


LIQ𝑈𝑖|⟩
Programming a Quantum Computer
Dave Wecker

QuArC Chief Architect, Microsoft Research



Quantum Computing in the Media



• Nitrogen Fixation:

– Making fertilizer uses a process from 1909 and uses lots of energy (400𝑜C/200 atm)

– Cost: 3-5% of the worlds natural gas production (1-2% of the world’s annual energy)

– Design of a new catalyst would take ~100-200 qubits (inexpensive fertilizer)

• Carbon Capture:

– Cost: Capturing at point sources will result in 21-90% increase in energy cost

– Design a new catalyst to extract 𝐶𝑂2 from the air would take ~200-400 qubits

• Design of new chemicals and materials:

– Today 1/3 of all supercomputing time is spent on chemistry and materials modeling

– Designs that can never be done classically are solvable with a few hundred qubits

– Pharmaceuticals, High temperature Super Conductors (energy, transportation…)

• Example: gain back current 6.5% transmission loss in power lines

A Little Motivation



Basic unit: bit = 0 or 1

A qubit lies on the surface of what is 

known as the Bloch sphere:

Classical vs. Quantum Computing

Basic unit: qubit = unit vector 𝛼 0 + 𝛽|1⟩

𝛼, 𝛽 are complex values ( 𝛼 2 + 𝛽 2 = 1)

The Z coordinate is north-south and is our 

computational basis (what we can measure)

When we read a qubit we get a single bit

Probability based on position along the Z 

axis (how close are we to |0⟩ or |1⟩ ?)

If we’re on the equator we have a 50/50 

probability of measuring a 0 or a 1



Basic unit: bit = 0 or 1

Computing: logical operation

Classical vs. Quantum Computing

Basic unit: qubit = unit vector 𝛼 0 + 𝛽 1

Computing: unitary operation

0 1
1 0

𝛼
𝛽 =

𝛽
𝛼



Basic unit: bit = 0 or 1

Computing: logical operation

Description: truth table

Classical vs. Quantum Computing

Basic unit: qubit = unit vector 𝛼 0 + 𝛽 1

Computing: unitary operation

Description: unitary matrix

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

XOR gate CNOT gate



Basic unit: bit = 0 or 1

Computing: logical operation

Description: truth table

Direction: Most gates only run forward

Copying: Independent copies are easy

Noise: Manageable with minimal ECC

Input/Output: Linear

Storage: n bits hold 1 value from 0 to 2𝑛 − 1

Computation: 

An n-bit ALU: 1 operation/cycle

Classical vs. Quantum Computing

Basic unit: qubit = unit vector 𝛼 0 + 𝛽 1

Computing: unitary operation

Description: unitary matrix

Direction: Most gates are reversible (matrices)

Copying: Independent copies are impossible

Noise: Difficult to overcome. Sophisticated QECC

Input: Linear, Output: Probabilistic (sub-linear)

Storage: n qubits can hold 2𝑛 values

Computation: 

An n-qubit ALU: 2𝑛 operations/cycle



Quantum Technologies

Topological

Ion 
traps

Super-
conductors

NV centers Quantum 
dots

Linear 
optics 



The LIQ𝑈𝑖|⟩ Simulation Platform

Client Service Cloud

F# Script

Gates …

Universal Stabilizer Hamiltonian

Circuit

Optimize Render…Export

C#

Classical Quantum

QECC Rewrite

Simulators

Language

Runtime Back End …

Noise



Recent paper on LIQ𝑈𝑖|⟩

LIQUi|>: A Software Design Architecture and Domain-Specific 

Language for Quantum Computing.  Dave Wecker, Krysta M. Svore

Languages, compilers, and computer-aided design tools will be essential for 

scalable quantum computing, which promises an exponential leap in our 

ability to execute complex tasks. LIQUi|> is a modular software architecture 

designed to control quantum hardware. It enables easy programming, 

compilation, and simulation of quantum algorithms and circuits, and is 

independent of a specific quantum architecture. LIQUi|> contains an 

embedded, domain-specific language designed for programming quantum 

algorithms, with F# as the host language. It also allows the extraction of a 

circuit data structure that can be used for optimization, rendering, or 

translation. The circuit can also be exported to external hardware and 

software environments. Two different simulation environments are available 

to the user which allow a trade-off between number of qubits and class of 

operations. LIQUi|> has been implemented on a wide range of runtimes as 

back-ends with a single user front-end. We describe the significant 

components of the design architecture and how to express any given 

quantum algorithm. 

http://arxiv.org/abs/1402.4467

http://arxiv.org/abs/1402.4467


Efficient quantum implementation language

let entangle (qs:Qubits) =
H qs; let q0  = qs.Head
for q in qs.Tail do CNOT[q0;q]
M >< qs

0:0000.0/#### Iter 0 [  0.2030]: 0000000000000
0:0000.0/#### Iter 1 [  0.1186]: 0000000000000
0:0000.0/#### Iter 2 [  0.0895]: 0000000000000
0:0000.0/#### Iter 3 [  0.0749]: 0000000000000
0:0000.0/#### Iter 4 [  0.0664]: 1111111111111
0:0000.0/#### Iter 5 [  0.0597]: 0000000000000
0:0000.0/#### Iter 6 [  0.0550]: 1111111111111
0:0000.0/#### Iter 7 [  0.0512]: 0000000000000
0:0000.0/#### Iter 8 [  0.0484]: 0000000000000
0:0000.0/#### Iter 9 [  0.0463]: 0000000000000
0:0000.0/#### Iter 10 [  0.0446]: 0000000000000
0:0000.0/#### Iter 11 [  0.0432]: 1111111111111
0:0000.0/#### Iter 12 [  0.0420]: 0000000000000
0:0000.0/#### Iter 13 [  0.0410]: 0000000000000
0:0000.0/#### Iter 14 [  0.0402]: 0000000000000
0:0000.0/#### Iter 15 [  0.0399]: 0000000000000
0:0000.0/#### Iter 16 [  0.0392]: 1111111111111
0:0000.0/#### Iter 17 [  0.0387]: 1111111111111
0:0000.0/#### Iter 18 [  0.0380]: 0000000000000
0:0000.0/#### Iter 19 [  0.0374]: 1111111111111



User definition of a gate

/// <summary>
/// Controlled NOT gate
/// </summary>
/// <param name="qs"> Use first two qubits for gate</param>
[<LQD>]
let CNOT (qs:Qubits) =

let gate =
Gate.Build("CNOT",fun () ->

new Gate(
Name    = "CNOT",
Help    = "Controlled NOT",
Mat     = CSMat(4,[(0,0,1.,0.);(1,1,1.,0.);

(2,3,1.,0.);(3,2,1.,0.)]),
Draw    = "\\ctrl{#1}\\go[#1]\\targ"

))
gate.Run qs



Shor’s algorithm: Full Circuit: 

4 bits ≅ 8200 gates

Circuit for Shor’s algorithm using 2n+3 qubits – Stéphane Beauregard

Largest we’ve done:

14 bits (factoring 8193)

14 Million Gates

30 days



QFT' bs // Inverse QFT

X [bMx] // Flip top bit

CNOT [bMx;anc] // Reset Ancilla to |0⟩
X [bMx] // Flip top bit back

QFT bs // QFT back 

CCAdd a cbs // Finally get Φ|𝑎 + 𝑏 𝑚𝑜𝑑 𝑁⟩

let op (qs:Qubits) =

CCAdd a cbs // Add a to Φ|𝑏⟩
AddA' N bs // Sub N from Φ|𝑎 + 𝑏⟩
QFT' bs // Inverse QFT of Φ|𝑎 + 𝑏 − 𝑁⟩
CNOT [bMx;anc] // Save top bit in Ancilla

QFT bs // QFT of a+b-N

CAddA N (anc :: bs) // Add back N if negative

CCAdd' a cbs // Subtract a from Φ|𝑎 + 𝑏 𝑚𝑜𝑑 𝑁⟩

Shor’s algorithm: Modular Adder

As defined in: 

Circuit for Shor’s

algorithm using 2n+3 qubits

– Stéphane Beauregard



Shor’s algorithm results



• LIQ𝑈𝑖|⟩ has a user extensible module allowing circuits to be re-written automatically 

with logical qubits representing many physical qubits (may be a 1000:1 ratio).

• Quantum codes are very analogous to classical codes, protecting from various kinds 

of noise (one of the reasons we run at such low temperatures).

• Operations are performed on all the physical qubits making up a logical qubit and 

then are tested and fixed on a regular basis.

• Errors can occur in many ways and solutions are a large area of quantum computing 

research.

• Codes may also be limited by the geometry of the physical qubits (e.g., laid out in a 

2D sheet) leading to “surface codes”.

QECC: Quantum Error Correction Codes



Full Teleport Circuit in a Steane7 Code

3 qubits go to 27



Spin-Glass Models 𝐻 𝑡 = Γ 𝑡  

𝑖=1

𝑁

Δ𝑖𝜎𝑖
𝑥 + Λ 𝑡  

𝑖=1

𝑁

ℎ𝑖𝜎𝑖
𝑧 +  

𝑖,𝑗=1

𝑁

𝐽𝑖𝑗𝜎𝑖
𝑧𝜎𝑗
𝑧

Quantum annealing with more than one hundred qubits: 

Sergio Boixo, Troels F. Rønnow, Sergei V. Isakov, Zhihui Wang, 

David Wecker, Daniel A. Lidar, John M. Martinis, Matthias Troyer

Quantum technology is maturing to the point where quantum 

devices, such as quantum communication systems, quantum 

random number generators and quantum simulators, may be built 

with capabilities exceeding classical computers. A quantum 

annealer, in particular, solves hard optimization problems by 

evolving a known initial configuration at non-zero temperature 

towards the ground state of a Hamiltonian encoding a given 

problem. Here, we present results from experiments on a 108 

qubit D-Wave One device based on superconducting flux qubits. 

The strong correlations between the device and a simulated 

quantum annealer, in contrast with weak correlations between the 

device and classical annealing or classical spin dynamics, 

demonstrate that the device performs quantum annealing. We 

find additional evidence for quantum annealing in the form of 

small-gap avoided level crossings characterizing the hard 

problems. To assess the computational power of the device we 

compare it to optimized classical algorithms. 

http://arxiv.org/abs/1304.4595

Defining and detecting quantum speedup: Troels F. Rønnow, Zhihui 

Wang, Joshua Job, Sergio Boixo, Sergei V. Isakov, David Wecker, John 

M. Martinis, Daniel A. Lidar, Matthias Troyer

The development of small-scale digital and analog quantum devices 

raises the question of how to fairly assess and compare the 

computational power of classical and quantum devices, and of how to 

detect quantum speedup. Here we show how to define and measure 

quantum speedup in various scenarios, and how to avoid pitfalls that 

might mask or fake quantum speedup. We illustrate our discussion with 

data from a randomized benchmark test on a D-Wave Two device with 

up to 503 qubits. Comparing the performance of the device on random 

spin glass instances with limited precision to simulated classical and 

quantum annealers, we find no evidence of quantum speedup when the 

entire data set is considered, and obtain inconclusive results when 

comparing subsets of instances on an instance-by-instance basis. Our 

results for one particular benchmark do not rule out the possibility of 

speedup for other classes of problems and illustrate that quantum 

speedup is elusive and can depend on the question posed. 

http://arxiv.org/abs/1401.2910

http://arxiv.org/abs/1304.4595
http://arxiv.org/abs/1401.2910


• Start with a standard stochastic probability matrix for PageRank (G)

• Define a Hamiltonian: ℋ = 𝕀 − 𝐺 † 𝕀 − 𝐺

• Convert to a Unitary: 𝑈 = 𝑒−𝑖ℋ

• Evolve from a starting state of the static probabilities (or perform an adiabatic 

evolution in a 2nd quantized form)

• Accumulate average probabilities of evolving state vector

• Example: Synthetic web graph (recursive matrix definition) of 256 pages takes 8 

qubits

Quantum Walks (PageRank example)

Adiabatic quantum algorithm for search engine ranking

Garnerone, Zanardi, Lidar (arXiv.org/1109.6546)



Translating classical algorithms is usually not the best approach:

1. You have to load all the data (at least linear time)

2. You have to process the data (may be exponentially faster)

3. You get to read-out one number as an answer (which is probabilistic)

4. Want another answer? Go back to step 1

However….

• Quantum algorithm for solving linear systems of equations (http://arxiv.org/abs/0811.3171)

• Example of building a machine learning model (efficient to build, terrible to read the model out)

• Preconditioned quantum linear system algorithm (http://arxiv.org/abs/1301.2340)

• Example of asking the right question (don’t ask for the model, use it)

• True exponential speed up – if you can come up with the right circuit for finding inverse eigenvalues 

and pick various critical parameters

• Implemented in LIQ𝑈𝑖|⟩. Ongoing research to do full general solutions

Machine Learning

http://arxiv.org/abs/0811.3171
http://arxiv.org/abs/1301.2340


Can quantum chemistry be performed on a small quantum 

computer: Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B. 

Hastings, Matthias Troyer

As quantum computing technology improves and quantum 

computers with a small but non-trivial number of N > 100 qubits 

appear feasible in the near future the question of possible 

applications of small quantum computers gains importance. One 

frequently mentioned application is Feynman's original proposal of 

simulating quantum systems, and in particular the electronic 

structure of molecules and materials. In this paper, we analyze the 

computational requirements for one of the standard algorithms to 

perform quantum chemistry on a quantum computer. We focus on 

the quantum resources required to find the ground state of a 

molecule twice as large as what current classical computers can 

solve exactly. We find that while such a problem requires about a 

ten-fold increase in the number of qubits over current technology, 

the required increase in the number of gates that can be coherently 

executed is many orders of magnitude larger. This suggests that for 

quantum computation to become useful for quantum chemistry 

problems, drastic algorithmic improvements will be needed. 

Improving Quantum Algorithms for Quantum Chemistry: M. B. 

Hastings, D. Wecker, B. Bauer, M. Troyer

We present several improvements to the standard Trotter-Suzuki based 

algorithms used in the simulation of quantum chemistry on a quantum 

computer. First, we modify how Jordan-Wigner transformations are 

implemented to reduce their cost from linear or logarithmic in the 

number of orbitals to a constant. Our modification does not require 

additional ancilla qubits. Then, we demonstrate how many operations 

can be parallelized, leading to a further linear decrease in the parallel 

depth of the circuit, at the cost of a small constant factor increase in 

number of qubits required. Thirdly, we modify the term order in the 

Trotter-Suzuki decomposition, significantly reducing the error at given 

Trotter-Suzuki timestep. A final improvement modifies the Hamiltonian 

to reduce errors introduced by the non-zero Trotter-Suzuki timestep. 

All of these techniques are validated using numerical simulation and 

detailed gate counts are given for realistic molecules. 

http://arxiv.org/abs/1312.1695

http://arxiv.org/abs/1403.1539

The Trotter Step Size Required for Accurate Quantum Simulation of Quantum Chemistry

David Poulin, M. B. Hastings, Dave Wecker, Nathan Wiebe, Andrew C. Doherty, Matthias Troyer

The simulation of molecules is a widely anticipated application of quantum computers. 

However, recent studies \cite{WBCH13a,HWBT14a} have cast a shadow on this hope by 

revealing that the complexity in gate count of such simulations increases with the number of 

spin orbitals N as N8, which becomes prohibitive even for molecules of modest size N∼100. 

This study was partly based on a scaling analysis of the Trotter step required for an ensemble 

of random artificial molecules. Here, we revisit this analysis and find instead that the scaling is 

closer to N6 in worst case for real model molecules we have studied, indicating that the 

random ensemble fails to accurately capture the statistical properties of real-world molecules. 

Actual scaling may be significantly better than this due to averaging effects. We then present 

an alternative simulation scheme and show that it can sometimes outperform existing schemes, 

but that this possibility depends crucially on the details of the simulated molecule. We obtain 

further improvements using a version of the coalescing scheme of \cite{WBCH13a}; this scheme 

is based on using different Trotter steps for different terms. The method we use to bound the 

complexity of simulating a given molecule is efficient, in contrast to the approach of 

\cite{WBCH13a,HWBT14a} which relied on exponentially costly classical exact simulation. 

http://arxiv.org/abs/1406.4920

Quantum Chemistry 𝐻 = 

𝑝𝑞

ℎ𝑝𝑞𝑎𝑝
†𝑎𝑞 +

1

2
 

𝑝𝑞𝑟𝑠

ℎ𝑝𝑞𝑟𝑠 𝑎𝑝
†𝑎𝑞
†𝑎𝑟𝑎𝑠

Ferredoxin (𝐹𝑒2𝑆2) used in many metabolic reactions 

including energy transport in photosynthesis

 Intractable on a classical computer

 First paper:      ~300 million years to solve

 Second paper: ~30   years to solve (107 reduction)

 Third paper:    ~300 seconds to solve (another 103 reduction)

http://arxiv.org/abs/1312.1695
http://arxiv.org/abs/1403.1539
http://arxiv.org/abs/1406.4920


Quantum Chemistry 𝐻 = 

𝑝𝑞

ℎ𝑝𝑞𝑎𝑝
†𝑎𝑞 +

1

2
 

𝑝𝑞𝑟𝑠

ℎ𝑝𝑞𝑟𝑠 𝑎𝑝
†𝑎𝑞
†𝑎𝑟𝑎𝑠



𝐻 = − 

⟨𝑖,𝑗⟩

 

𝜎

𝑡𝑖𝑗 𝑐𝑖,𝜎
† 𝑐𝑗,𝜎 + 𝑐𝑗,𝜎

† 𝑐𝑖,𝜎 +𝑈 

𝑖

𝑛𝑖,↑𝑛𝑖,↓ + 

𝑖

𝜖𝑖𝜂𝑖

Designing High Temperature Superconductors

General Circuit Kinetic Energy Measurement

Fermionic Permutations

Basis 

Change

See: d-wave resonating valence bond states of fermionic atoms in optical lattices



let QFT (qs : Qs) =

let n = qs.Length - 1

for i = 0 to n do

let q = qs.[i]

H q

for j = (i + 1) to n do

let theta = 2.0 * Math.PI / 

float(1 <<< (j - i + 1))

CRz theta qs.[ j] q

for i = 0 to ((n - 1) / 2) do

SWAP qs.[i] qs.[n - i]

let QftOp = compile QFT

let QftOp’ = adjoint QftOp

LIQ𝑈𝑖|⟩ for Compilation onto Hardware



Dave Wecker

QuArC Chief Architect

Microsoft Corporation

Thank You

Referenced papers may be found at:

http://research.microsoft.com/QuArC

http://arxiv.org/find/all/1/wecker_d

http://research.microsoft.com/QuArC
http://arxiv.org/find/all/1/wecker_d


Microsoft Privacy Policy statement applies to all information collected. Read at research.microsoft.com  

Save the planet and return 
your name badge before you 

leave (on Tuesday) 




