashi. Dependent type inference with interpolants.

In PPDP ’09: Proceedings of the 11th ACM SIGPLAN conference on
Principles and practice of declarative programming, pages 277-288,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-568-0. doi:
http://doi.acm.org/10.1145/1599410.1599445.

Xi. Dependent ml an approach to practical programming with dependent
types. J. Funct. Program., 17(2):215-286, 2007.

27

2010/12/9

	Introduction
	RCF, the Formal Foundation for F7 (Review)
	Invariants for Authenticated RPCs (Example)
	Informal Description
	Adding Events and Assertions
	Implementing the RPC Protocol
	Modelling the Opponent
	Refinement-Typed Interface for MACs
	Logical Invariants for the RPC Protocol
	Refinement Types for the RPC Protocol

	Semantic Safety by Modular Typing
	Syntactic Safety by Typing (Review)
	Inductive Definitions and Semantic Safety by Typing
	A Simple Formalization of Modules
	Refined Modules
	Composition of Refined Modules
	Safety and Robust Safety by Typing for Modules

	Library Modules for Cryptographic Protocols
	Key Management
	Authenticated Encryption
	Hybrid encryption
	Derived Keys
	Endorsing Signatures
	Example: The Otway-Rees Protocol
	Example: Secure Conversations

	Case Study: Windows CardSpace
	Performance Evaluation
	Related Work
	Conclusions
	The Core Library (Lib)
	Strings and Byte Arrays
	Cryptographic Keys
	Encodings: Strings, Unicode, and Base64
	Concatenation
	Fresh Bytes
	Nonces
	Message Authentication Codes (MACs)
	Network Operations
	Proofs of Lemmas 6 and 7

	The Library Principals
	Public and Private Key Pairs
	MAC Keys
	Symmetric Encryption Keys

	Refined Concurrent FPC (RCF)
	Authorization Logics
	Expressions, Evaluation, and Safety
	A Type System for Safety

