
uLink: Enabling User-Defined Deep Linking to App Content

Tanzirul Azim∗

University of California, Riverside
Oriana Riva

Microsoft Research
Suman Nath

Microsoft Research

ABSTRACT
Web deep links are instrumental to many fundamental user expe-
riences such as navigating to one web page from another, book-
marking a page, or sharing it with others. Such experiences are
not possible with individual pages inside mobile apps, since histor-
ically mobile apps did not have links equivalent to web deep links.
Mobile deep links, introduced in recent years, still lack many im-
portant properties of web deep links. Unlike web links, mobile
deep links need significant developer effort, cover a small number
of predefined pages, and are defined statically to navigate to a page
for a given link, but not to dynamically generate a link for a given
page. We propose uLink, a novel deep linking mechanism that ad-
dresses these problems. uLink is implemented as an application li-
brary, which transparently tracks data- and UI-event-dependencies
of app pages, and encodes the information in links to the pages;
when a link is invoked, the information is utilized to recreate the
target page quickly and accurately. uLink also employs techniques,
based on static and dynamic analysis of the app, that can provide
feedback to users about whether a link may break in the future due
to, e.g., modifications of external resources such as a file the link
depends on. We have implemented uLink on Android. Our eval-
uation with 34 (of 1000 most downloaded) Android apps shows
that compared to existing mobile deep links, uLink requires min-
imal developer effort, achieves significantly higher coverage, and
can provide accurate user feedback on a broken link.

1. INTRODUCTION
In the web, deep linking refers to the use of hyperlinks to a specific
piece of web content (e.g., http://ulink.com/code/) on a website (e.g.,
http://ulink.com). Web deep links are instrumental to many funda-
mental user experiences: navigating to one web page from another,
bookmarking it, and sharing it with others. They have also been
crucial for many important services; for example, search engines
use deep links to crawl web pages and to map search results to ap-
propriate landing pages. Historically, mobile apps did not have any
equivalent deep links, making the aforementioned tasks impossible
for individual pages within the apps. As VentureBeat rightly put,
∗Work done while at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiSys’16, June 25–30, 2016, Singapore.
c© 2016 ACM. ISBN 978-1-4503-4269-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2906388.2906416

“Imagine a web without URLs. That’s what the mobile app world
looks like now [July, 2014]” [42].

To address this, mobile deep links have been introduced in recent
years [6,7,10,39]. Mobile deep links are URIs that point to specific
locations within apps. A mobile deep link can launch an already
installed app on a user’s mobile device (similar to loading the home
page of a website) or it can directly open a specific location within
the app (similar to deep linking to an arbitrary web page). For
example, the URI fandango://thelegomovie_159272/movieoverview
directly navigates to the page with the details of the “The Lego
Movie” in the Fandango app. Today, all major mobile platforms,
including Android, iOS, and Windows, support mobile deep links.

Even though mobile deep linking is an important first step to-
wards randomly accessing any arbitrary location within an app, it
lacks many useful properties of web deep linking. First, unlike web
deep links, mobile deep links require nontrivial developer effort–
several lines of codes per deep link—resulting in a low adoption
rate even within the top apps [40]. Second, unlike its web coun-
terpart, mobile deep links have poor coverage—a small number of
locations within an app, predefined by the developer, are directly
accessible via deep links (details in §2.3). Finally, today’s deep
links are defined statically by developers to facilitate navigation to
a target page given its link; the dual process of dynamically deter-
mining the link for a given page is not possible even if a deep link
to that page exists.

In this paper we propose uLink, a lightweight approach that ad-
dresses the above problems. uLink is compatible with existing mo-
bile deep links (i.e., the underlying mobile OS handles them in the
same way); but it requires minimal developer effort, it supports dy-
namic link creation, and it achieves significantly higher coverage
than existing mobile deep links. All this enables many novel user
experiences that so far existed only in the web world.

One key challenge uLink addresses is improving coverage—
creating links to any app location (referred to as app view or view
hereafter), including to the ones that depend on previous views or
on user interactions. uLink uses two key mechanisms. The first
mechanism is shortcut. uLink continuously monitors for explicit
data dependency between successive runtime views in an app. In
Figure 1, view (a) launches view (b), by providing the location
“New York, NY” selected by the user in (a). In some cases, e.g., if
(a) and (b) are separate Android activities (i.e., pages), uLink can
transparently capture the data transferred from (a) to (b) and en-
code it in the link to (b). This allows uLink to quickly invoke the
link to go to (b), without first going to (a). More importantly, it im-
proves coverage to views that depend on data from previous views
(location in this example).

Shortcuts do not cover all app views. The view shown in Fig-
ure 1(c) is created when the user taps on the “POLLEN” tab, and

(a) An independent view (b) A view dependent on a
previous view

(c) A view dependent
on a UI action (tap on
“POLLEN” tab)

Figure 1. Examples of views uLink can support. Mobile deep links
can support only (a).

there is no explicit data transfer between (b) and (c) for uLink to
capture—both views are within the same Android activity. To cre-
ate links to such views, uLink uses a limited form of record and
replay. uLink continuously records UI actions in the current view,
and encodes them in the link (we call this a shortcut-and-replay
link). When the link is invoked, uLink first directly navigates to the
most recent shortcut-reachable view (e.g., (b) in Figure 1), and then
replays the UI actions to navigate to the target view.

uLink’s record and replay mechanism is different from exist-
ing record and replay techniques that have been successfully used
to repeatedly navigate to arbitrary locations of an application for
desktop, server [14, 21, 31, 33, 36, 44], web [29, 34], and mobile
platforms [19, 23]. Compared to traditional record and replay sys-
tems, uLink’s record and replay is (1) lightweight and universally
deployable—this is because it records and replays only UI events,
which, as we show later, is often sufficient to recreate a target view
with high fidelity; (2) fast—this is because uLink does not replay
a whole session; rather it replays UI events only after reaching
the most recent shortcut-reachable view; and (3) user-friendly—
during link creation, a user does not have to specify the starting
point of recording (it is implicitly given by the most recent shortcut-
reachable view), and, during link invocation, replay happens in the
background to give users a true click-and-go experience.

Another challenge uLink addresses is reducing developer effort.
uLink is implemented as a library that developers include in their
app. The library transparently interposes UI events and data depen-
dency between views with minimal developer effort. For shortcut-
only links, which are the only ones existing mobile deep links can
support, uLink needs only one line of code per page class of the
app (as opposed to tens of lines of code per deep link in existing
mobile deep links). For shortcut-and-replay links, which existing
mobile deep links do not support, developers need to write one line
of code per UI event handler. Our evaluation with existing apps
shows that the overall effort is minimal.

The final challenge uLink addresses is identifying links that may
not open correctly at some later point in time. This is not surprising
since even a full-featured record and replay tool may not guaran-
tee reproducibility of the target view due to many nondeterministic
factors. Broken links are common in the web as well. A link may
not open correctly e.g., if the target view opens a file that is deleted
after the link is saved, if a user is logged out from the app, or if
some UI events cannot be captured or replayed (e.g., Android does
not provide APIs for applying long taps on list items). However, it
is important that the user gets a consistent experience—when she

bookmarks a view, she should know whether she will be able to
open the saved link in the future or not, and if not, why it might fail.
A key contribution of this paper is to develop efficient techniques
to provide such user feedback when a link is saved or opened.

We have implemented uLink as an Android library and evalu-
ated it with 34 (of 1000 most downloaded) Android apps. While
existing mobile deep links require in the order of 20–30 LoC per
deep link, uLink can support shortcut-only links (a superset of deep
links) to all views in an app with an average of 8 LoC per app.
Overall, uLink achieved 70% links coverage and provided accurate
user feedback (especially for links with file system dependencies).
We also found that app links remain reasonably stable over time,
with new app versions and updates in app contents.

In summary, we make the following contributions. (1) We de-
velop uLink, a mobile app deep linking mechanism that requires
much less developer effort, but provides significantly more cover-
age than existing mobile deep linking. (2) We develop techniques
to predict if an app link may break in the future, and, if so, under
what conditions. (3) We evaluate uLink with 34 real apps.

2. MOTIVATION AND GOALS
In this section, we motivate the need for uLink, set our goals, and
review related work.

2.1 uLink in Action
We motivate uLink with a few concrete scenarios. Our goal here
is to demonstrate some of what uLink can enable. We leave de-
tails of its design, challenges, solution, and implementation to next
sections of the paper.
Developer experience. For ease of deployment, uLink is imple-
mented as a user-level library, similar to existing analytics libraries,
such as Localytics [30], Flurry [18], and Appsee [8]. The developer
includes the uLink library in the app, and this alone readily makes
the app uLink-enabled, with shortcut-only links (Figure 1(a) and
1(b)). To enable shortcut-and-replay links (Figure 1(c)), the devel-
oper adds one line of code in every UI event handler of the app.
uLink library and companion services. As the user uses a uLink-
enabled app, the uLink library continuously tracks explicit data
flow between app views (e.g., intents transferred between Android
activities) and UI events. At any point in time, the user can re-
quest a link to the current app view, e.g., by shaking the device in
our current implementation. An external companion service, typ-
ically a first-party service, can request to be notified each time a
user requests a new link or it can request uLink to automatically
create links to all views the user visits within specific types of apps
(e.g., all third party apps). Two such companion services we im-
plemented are: Bookmark, which stores all links the user wishes to
save and invoke later; and Stuff-I’ve-Seen, which indexes contents
and links to all app views the user visits and, like a web search en-
gine, allows the user to search app content and directly navigate to
content of interest using the associated link.
User experience. Here are few scenarios a user can experience
with a uLink-enabled app and companion services.
(1) In a recipe app, the user can bookmark any page containing
her favorite recipes. She can later invoke the saved links from the
Bookmark service to directly open each recipe page.1

(2) She can create macro-like links for frequent tasks in an app.
For example, in a library app, she can go to the “renew book” page,
1In theory, these bookmarks can also be shared with friends, in the same
way we share web links.

System Dynamic Convenience Coverage Dev Ease of
links effort deployment

Web URLs Yes High Good None Yes
Web macros Yes Low High None Yes
Mobile deep links No - Low Some Yes
App record&replay Yes Low High None No
uLink Yes High Good Little Yes

Table 1. uLink goals and comparison with the state-of-the-art.

select all books, extend the return date by one more month, and
finally hit the “renew” button, and create a link to capture the whole
sequence of actions. Later, she can invoke the saved link (from the
Bookmark service) to renew all her books with one single click.
(3) The Stuff-I’ve-Seen service runs in the background to index con-
tents of all app views the user visits (recipes, news articles, ho-
tels, etc.) along with their links. She can use the service to search
previously-seen content, such as a recipe she read in some app in
the past, and click on the link of the result to directly open it in the
app.

For implementations of these scenarios see §4.2.

2.2 uLink Goals
Our overall goal is to enable mobile deep links that are similar to
web deep links in terms of functionality and convenience. To pro-
vide useful and user-friendly links, uLink should satisfy the follow-
ing requirements: (1) A user should be able to create a link dynam-
ically, like web links, by specifying only the target app view. (2)
uLink should have good coverage—a user should be able to create
links to most, if not all, views of an app. (3) Invoking a link should
be fast, and it should produce a consistent app view, despite minor
changes in the app or its contents.

To be practical and reach a large population of smartphone users,
(1) uLink should require minimal developer effort to make an app
uLink-enabled. (2) uLink should incur minimal runtime overhead
and have no impact on the app experience. For ease of deployment,
uLink should not require changing the mobile OS or rooting the
device. (3) uLink should be compatible with existing mobile deep
links so that the underlying OS can offer the same user experience.
For example, if a user generates a link for an app and later uninstalls
the app and invokes the link, the OS will notice that the target app
is missing and will redirect the user to the app store to install the
app (this procedure is currently in place for deep links).

Ideally, uLink must capture correct links. Our notion of correct-
ness tries to be as close as possible to that of today’s web links. To
illustrate, we classify web links into three broad categories based
on how they behave.

• Client-side immutable links navigate to contents that re-
main the same, across devices, users, time and loca-
tion. For instance, http://www.dictionary.com/browse/uri?s=t
always points to the definition of the word “uri”.

• Client-side mutable links navigate to contents that may
change depending on: (1) user (e.g., a link to amazon.com
page showing personalized recommendation), (2) time (e.g.,
a link to a news web site showing current top stories), (3)
location or other sensors (e.g., a link to a weather web site
showing local weather), and (4) the device (e.g., a link to
the html5 web site https://www.picozu.com/ editing an image
from the local file system).

• Broken links fail to navigate to any useful web page. This
can happen if the original web page has been removed or
renamed. A mutable link can break too, e.g., due to unavail-

ability of some resources it depends on. For instance, a Face-
book URL, saved on a device where the user is logged in,
may fail when opened on a device where the user is currently
logged out.

In other words, web links are best effort—they may break or
may lead to contents that are different than the original contents.
uLink provides a similar best-effort experience for app links. Many
app links generated by uLink will be immutable and will always
navigate to the same content. At the same time, some app links
will be mutable and may show different contents based on current
location, time, user, and device. For instance, an app link to the
"Daily Top Stories" view of a news app will show different news
stories every day.

We also note that it may not always be obvious to a user whether
a link is mutable or not, and whether she should expect the con-
tent to remain unchanged. Consider the link to the app view in
Figure 1(b). Since the location information (“New York”) used
by the view is provided by the previous view and is captured
by uLink, the link generated by uLink will always show fore-
cast for New York, irrespective of the user’s current location. In
contrast, had the app been written such that the current location
was acquired dynamically by view Figure 1(b), the content of the
link would have been different at different locations. Such am-
biguity, however, is also common for web links. For instance,
both the links www.foreca.com/United_States/Washington/Seattle
and https://www.wunderground.com/ show weather information; but
the first link always shows the weather of Seattle, while the second
one shows the weather of the current location. We expect users to
adapt to mutable app links in the same way they adapt with their
web counterparts. For more discussion, see §7.

Finally, as in the web, app links may also break. uLink promptly
detects when a link cannot be safely saved or replayed, and pro-
vides detailed feedback to the user or to the application capturing
such links on the user behalf. Fundamentally, uLink cannot guar-
antee 100% coverage of an app’s views because of the deployment
constraints (minimal development effort and ease of deployment) it
must satisfy. In §3.3, we enumerate uLink’s possible failure cases,
and explain what the feedback contains.

2.3 Related Work
We compare uLink with other related approaches, and explain why
they are not sufficient to achieve our goals. Table 1 summarizes the
discussion below.
Mobile deep links. As mentioned in §1, existing mobile deep
links require nontrivial developer effort, have poor coverage, and
are statically defined; therefore they do not satisfy many of our
goals. We now elaborate on these limitations.

Mobile deep links require nontrivial developer effort. As an ex-
ample, the open source Wikipedia app for Android has one deep
link, and it requires 23 LoC to handle the associated intent. As a
consequence, a small number of mobile apps, even among the top
ones, expose deep links. An estimate by URX from 2014 says that
19% of the top 100 Android apps expose deep links (and only 11%
have deep links for Android, iOS and iPad [40]). To confirm, we
analyzed 13,848 Android apps downloaded in the month of May
2015 and covering all app categories.2 Figure 2 reports the CDF
of the number of deep links across apps.3 75% of the tested apps
2We counted deep links by looking in app manifest files for declarations of
intent filters complying with the Android specifications for deep links [3].
Our counts can be over-estimates, since we did not verify if the app actually
supports the deep links.
3The CDF excludes 0.25% of the apps which have more than 20 deep links.
The maximum was for a social forum app with 1503 deep links.

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

Number of deep links per app

Figure 2. Number of deep links in top 14k Android apps.

do not expose any deep link; confirming the URX estimate of less
than a quarter of apps having deep links.

Existing mobile deep links have poor coverage—a small number
of locations, predefined by developers, within an app are directly
accessible via deep links. As Figure 2 shows, 92% of the apps sup-
porting deep links (23% of the total apps we analyzed) expose 5 or
fewer deep links, indicating a small coverage. This is due to two
key reasons. Developer’s effort to support deep linking increases
almost linearly with the number of unique deep links, and hence
apps tend to expose very few deep links. It is unlikely that devel-
opers will open up all possible deep links in the app. Another more
fundamental reason is that while deep links are stateless, mobile
apps are stateful—an app’s current view may depend on data from
a previous view (e.g., location selected in a previous view) or as a
result of specific user interactions (e.g., doing a search, selecting
an item) on the current view. Thus, reaching the view may not be
possible without transferring states from previous views or with-
out applying the UI interactions. The stateful nature of apps also
implies that even if deep links are free and a developer includes
deep links to each and every page in an app and with a large num-
ber of supported input parameters, existing deep links, due to their
statelessness, would not be able to capture and preserve user data
generated in an app during interaction.

Finally, today’s deep links are defined statically by developers,
and must be known in advance to navigate to a target view; the dual
process of dynamically determining the link for a given view is not
possible even if a deep link to that view exists.

Record and replay. Record and replay techniques can record
macros that can later be replayed to navigate to an arbitrary lo-
cation of an application for desktop, server [14, 21, 31, 33, 36, 44],
web [4, 24, 28, 29, 34], and mobile platforms [19, 23]. One might
consider using such macros as links. A full blown record and replay
mechanism can generate dynamic links and can have very good
coverage, but it is not suitable to be augmented to support links for
several reasons. First, these systems are too heavyweight to be used
in the wild. Recording and replaying all sources of nondeterminism
has prohibitive costs on mobile devices [17] (e.g., special hardware
support or virtual machine instrumentation). There are tools that
successfully record and replay smartphone apps by relying only on
the sensor and UI event streams [19, 23], but they are still heavy-
weight and they require either a rooted phone or changes to the
mobile OS, thus limiting their applicability to consumers’ phones,
at scale. Second, record and replay can be slow, especially when
the user uses the app for a long period of time before arriving to
the current view, and hence the replay phase needs to replay many
user interactions. Finally, existing record and replay tools require
the user to explicitly specify when a recording starts and ends—
an unacceptable user experience when a user dynamically wants to
generate a link to the current app view (e.g., for bookmarking it).

Shortcut-only link

Shortcut-and-replay link

3ef6166c-c4f7-414a-b5dc-3171b886385c com.amazon.kindle

com.amazon.kcp.reader.StandAloneBookReaderActivity #Intent;launchF

lags=0x10000000;component=com.amazon.kindle/com.amazon.kcp.reader.St

andAloneBookReaderActivity;S.guid=3677b7ae-48e6-44ec-94de-

2f903adfcef2;B.is_book_read=false;end 1449695280292

3d809180-c373-4fbc-aee0-007c7c13530f me.lyft.android

me.lyft.android.ui.MainActivity #Intent;action=android.intent.action.MAI

N;category=android.intent.category.LAUNCHER;launchFlags=0x10600000;comp

onent=me.lyft.android/.ui.MainActivity;l.profile=0;end 1449695292100

{button_request_lyft, clickable_type}

Unique identifier

App name

Intent + input parametersTimestamp

UI events to replay

(resource id + resource type)

Activity name

Figure 3. Examples of shortcut-only and shortcut-and-replay links.

2.4 uLink Approach
We now briefly describe how uLink achieves the goals listed above;
the details will come in the next section. uLink is implemented as
a library that a developer includes in the app with minimal effort.
The library continuously monitors various data dependencies and
UI events of the current view so that, anytime, it can dynamically
create a link with the dependencies encoded in it. Figure 3 shows
two examples of links: the first link points to page 598 in a Kin-
dle book, and the second encodes the sequence of actions for re-
questing a lift in the Lyft app (the result is the dialog for entering
payment). After being saved, a link can later be invoked to quickly
access the view, by taking shortcuts to views that depend only on
data encoded in the link (e.g., book page), and/or by replaying, in
the background, the UI events encoded in the link (a clickable but-
ton in the second link in Figure 3). This approach gives uLink high
coverage of dependent views, which are not supported by existing
mobile deep links. The overhead of shortcut-and-replay links is
reduced by recording and replaying only UI events (button clicks,
checkbox selections, etc.), which, as we will show later, is suffi-
cient to recreate the target view with high fidelity, in many cases.

3. SYSTEM DESIGN
This section describes how uLink was designed to meet the afore-
mentioned goals: high coverage and speed (§3.2), while ensuring
minimal developer effort (§3.4).

3.1 Overview
Mobile apps consist of a set of pages, where each page typically
contains a set of UI elements such as buttons, checkboxes, lists,
or menus. Each UI element can have an associated event handler,
which is invoked when the element is interacted with. The whole of
a page may not be viewable to the user at once; we call a part of the
page shown in the current screen a view. A page may contain many
views: the default view is what is shown on the screen when the
user navigates to the page (Figure 1(b)), and the user can navigate
to a different view within the same page by UI interactions such
as selecting a tab (Figure 1(c)), choosing a date from a date picker
control, filling out a search box, or clicking on a search button. A
UI interaction can also lead from a view to the default view of a
separate page.

Mobile apps are stateful and pages/views can have state depen-
dencies. A page can use some data generated in a previous page.
For example, the page containing the view in Figure 1(b) needs the
location selected by the user in the previous page (in Figure 1(a)).

Link

creation

link = view URI + event listURIV3 + {e6, e7}

open(link)

Link execution

Page

launcher

Event

replay

...i6i5i4i3i2i1

V1 V3v2

URIV1 URIV2 URIV3

Get link to

here

Shortcut

generation

Link validationUI events

capture

getLink()

Page inputs

interception
uLink Query API

Figure 4. uLink system architecture.

A view can also depend on other views (e.g., one tab uses a flag set
in another tab). Finally, a view can also depend on the sequence
of UI actions starting from the default view. For example, the view
in Figure 1(c) is obtained by tapping on the “POLLEN” tab in the
default view.

Using this terminology, we identify three broad classes of links a
user may capture in an app (listed in increasing order of complexity
to support them). A user-defined link can link to the following
states in an app:

1. Stateless view: A view whose state does not depend on
states created in previous pages/views (e.g., a view showing
weather, as in Figure 1(a)). It can be created without any in-
put parameter, or with a set of statically-defined parameters
that do not depend on previous pages/views.

2. Stateful view: A view whose state depends on app states cre-
ated in previous pages (e.g., showing breathing forecast at a
location selected in the previous page, as in Figure 1(b).

3. UI-driven view: A view created by UI events generated on
the same page (e.g., Figure 1(c), created by tapping on the
“POLLEN” tab in Figure 1(b)).

Existing mobile deep links support stateless views only. They
can pass static parameters to target views, but cannot observe the
internal state of the app (i.e., they live outside the app). This is
precisely the reason why they cannot cover stateful or UI-driven
views that depend on states (e.g., location selected by the user) and
UI events (e.g., tapping on a particular tab) inside the app.

In contrast, uLink supports links to all the three types of views,
and thus achieves its high coverage goal. Figure 4 shows the entire
system architecture. In the following, we discuss the techniques we
propose for creating, executing, and validating links.

3.2 Improving View Coverage
We first describe how uLink supports links for stateful and UI-
driven views (not supported by deep links).

3.2.1 Links for stateful views

Stateful views depend on data from previous pages. By definition,
a link to a stateful view points to the default view of its page.

uLink uses a novel technique called shortcuts to generate links
to stateful views. We observe that a page in an app is usually in-
stantiated through a launcher method responsible for rendering the
page in the foreground (startActivity(intent,options) in Android and
prepareForSegue:(uiStoryboardSegue) in iOS). This method usu-
ally expects as input a description of the page to render and pos-
sibly other parameters, which are not known to processes external

to the app. This is equivalent to the query string in a web URL
(e.g., in https://uLink.com/index.php?title=uLink_details&action=edit
the query string is the part of the URI after ‘?’).

Our key insight is that uLink can program user-defined links by
demonstration: by observing how views are assembled during user
interaction (V1, V2 and V3 in Figure 4), uLink can learn how to
re-construct them. Specifically, uLink continuously intercepts all
messages (i1, i2, etc.) sent to the page launcher method, so to in-
fer message structures and input parameters necessary to render a
view. uLink encodes the message structure and input parameters in
a URI generated for the view (URIV 3). To open a saved link, the
uLink library simply invokes the page launcher method with prop-
erly structured messages assembled using the parameters stored in
the URI. In this way, uLink can shortcut to the default view of any
page in the app. We call these shortcut-only links.

Assuming the link is opened under the same conditions (e.g., file
system, sensors, and so forth) as when it was created, this approach
guarantees accurate and safe, stateful links. They are accurate be-
cause this approach is goal-oriented. When a user requests captur-
ing a link to the current view, the link is derived directly based on
what app state was provided to that view. They are safe because
this process does not risk breaking the program logic. We discuss
later what happens if the link is opened under conditions different
from those at creation time.

The above idea is simple and can be implemented by overloading
the launcher method of the framework page classes (e.g., startAc-
tivity method of Android Activity classes).

3.2.2 Links for UI-driven views
The above technique of intercepting data passed between pages
does not capture UI events within a page, and hence is not suffi-
cient to recreate a UI-driven view. To support such views, uLink
adopts a limited form of record and replay.

uLink continuously monitors UI events triggered during user in-
teractions, and associated event handlers that are fired. To reduce
overhead, uLink monitors UI events only in the current page; when
the user moves to a different page, the UI events of the previous
page are discarded. This approach does not compromise coverage
since uLink can directly navigate to the default view of the current
page by using a shortcut-only link to the (stateful) view. To create a
link to a UI-driven view, uLink encodes two pieces of information
in the link: (1) input parameters to launcher method of the current
page (same as shortcut-only links), and (2) UI events that lead the
user from the page’s default view to the current view. When the link
is invoked, uLink first launches the page’s default view by using its
input parameters, and then replays the UI events to navigate to the
target view. The UI events are replayed in the background, and
so the user sees the same click-and-go experience as shortcut-only
links. We call such links shortcut-and-replay links.

Mobile app contents can be dynamic. For example, suppose a
page’s default view shows a list of restaurants. User clicks on the
second item “Kabab Palace” to generate a view with the details and
menu of the restaurant, and saves a link to the view. Now suppose,
after a month, the app updates its contents, and the same restaurant
“Kabab Palace” appears as the fifth item in the list. To deal with
such changes, unlike traditional record and replay systems, uLink
prioritizes content over UI structure during replay—it will search
the list to find “Kabab Palace”; if it exists, uLink will click on it
irrespective of its position in the list. Only if “Kabab Palace” does
not appear in the list anymore, uLink will fall back to structural
replay and click on the second item of the list. Such fallback is
useful to deal with highly dynamic contents, such as a link to the
top news story, which may change frequently.

We also observe that compared to record and replay tools, this
approach does not require any recording start point, and it is much
faster. Imagine a task where a user searches through old news by
first entering some keywords and then specifying a date range, thus
landing on the view with the news matching the specified crite-
ria. The user wants to save a link to this view with the results. A
standard record and replay tool (i) would require the user to spec-
ify the task’s start point (i.e., the view where the keywords were
entered), and (ii) would replay every single user action, i.e., enter-
ing the search string, clicking on the Start date button, pressing the
search button, etc. Instead, uLink intercepts the inputs needed to
generate the search result page and, through a single function call,
loads the page. Then, only some, if any, UI events are replayed.

uLink does not need to record the time gaps between separate UI
events. Instead uLink replays the sequence of recorded UI events
such that each UI event is fired after the previous event has been
dispatched, as notified by the device framework (e.g., on Android
through the onUserInteraction callback). In this way, it is also pos-
sible to remove user-induced delays or idle periods.

On the other hand, uLink’s record and replay is limited compared
to existing record and replay systems: it captures only UI events
(button clicks, checkbox selections, etc.), which, as we will show
later, is sufficient in many cases. Capturing I/O and sensor access
operations would bring us closer to the ideal world of determinis-
tic replay, but monitoring these events would lead to unsupportable
overheads in terms of annotations that developers would have to
provide, in terms of OS modifications, or in terms of runtime over-
head. By capturing only UI events, uLink hits a sweet spot between
existing lightweight but low-coverage deep links and heavyweight
but high coverage full-blown record and replay.

3.2.3 Limitations

Since uLink captures only data passed through page launcher meth-
ods and UI events within a page, there will be cases where uLink
won’t be able to correctly open a saved link at a later point in time.
For example, consider an eReader app’s link that opens a book
(stored in the local device) at a specific page (saved in a config-
uration file). The link will fail if the book is removed from the
device, or it may lead to a different page of the book if the page
number in the configuration file is modified after the link is cre-
ated. As mentioned before, taking a snapshot of all resources that
a link might depend on can be prohibitively expensive.

To address this, uLink incorporates a feedback mechanism. In-
tuitively, uLink tracks all dependencies that it may fail to capture
in the link. This gives users, or applications on their behalf, an idea
about whether the link can be faithfully invoked in the future, and if
not, why. Using the feedback, users can rely on their own judgment
to decide how to use the link. Such feedback can also be useful to
deal with link ambiguity (§2.2). For example, while bookmarking a
link, uLink may notify the user that the current view depends on her
location, which uLink is not capturing in the link. Knowing this,
the user may or may not save the link in her favorites, depending
on whether she expects to invoke the link from a different location.

3.3 Link Validation
uLink provides feedback to users (or applications on their behalf)
at the time of link creation and of link execution. To be more con-
crete, suppose a user navigates from Page1 to Page2 of an app, and
wishes to create a link to Page2. Can the link be correctly invoked
later to see the same content? The answer depends on whether
the pages access any external resource such as a file (outside the

Page

1

file

r

Page

2

Page

1

Page

2

Page

1

file

Page

2
w

Page

1

Page

2

file
r

a) d)b) c)

Figure 5. uLink can replay correctly a link to Page2 in case a), c)
and d), and in case b) if the file doesn’t change after link creation.

parameters explicitly transferred from Page1 to Page2’s launcher
method). Let us consider the four cases in Figure 5, with different
dependencies from external resources.
Case (a) No external dependencies: uLink can correctly open
Page2, by providing the parameters stored in the link to the
launcher method of Page2.
Case (b) Page2 reads an external resource: (1) uLink may not be
able to correctly open Page2, or (2) it may be able to open the
page, but with potentially different content. This may happen if the
content of the external resource is modified after the link is created.
For example, if Page2 plays a specific music file from the local
device, a link to the page will fail if the music file is deleted from
the device. Similarly, if Page2 shows content of a local file, a link
to the page will show different content if the file is modified after
the link is created.
Case (c) Page2 writes an external resource: uLink can correctly
open Page2, since the content of the external resource does not
affect the content of Page2. So Page2 remains unaffected even if
the external resource is modified after the link is created.
Case (d) Page1 reads an external resource: uLink can correctly
open Page2. If the external resource somehow affects the content
of Page2, its value must propagate through the data passed from
Page1 to Page2, which uLink correctly captures. Note that, in or-
der to capture possible changes to the external resource that Page 1
depends on (which may affect the value passed to Page2), the refer-
ence to the value (e.g., filename) and not the value itself should be
passed from Page 1 to Page 2. Whether link arguments are passed
by value or by reference is up to the application, and links behave
accordingly.

Of all the cases above, Case (b) is the only case where uLink may
not be able to correctly open a link to Page2. Ideally, preventing
such behavior would require recording contents of all the external
resources as well, which can be prohibitively expensive. uLink
therefore does not try to prevent such behavior, and rather notifies
users or the companion services at link creation or execution time
that the link may not be replayed correctly, if a specific resource is
modified. We call this process link validation.
Lightweight dependency tracking. The key challenge in support-
ing link validation is that it must happen during user interaction, at
minimal overhead, and with minimal changes to the app. A pos-
sible approach, which requires no app changes, is to monitor I/O
and sensors by instrumenting generic OS-provided APIs (e.g., sys-
tem calls). However, this is not ideal because it needs instrumen-
tation of the framework and incurs runtime processing and stor-
age overhead. Another approach is to inject the monitoring logic
in the app and track information flow in the app (similar to taint
tracking [15]); however, this requires nontrivial development effort
and incurs high runtime overhead. Our solution is to rely on an
offline, automated analysis of the application to generate an app-
specific summary of resource dependencies of relevant event han-
dlers. Once the summary is built offline, it is installed on the device
(by the uLink library downloading it from the cloud), and consulted

each time a link is saved or opened. By design, this approach can-
not be as accurate as heavyweight API instrumentation, taint track-
ing or other approaches requiring OS modifications, but it provides
a first, practical approximation of the problem, while not compro-
mising our goals of low overhead and minimal developer effort.

To frame the problem, we define the following terms. We col-
lectively call resources entities external to the app that can change
arbitrarily, after link creation. These include files, databases, and
sensors. Our definition of “change” means any type of modifica-
tion to the content or properties of the resource. For example, a file
content can be “changed” by overwriting the file or by modifying
one of the attributes such as read/write permissions. We call source
APIs and sink APIs, the APIs the application framework provides
to get or to put data, respectively, into such resources. In partic-
ular, we consider the following categories: file system read and
write, database read and write, and sensor read operations. The list
of such APIs can be obtained using tools such as SuSi [37]. Fi-
nally, we collectively call callbacks event handlers triggered, syn-
chronously or asynchronously, by the app (e.g., in response to inter-
acted UI elements) or by the framework (e.g., app lifecycle events).

Note that we do not include the network because, as with web
URLs, we have no control on the app (or web site) backend, so we
aim for link correctness under the assumption that the backend has
not made the link’s content unavailable (e.g., by removing the cor-
responding data objects nor by changing their identifiers, without
providing a redirection).

Static analysis. Our first effort on generating offline app sum-
maries is to rely on static analysis of the app. We generate the
call graph of the app, and then recursively traverse it to find out
a connected path from a callback to a source or a sink API. If we
find any connecting path, we add the mapping <callback,source>
or <callback,sink> to the summary. Online, each time a link is
saved, the uLink library logs which callbacks have been invoked to
generate the app state. In this way, uLink can use the summary to
look up whether any of such link-required callbacks has dependen-
cies on external resources, and report that in the feedback. Note that
once the uLink library is added to the app, the developer effort re-
quired for the feedback generation is zero, because all link-required
callbacks are logged directly by the library.

This approach proved relatively robust, meaning that we did not
encounter any case in which a resource that was accessed by a link
was not caught by the summary. However, we found it too conser-
vative because of its coarse-granularity. For example, knowing that
a specific callback reads some file is not sufficient to infer whether
this operation may or may not compromise the link. If that file
doesn’t change after link creation, then the link will work correctly.
If the file has changed, the link may or may not work. However,
the problem is that online, with our restricted monitoring setup, we
cannot capture the identifiers of the modified resources.

Static + dynamic analysis. To address this, we augment static
analysis of the app with dynamic analysis. To exemplify, let us
consider the file system resource. Our key insight is that while
we do not know the file identifiers online, we can capture them
offline and leverage them to establish callback relationships. We
run each app using a Monkey (such as the Android [22] or Windows
Phone [32] UI automation tools). We collect logs of all invoked
callbacks as well as traces of file system accesses (using strace-like
utilities). We then intersect read and write operations that share files
with the same identifiers. The obtained file-relationships are added
to the summary. For example, the dynamic analysis may produce a
trace where callback c1 reads file f, and callback c4 writes to file f,
so a c1 → c4 file-relationship is added to the summary.

Note that a perfect dynamic analysis would deem static analy-
sis unnecessary. However, existing Monkeys have less than ideal
coverage; we therefore primarily rely on static analysis to generate
summaries for all callbacks, and refine the summaries with more
fine grained information whenever they are available from dynamic
analysis (i.e., whenever the Monkey exercises the event handler).

Once we have generated the summaries, we use them online in
the following way. As the user interacts with her apps, the uLink
library continuously monitors all callbacks invoked due to user in-
teraction, and keeps a log only of the callbacks that led to a file
system or database write. When a link previously saved is opened,
the link-required callbacks (recorded when the link was saved) are
processed using the summary. Any link-required callbacks associ-
ated with file system (or database) writes can be safely ignored (as
in Case (c) in Figure 5). Instead, any link-required callbacks associ-
ated with file system (or database) reads can be ignored only if they
have no relationships with other write callbacks that were logged
after the link was saved. In fact, this means that re-creating the
link state requires reading a file (or a database) that was modified
in the past, after the link was saved (as in Case (b)). If such file (or
database) dependency is found, uLink generates a feedback report
including details about the identified root cause, i.e., the callback
information and the source/sink API. Using the example above,
suppose that the link-required callbacks of the saved link include
callback c1, and that the callback log contains c4. Because c1 has
a file dependency on c4, the link correctness may be compromised.

We cannot keep indefinite logs of all write callbacks, for all apps.
We approximate by keeping a runtime log for a maximum period of
time (currently an hour). Our intuition is that writes that are older
than that period are likely to have been absorbed by the system
(e.g., changes in preferences) so that they can be safely forgotten.

Our implementation currently provides fine-grained feedback
only for the file system, while detects database changes only at
the granularity of read/write (through static analysis). However, the
same approach can be applied to databases by intercepting database
APIs in the app framework (offline, during dynamic analysis). For
sensors, fine-grained analysis of read/write operations is less criti-
cal because with the exception of a few sensors (e.g., microphone)
sensor operations are always reads. This also means that links can-
not break because of changes in sensor values. However, sensors
can cause link ambiguity, which we discuss in §7. Finally, since
it happens offline, the dynamic analysis could also be improved by
adopting heavyweight tools such as taint tracking [15].
Other failure types. A captured link may fail also due to techni-
cal limitations of our system or of the app framework on which it
runs. For instance, on Android, it is possible to track long tap UI
events for items in a list, but the framework doesn’t provide an API
for replaying such events (while it does for single tap events). A
link may also fail because of developer errors. Record and replay
requires the developers to add one line of code per each UI event
handler. If the developer forgets to instrument them all, a link may
fail. Such kind of problems are captured by the uLink library when
re-creating the link state, and feedback is provided.

3.4 Developer Effort
uLink is implemented as an application library. To make her app
uLink-enabled, a developer includes the uLink library and extends
the uLinkPage class provided by uLink, instead of the original Page
class provided by the underlying framework (this is needed to over-
load the framework’s page launcher method). Once the library is
added, shortcut-only links are readily enabled.

To support shortcut-and-replay links, app developers must add
one line of code in each UI event handler of the app. This effort

Change Dev effort (LoC) Enabled links
Add uLink library, extend from
uLink-provided Activity

1 per main
Activity class

shortcut-only links

Log UI event handlers 1 per UI event
handler

shortcut-and-replay
links

Table 2. Developer effort to add uLink in Android apps.

is larger, but still small (see §5.1). Moreover, since this process is
rather mechanical, the logging statements could be injected auto-
matically through a source-to-source transformation tool. Table 2
summarizes the developer effort for Android apps.

4. IMPLEMENTATION AND USE CASES
This section provides details on our Android implementation of
uLink, and describes three companion services we have built.

4.1 uLink Library
We have implemented uLink on Android 5.1.1. On Android, pages,
called activities, are started by taking a direct Android intent. Ac-
tivity classes are created by extending one of 13 Activity classes
provided by Android. An activity can be launched by supplying an
Android intent, which is essentially a passive data structure con-
taining an abstract description of an action to be performed. To
transparently capture the intents, so that a target activity can be
directly launched by supplying the necessary intent, uLink uses
the following tricks: (1) It provides one uLinkActivity class for
each of the framework-provided Activity classes, with the same
external interfaces, so that developers can extend the uLinkActivity
class, instead of the framework-provided Activity classes, to create
a new Activity class. (2) The launcher methods of the uLinkAc-
tivity classes are instrumented to dynamically capture the intents
provided to them, and to encode them in URIs to the app views.

The above tricks could be used also in other platforms. In
iOS, Scene extends NsObject.UIResponder.UIViewController, and,
in Windows, Page extends Systems.Windows.Controls.Page. So
the uLink library for those platform could provide replacement
classes to be extended by developers to create app pages.
Developer effort. To enable shortcut-only links, each main Activ-
ity must extend the corresponding uLink-provided Activity class.
By main Activity, we mean any Activity that implements one of
the 13 Android Activity classes. App developers often create one
or a few customized main Activity classes that extend from the
framework-provided classes, and use them to instantiate all other
activities. Hence, the overhead is rather small (see §5.1).

To support shortcut-and-replay links, uLink requires app devel-
opers to invoke the trackEventHandler(view, view_type) method of
the uLink library, each time a UI event handler is fired. Develop-
ers provide the corresponding View object (i.e., UI Element) that
raised the event and its type, such as button, list item or textbox.
Note that for some types of UI event handler, such as click event
handlers, this information could be captured automatically through
the framework by probing the View objects inside an Activity (ef-
fectively its UI tree), when it is first loaded and assigned trackers.
Since click event handlers are the most common type of UI event
handlers, this would be a significant reduction in the developer ef-
fort for shortcut-and-replay links. We are currently exploring this
approach. Table 2 summaries the uLink developer effort.

To provide summaries for link validation, for the static and dy-
namic analysis of Android apps, we generated the call graphs using
the Soot [35, 41] analysis framework. Since Android applications
do not have a traditional Main entry point, we created a dummy

Figure 6. Bookmark (left) and Stuff-I’ve-Seen (right) services we
have built using uLink.

entry point leveraging the approach of Flowdroid [9]. We used the
Android source-sink APIs listed by SuSi [37]. This list includes
26,322 source and sink APIs available from Android 4.2. We se-
lected 2280 sources and sinks, and grouped them into six classes:
file system, database, resources, media, camera, and sensors.
Query API. uLink provides the following API that an application
or companion service can use to programmatically generate or in-
voke links. (1) getLinkToCurrentView(): Returns a link to the cur-
rent view. (2) getLinkOnCondition(condition, callback): Registers a
callback, which will be invoked with a link and content of the cur-
rent view, when the current view matches a condition. For example,
for the Stuff-I’ve-Seen service described below, the condition can be
“when the view belongs to a third party app and the user has spent
more than 5 seconds on it”. (3) openLink(link): Opens the specified
link. If the app is not currently installed, it takes the user to the app
store to install it. The object link (viewURI, events, callbacks) con-
tains the view URI, the list of events for replay (possibly empty),
and the list of link-required callbacks (i.e., callbacks that were in-
voked when the link was first saved).

4.2 Companion Services using uLink
The following three services demonstrate different usages of uLink.
Bookmark. Being able to bookmark links to an arbitrary state in
an app is useful for various purposes. (i) When launched, mobile
apps always start from the same entry page. Even if a user always
only cares about the content appearing on a certain page, say the
third, she must always go through the first and second page. A user
that uses such app every day, perhaps multiple times, would benefit
from being able to create a shortcut to the target page. (ii) When
interacting with an app, a user may find some content she wants to
save for later. (iii) Most users have tasks that repeat identical every
day or every so often, such as monitoring the price of an item to pur-
chase, ordering a pizza or checking whether new interesting houses
are on the market. These tasks are likely to always take the same
user inputs (e.g., number and type of pizzas). Users would benefit
from being able to record such repetitive tasks and automate their
execution. (iv) Filling forms in mobile apps is notoriously painful.
Having the ability to record user inputs (e.g., login information,
search parameters, etc.) for specific app pages can improve user
productivity. We built Bookmark (left-hand side of Figure 6) that
collects links to content, actions, tasks a user wishes to save. Each
time a user shakes her phone, a link to the current view is saved
into the Bookmark. Links are opened by clicking on them.
Stuff-I’ve-Seen. Users browse lots of content inside their apps
(e.g., hotels to book, restaurants to visit, news article to read), and

App Category Description Downloads Total uLink LoC
LoC shortcut-only shortcut-and-replay

NPR News News & Magazines News reader 1M-5M 13,114 2 18
AnkiDroid Education Flash card manager 1M-5M 45,959 7 66
Book Catalogue Productivity Book list manager 100K-500K 41,587 8 228
Vanilla Music Music & Audio Music player 500K-1M 15,518 4 79
K9-Mail Communication Email client 5M - 10M 67,721 4 75
eBay Shopping e-Commerce app 100M-500M 500,251 6 368
Lyft Transportation Taxi service 1M-5M 356,894 1 30
Spotify Music & Audio Streaming music service 100M-500M 523,999 12 430
Amazon Shopping e-Commerce app 10M-50M 418,503 10 235
Amazon Kindle Books & Reference e-Book reader 100M-500M 432,040 13 346
BBC News News & Magazines News reader 10M-50M 398,835 12 170
Watch ESPN Sports Live sports 10M-50M 452,437 5 125
AccuWeather Weather Weather update 50M-100M 392,707 20 132
Aldiko Book Reader Books & Reference e-Book reader 10M-50M 239,967 6 198
ASTRO File Manager Productivity File manager 50M-100M 393,712 10 231
Photo Editor by Aviary Photography Photo editor 50M-100M 340,653 3 181
Booking.com Hotel Reservations Travel & Local Hotel reservations 10M-50M 317,012 5 491
APUS Booster+ Productivity System utility 10M-50M 29,923 7 75
Compass PRO Tools Utility 5M-10M 167,415 3 68
Dictionary.com Books & Reference Dictionary software 10M-50M 388,963 32 229
Duolingo Education Language tutorial 10M-50M 253,975 2 190
Hulu Plus Entertainment Live streaming 100K-500K 411,272 11 204
KAYAK Flights, Hotels & Cars Travel & Local Hotel, flight, & car manager 10M-50M 380,609 6 390
MakeMyTrip-Flights Hotel Travel & Local Hotel, & flight 5M-10M 421,598 15 345
Dictionary-Merriam-Webster Books & Reference Dictionary software 10M-50M 217,013 3 71
Music Player for Android Music & Audio Music player 10M-50M 89,411 5 79
Retrica Photography Camera & photoeditor 100M-500M 266,428 8 172
SPB TV Media & Video Streaming TV 10M-50M 318,170 5 163
the Weather Weather Weather update 10M-50M 273,724 7 167
TuneIn Radio Music & Audio Streaming radio 100M-500M 340,260 19 276
Advanced Task Killer Productivity System utility 50M-100M 12,843 6 50
WebMD for Android Health & Fitness Health app 5M-10M 319,537 7 170
Yahoo! News & Magazines News reader 10M-50M 395,316 10 260
Zillow Lifestyle Apartment finder 10M-50M 404,068 11 344

Average 283,572 8.4 195.8

Table 3. The 34 Android apps to which we added the uLink library and the developer effort required. (First 5 apps are open source.)

sometimes would like to be able to search through “all the stuff
they have seen”, and not through all the content those apps (or the
web) offer. We built Stuff-I’ve-Seen (right-hand side of Figure 6),
reminiscent of similar work for the web [13], for desktop applica-
tions [27], and for entire computers [11]. This service transparently
logs contents the user sees in her apps, it indexes them, and pro-
vides basic search capability. The app contents (i.e., texts appear-
ing in the UI elements in the app page) are obtained by processing
the app’s UI tree. For indexing, the service uses the Apache Lucene
library [5]. Semantics analysis (currently not implemented) could
also be performed locally [16] or in the cloud (as in Google’s Now
on Tap [20] and Bing Snapp [43]). The app currently tracks eBay
product details, Kayak searches, NPRNews news, Spotify’s songs
and artists, and Kindle’s books.
360-IFTTT. IFTTT [25] is a popular app that allows users to “pro-
gram” <if-do> recipes such as “If it rains, remind me to take an
umbrella”. Currently these recipes are built using open APIs and
web sites. With uLink, recipes can tap into third party apps. We
built 360-IFTTT. Users can specify simple “if” conditions based
on location and time. “Do” actions are specified by executing the
desired task with the app (once), saving the link by shaking the
phone, and copying the link from Bookmark into 360-IFTTT.

5. EVALUATION
In this section, we evaluate uLink on five metrics: developer ef-
fort, coverage, correctness of link validation, link consistency over
time (i.e., whether the links remain valid over time and across app
versions), and runtime overhead and performance. We report the
results for both shortcut-only and shortcut-and-replay links. Our
evaluation is based on 34 Android apps, shown in Table 3. We first

tested the library with three apps (NPRNews, Lyft, eBay) and later
integrated it into 31 more apps, without any changes to the library,
confirming the generality and applicability of our approach.

5.1 App Dataset and Developer Effort
The uLink library was integrated successfully in a total of 34 apps.
Among the top 1000 Android apps, we selected apps based on pop-
ularity and compatibility with Android 5.0 from a variety of app
categories, with the exclusion of games (they are not in scope of our
uLink-based scenarios) and native code apps. Five of the selected
apps are open source, and hence we could modify their source code
to include uLink. For the other apps, we used Soot [35, 41] for
Dalvik bytecode instrumentation. The limiting factor in integrating
uLink into closed source apps was not the complexity of the logic
for injecting our changes, but the recurrence of bytecode obfusca-
tion in apps. Once instrumented, we verified that they worked with
5 random links to 5 different pages.

The fact that we were able to integrate uLink through an auto-
mated instrumentation process is a first proof of how easy and me-
chanical the required changes are. In addition, we counted the lines
of code (LoC) that were changed or added to integrate the shortcut-
only or shortcut-and-replay variants of uLink. Table 3 shows the
results. For comparison the table also reports the size of each app’s
codebase. To obtain an estimate for closed source apps, we counted
the LoC after decompiling the app to Java source code using the
dex2jar [12] and jd-gui [26] tools.The numbers do not give an exact
count for LOC, but they provide a good approximation.

On average, shortcut-only required to change only 8.4 LoC in
the app code. The smallest effort was 1 LoC (Lyft), and the largest
32 LoC (Dictionary.com). Recall that today’s deep links can sup-
port only stateless links. Shortcut-only provides a superset of deep

0

20

40

60

80

100

NPR

News

Lyft Amazon

Kindle

Duolingo BBC

News

TuneIn

Radio

#
 l

in
k
s

Shortcut-only links

With-replay links

Unsupported links

Figure 7. uLink link coverage in 6 apps (NPR News is open source,
others are closed source).

links, with a much smaller developer effort. To give some com-
parison points, we inspected the code of two open source apps that
support deep links. Ankidroid exposes one deep link which is han-
dled in 35 LoC. Wikipedia also exposes one deep link coded in 23
LoC. With much less developer effort, uLink enables deep links
to most app views (as we will show in the next experiment), and
preserves application state.

The developer effort for shortcut-and-replay is higher (196 LoC
on average) because it depends on the number of UI event han-
dlers in the app, but the changes are still relatively few (on average
0.07% LoC of the entire codebase needed to be changed) and are
rather mechanical. As discussed in §4, in the Android framework,
at least the very popular click event handlers could be handled au-
tomatically.

Needless to say, if the uLink library could be added to the An-
droid framework, it would require zero developer effort.

5.2 Coverage
We evaluate whether uLink can provide high coverage of an app
views. We picked 6 apps, and manually enumerated all possible
views in them. We were careful to report only unique views (e.g.,
if the same menu for adjusting screen zoom appeared in three dif-
ferent views, we counted it as one link rather than three). Then, we
manually saved links to every such view, and opened them to verify
whether the result was correct. In these tests we did not vary the op-
erating conditions (e.g., same file system), so if links failed it was
because of technical limitations of uLink or of the app framework.

Figure 7 reports the results. Across the 6 apps we found that on
average there were 55 views one may save in a link. uLink provided
coverage for 71% of them. Compared to the state-of-the-art, where
if apps have deep links it is no more than a handful of links, this is a
significant improvement. In particular, shortcut-only alone (which
requires a tiny developer effort, see Table 3) provided an average
of 19 links per app, and successfully enabled links to almost all
pages’ default views in the tested apps. Hence, with a much smaller
developer effort, uLink provides much higher coverage.

The unsupported links were mainly due to failures in replaying
UI events. Most failures were an artifact of binary instrumentation.
In fact, for NPR News, the only open source app here, the cover-
age was 91%. In closed source apps, instrumentation failed to log
custom UI event handlers (in the real world, the developer would
provide the correct annotations), so some UI events (although cap-
tured) could not be replayed. Other reasons for link failures were
the following: i) there were UI elements to which the developer did
not assign a resource identifier so they could not be replayed (this
was the reason for the 9% failed links in NPR News), ii) there were
some special UI events (e.g., list long click) for which the Android
framework does not provide a replay API, and iii) there were page
views that were displayed in a browser (in Kindle) which could not
be reached by uLink.

Overall, uLink provides good coverage. With the framework’s
support we are optimistic this coverage can be almost 100%.

5.3 Correctness of Link Validation
To evaluate whether uLink can discover external dependencies of a
saved link and correctly report when a link may fail, we conducted
a controlled experiment with 16 links in 11 apps, with dependen-
cies on file system, sensors, and databases.4 The links emulate
what a real user would like to save in such apps, such as shortcuts
to relevant pages (e.g., hourly news, product pages) or to recurrent
actions with saved inputs (e.g., refill a prescription, locate nearest
radio stations, etc.). To verify the dependencies reported by uLink,
we changed the resources after the links were created, and exam-
ined whether each link could open the original app view. For in-
stance, in the Vanilla Music app, we saved a link for playing a song
stored in the SD card, deleted the song (from the app) and opened
the link. Each link was opened twice: (1) in the same conditions:
after creating the link, we interacted with the app for a while and
then opened the saved link, and (ii) in altered conditions: after cre-
ating the link, we forced a change in the resource(s) that the link
depended on and opened it.

Table 4 shows the results. In analyzing them, recall that uLink
currently monitors file system dependencies at fine-granularity, but
database dependencies at coarse granularity. The table reports the
ground truth and the uLink’s output for both conditions. “Yes”
means that the link can be safely opened, “No” that the link won’t
work, and “Maybe” that the link may not work (if the resource it
depends on is modified). For No and Maybe, uLink provided a
feedback on the root cause. Overall, uLink was wrong in only 2
out of 26 cases (marked in bold in the table). In 75% of the cases it
agreed with the ground truth, and in the remaining 19% of the cases
it took a conservative decision, mainly due to the lack of details on
database read/writes. For instance, the “open a Kindle book” link
requires reading the database. As uLink cannot yet track whether
those reads have been affected by previous writes, it fires a warning.
For links requiring reading the file system, uLink was more accu-
rate. For instance, the open photo link in Aviatar requires reading
a file (the photo). In the same conditions, uLink correctly detected
that the link would work. In the altered conditions, it captured that
the photo had been deleted and that the link-required callbacks had
a dependency on that operation, thus reaching the correct conclu-
sion. The feedback provided in No/Maybe situations was generally
accurate – it was complete in 88% of the tested cases.

Overall, uLink’s feedback is relatively accurate. With the addi-
tion of fine-grained database analysis, we expect the accuracy to be
close to 100%. The services consuming app links can further de-
cide how to interpret this feedback, especially in Maybe situations.
For instance, “Stuff-I’ve-Seen” may be less conservative, and treat
Maybe verdicts as Yes. Another service for automating recurrent
user tasks (e.g., refill prescriptions) may be more conservative, and
treat them as No.

5.4 Consistency over Time
We now explore whether uLink generates links that are reliable
over time, in the face of i) app updates and ii) app content changes.
To evaluate consistency across different app versions, we down-
loaded several older versions of some of our apps and tested

4For clarity of analysis, we further distinguished between read and write
operations on preferences and cache. These resources can be easily recog-
nized as their names remain constant across apps.

App Link description Dependency Same conditions Altered conditions
Ground truth uLink Ground truth uLink

Amazon Kindle Open a book page r db, r pref same db & pref Yes Maybe (r db, r pref) del db, w pref No (r db, w pref) Maybe (r db)
Amazon Kindle Sync books with cloud w db, w pref same db & pref Yes Yes del db, w pref Yes Yes
Photo Editor by Aviary Open a photo r file same files Yes Yes del files No (r file) No (r file)
Lyft Share referral code w pref same pref Yes Yes del pref Yes Yes
Lyft Request a lift loc same loc Maybe (loc) Maybe (loc) different loc Maybe (loc) Maybe (loc)
NPR News Open a story r/w cache in db same cache Yes Yes del cache Yes Yes
NPR News Add news to playlist r/w db same db Yes Maybe (r/w db) del db Yes Maybe (r/w db)
NPR News Locate nearest station loc same loc Maybe (loc) Maybe (loc) different loc Maybe (loc) Maybe (loc)
eBay View product r db same DB Yes Maybe (r db) del db Yes Maybe (r db)
WebMD Refill a prescription camera, r pref same loc Maybe (camera, Maybe (camera, different Maybe (camera, Maybe (camera,

through Wallgreens loc same pref r pref, loc) r pref) loc, del pref r pref, loc) r pref)
Vanilla Music Play a song r file, w pref same files & pref Yes Yes (r file) del files, w pref No (r file) No (r file)
AnkiDroid View a card r db, r pref same db & pref Yes Maybe (r db, r pref) del db, w pref No (r db, r pref) Maybe (r db, r pref)
Book Catalogue Reset hint w db, w pref same db & pref Yes Yes del db, w pref Yes Yes
Book Catalogue Manually add a book w db same db Yes Yes del db Yes Yes
Dict. Merriam-Webster View word of the day w pref same pref Yes Yes del pref Yes Yes
Dictionary.com Search a word w pref same pref Yes Yes del pref Yes Yes
Summary Decision (Yes, No, Maybe): Wrong: 2 (6%) Same as ground truth: 24 (75%) Conservative: 6 (19%)

No/Maybe feedback accuracy: Complete: 23 (88%) Incomplete: 3 (12%)

Table 4. uLink feedback for links with dependencies on sensors, file system, and database (r=read, w=write, db=database, pref=preferences).

0 50 100 150 200 250

Consistent

Not consistent

Days

Ly
ft

Ly
ft

Ly
ft

Ly
ft

S
p
o
ti
fy

S
p
o
ti
fy

S
p
o
ti
fy

S
p
o
ti
fy

e
B
a
y

e
B
a
y

e
B
a
y

e
B
a
y

View activity reminders

Select a message to view

Search motor vehicles

Browse songs

View top lists

View new releases

Generate referral code

Make a payment

Edit profile

0 50 100 150 200 250

Figure 8. uLink across different app versions over time (green = link
opened correctly, red = link failed).

whether links saved in the oldest version could be opened cor-
rectly in the newer versions. We tested 3 different links in Spo-
tify (9 versions covering 7 months), in eBay (4 versions covering
4.5 months), and in Lyft (4 versions covering 1 month). Figure 8
reports our findings. For Spotify, 2 out of 3 links worked for the
entire period; one link broke after the 3rd version update. Upon
investigating further, we found that the cause was the removal of a
UI element in the page layout. The second failure we noticed was
for an eBay link which did not work for an intermediate version. In
this case, uLink could not load the UI element and the app showed
a dialog instead, but there was no crash. This study shows that
links are relatively stable over a short period of time—there was no
single failure for 50 days after link creation.

Then we investigated how uLink copes with updates to app con-
tents. We created 10 links from 5 different apps (NPR News,
Vanilla Music, Spotify, Book Catalogue and eBay). We selected
common links such as viewing an eBay item, viewing the top NPR
news, playing a song in Vanilla Music, or viewing the top releases
in Spotify. Then for 4 weeks (8 weeks for NPR News), at least
once a day, we ran a script that would open each of the links, and
save a screenshot of the resulting view and debug logs. By inspect-
ing the saved screenshots and logs, we observed that all 10 links,
except 1, provided correct results for the entire duration of the ex-
periment. Note that some of the content were no longer available
in the app itself; but the app backend still maintained the content
and hence uLink could retrieve it, highlighting the benefit of uLink.
The failed link was for viewing a specific top news in NPR News.
After 4 weeks, the link returned an empty page: the news item was
not available anymore in the app backend with the same identifier.

5.5 System Overhead and Performance
The uLink library is 245 kB bytes big, so it adds a small storage
overhead to existing apps. The computation overhead is also min-
imal, and processing occurs asynchronously to the app execution
with no app slowdown. Generated app links are typically 100–
150 bytes (e.g., the average size of the links used in Table 4 is
136 bytes).5 For shortcut-and-replay links, uLink needs to log UI
events. We executed AnkiDroid, a relatively I/O intensive app, for
10 minutes, and measured a callback log size of only 432 kB. With
an hour time windows the cost is a few MBytes. We conclude uLink
is a lightweight system.

uLink is also fast in opening saved links. When opening a link,
if the app targeted by the link is already running (in foreground or
background), the delay is the page rendering time. If the app is not
running, uLink needs to first start the app and then render the page,
so the total delay consists of the app loading time (typically 1–2
seconds depending on the app) and the page rendering time. We
executed a simple experiment to verify that uLink’s overhead on an
app page’s rendering time is negligible. We took 5 apps and created
3 links for each. We measured the uLink page rendering overhead
as the difference between the 1) the average time necessary to open
each link and achieve a stable page in the uLink-enabled app, and
2) the time the unmodified app takes to load the same page. As we
were interested in comparing the page rendering times, we kept the
app running in both conditions, but ensured the cache was cleared
after each test. Moreover, when measuring the uLink rendering de-
lay, we ensured the Activity targeted by the link was cleared on the
stack (i.e., when the link is opened, we force a call to OnCreate).
To measure the rendering time, we measured the time between the
first call of OnCreate and the time when the root view of the Ac-
tivity was inflated (i.e., all UI elements in the page are rendered).
Across the 15 tests, the mean delay was 28 ms, so negligible.

In the previous test, we considered shortcut-only links. To eval-
uate the delay of shortcut-and-replay links we used RERAN [19], a
record and replay tool for Android, as a baseline. Table 5 shows
three example tasks with three different apps. We recorded the
tasks (saved links) with both systems, stored the necessary logs,
and then replayed each task (opened the link). We report execu-
tion time, number of replayed UI events, and logs size. Tasks are
ordered by increasing number of clicks. uLink is from 5 up to 13
5The size of a link mainly depends on the size of the intent object captured
by input interception. According to Android guidelines, this is maximum
1 MB. However, to keep links small, rather than saving large objects in the
URI, the objects can be saved in storage and their reference be included.

Replay time (ms) Replay log size
App and link description (& UI events) (bytes)

RERAN uLink RERAN uLink
TuneInRadio: Stream a radio station 5,351 (4) 1,105 (1) 7,480 651
VanillaMusic: Go to a song and play it 7,762 (4) 982 (1) 6,880 693
NPRNews: Search news for some dates 17,345 (5) 1,392 (0) 11,296 984

Table 5. Comparison of uLink and the record and replay RERAN tool
in terms of replay time, number of replayed UI events and log size.

times faster than RERAN. More importantly, while in RERAN the
replay time increases as the task’s complexity increases (number of
visited pages and clicks), with uLink it remains fairly constant. The
RERAN log sizes are also at least 10 times larger—for uLink, the
replay log is essentially the link itself, which is quite small (last col-
umn). Finally, with uLink the average replay time is 1.2 seconds,
which is close to what users expect for page loading times.

Overall, these experiments show that uLink is a lightweight sys-
tem and provides an acceptable user experience.

6. OTHER RELATED WORK
We have discussed related work in §2.3. In addition to that, there
are various companies offering mobile deep linking solutions with
different corollary services (for a summary see [6]). AppLinks [7]
comes with the Facebook Index API to check whether links are
able to be deep-linked, and the possibility to code custom API.
Deeplink.me [10] provides the AppWords Network for discovery
and monetization of deep links across apps. URX [39] crawls web
pages and constructs deep links metadata to be leveraged by app de-
velopers. Moreover, it dynamically extracts information from app
pages to understand user intent, and provide deep links to content of
interest. All these approaches contribute to building effective deep
linking to app content, but all of them require significant developer
effort and provide statically-defined deep links. Hence, compared
to uLink, they suffer from the limitations we discussed earlier: low
coverage and no support for stateful and UI-driven views.

7. LIMITATIONS
We discuss some key limitations of our work.
Technical limitations. uLink can currently capture only UI ele-
ments that have a unique resource identifier associated. Moreover,
we rely on the Android framework APIs to programmatically re-
play UI events. For UI events for which Android provides only the
screen coordinates (e.g., random screen touches), uLink can only
mimic that action across devices with similar resolutions. uLink
cannot handle certain gestures such as swipe, pinch or zoom, be-
cause they do not have replay APIs. These limitations have little
impact on most apps and on our use cases. However, they can be a
problem for use cases involving maps, games, etc.

uLink relies on the intents transferred between app pages. If the
syntactic structure of the program changes, mostly due to a new
app version (or to different versions across devices), uLink will
be unable to reflect those changes. This means that old links may
stop working. Changes in app versions could be tracked with cloud
support, so to automatically detect/update broken links.
Fine-grained app summaries. uLink currently provides fine-
grained summaries only for file system operations. For the file sys-
tem we were able to leverage OS utilities (strace). For databases
it is necessary to instrument the Android framework and app APIs
to track the information flow. Taint-tracking [15] can also improve
the precision of our approach.
Link ambiguity. It is not always possible to correctly understand
a user’s expectations when saving a link. For example, after saving

a link to the “Nearby restaurants” view, when the user invokes this
link later on, does she expect to see the restaurants near the current
location or near the location the link was recorded at? In the NPR
News app, when clicking on the first news item in the list of “Hot
Daily News”, a view showing the selected news story is displayed.
If a user saves a link to this view, does she want to save a link to
that specific news article or to the top daily news (i.e., the first item
in the list)? As discussed in §2.2, link ambiguity is not unique to
uLink, and, as for web links, practice will help users understand
what app links can or cannot capture, on a per app basis. However,
the system can help identify ambiguous situations, and prompt the
user for clarification. Our system-generated feedback is a first step
towards this goal. In addition, as in the web, link titles can also give
hints on what the link is storing (e.g., uLink/NearbyRestaurants vs.
uLink/NearbyRestaurants/NE+5th+St+Redmond+WA).

Unwanted replay. How can we prevent users from buying the
same Amazon item twice by mistakenly clicking twice the same
app link? This kind of problems are unlikely to be fully resolved
without help from the app developer (e.g., in the form of anno-
tations for pages or UI elements which should be excluded from
link capture or that should request user confirmation) or without
extracting app contents and action semantics so the system can rea-
son about link purposes.

Link sharing: security and privacy. Users can share web links.
From a technical point of view, users can share also app links. How-
ever, to make this viable, uLink needs to address at least two prob-
lems. First, it needs to handle cases in which a user may receive
a link for an app that is not installed or that was saved in an app
with a different version than the installed one. Second, security
and privacy issues must be addressed: What if the shared link is
malicious? What if the shared link makes changes to the app’s
preferences? What if the shared link contains personal informa-
tion, such as login information or home address? Link encryption,
cloud-aided link security analysis, and user/developer opt-out poli-
cies can help alleviate these issues.

App content revisitation. By default, uLink always provides the
most updated content that a link references (which is also the case
for web links). Revisiting app content is currently not supported,
but it could be enabled by relying on a caching infrastructure and
diffing tools similar to what proposed for the web [1, 2, 38].

8. CONCLUSIONS
uLink is a novel approach to enable deep links in mobile apps.
uLink is distributed as a small library that developers include in
their apps with tiny changes. Compared to mobile deep links, uLink
provides higher coverage of an app views with less developer ef-
fort. uLink goes beyond the state-of-the-art: it provides links that
are stateful and that can be specified by a user on demand, and it
achieves these benefits without incurring large resource overheads
nor modifying the OS. Although usability is not a goal of our sys-
tem, uLink provides the first elements towards that goal: fast ex-
perience, no specification of a session start point, and feedback for
links that may not work properly. We implemented uLink on An-
droid and used it with 30+ apps with promising results.

9. ACKNOWLEDGEMENTS
We thank our shepherd, Landon Cox, and the anonymous reviewers
for their thoughtful feedback. We also thank Earlence Fernandes
for early discussion on the uLink design.

References
[1] E. Adar, J. Teevan, and S. T. Dumais. Large scale analysis of

web revisitation patterns. In Proc. of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’08, pages
1197–1206. ACM, 2008.

[2] E. Adar, J. Teevan, S. T. Dumais, and J. L. Elsas. The web
changes everything: Understanding the dynamics of web con-
tent. In Proc. of the Second ACM International Conference on
Web Search and Data Mining, WSDM ’09, pages 282–291.
ACM, 2009.

[3] Android Developers. Enabling Deep Links for App Con-
tent. http://developer.android.com/training/app-indexing/deep-
linking.html.

[4] V. Anupam, J. Freire, B. Kumar, and D. Lieuwen. Automating
Web Navigation with the WebVCR. In Proc. of the 9th Inter-
national World Wide Web Conference on Computer Networks,
pages 503–517, 2000.

[5] Apache Lucene. http://lucene.apache.org/.
[6] AppIndex. App Deep Linking Guide. http://appindex.com/

blog/app-deep-linking-guide/.
[7] Applinks. http://www.applinks.org.
[8] Appsee. https://www.appsee.com/.
[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,

Y. Le Traon, D. Octeau, and P. McDaniel. FlowDroid: Pre-
cise Context, Flow, Field, Object-sensitive and Lifecycle-
aware Taint Analysis for Android Apps. In Proc. of the 35th
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’14, pages 259–269, 2014.

[10] Deeplink. https://www.deeplink.me.
[11] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen. Ei-

detic systems. In Proc of. the 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14),
pages 525–540, 2014.

[12] dex2jar. https://github.com/pxb1988/dex2jar.
[13] S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D. C.

Robbins. Stuff I’Ve Seen: A System for Personal Informa-
tion Retrieval and Re-use. In Proc. of the 26th Annual Inter-
national ACM SIGIR Conference on Research and Develop-
ment in Informaion Retrieval, SIGIR ’03, pages 72–79. ACM,
2003.

[14] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and
P. M. Chen. Revirt: Enabling intrusion analysis through
virtual-machine logging and replay. SIGOPS Oper. Syst. Rev.,
36(SI):211–224, Dec. 2002.

[15] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. Sheth. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smart-
phones. In Proc. of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’10), pages 393–
407. USENIX Association, 2010.

[16] E. Fernandes, O. Riva, and S. Nath. My OS ought to know
me better: In-app behavioural analytics as an OS service. In
Proc. of HotOS XV, 2015.

[17] J. Flinn and Z. M. Mao. Can deterministic replay be an en-
abling tool for mobile computing? In Proc. of the 12th Work-
shop on Mobile Computing Systems and Applications, Hot-
Mobile ’11, pages 84–89. ACM, 2011.

[18] Flurry. http://www.flurry.com.
[19] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. RERAN:

Timing- and Touch-sensitive Record and Replay for Android.
In Proc. of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 72–81. IEEE Press, 2013.

[20] Google. Now on Tap. https://support.google.com/websearch/
answer/6304517?hl=en.

[21] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.
Kaashoek, and Z. Zhang. R2: An Application-level Kernel for
Record and Replay. In Proc. of the 8th USENIX Conference
on Operating Systems Design and Implementation, OSDI’08,
pages 193–208. USENIX Association, 2008.

[22] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan.
PUMA: Programmable UI-Automation for Large Scale Dy-
namic Analysis of Mobile Apps. In Proc. of MobiSys, pages
204–217. ACM, June 2014.

[23] Y. Hu, T. Azim, and I. Neamtiu. Versatile yet lightweight
record-and-replay for android. In Proc. of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA
2015, pages 349–366. ACM, 2015.

[24] D. Hupp and R. C. Miller. Smart Bookmarks: Automatic
Retroactive Macro Recording on the Web. In Proc. of the
20th Annual ACM Symposium on User Interface Software and
Technology, UIST ’07, pages 81–90. ACM, 2007.

[25] IFTTT. https://ifttt.com/recipes.
[26] JD-GUI. http://jd.benow.ca/.
[27] O. Laadan, R. A. Baratto, D. B. Phung, S. Potter, and J. Nieh.

DejaView: A Personal Virtual Computer Recorder. In Proc.
of the 21st ACM SIGOPS Symposium on Operating Systems
Principles, SOSP ’07, pages 279–292, 2007.

[28] G. Leshed, E. M. Haber, T. Matthews, and T. Lau. Coscripter:
Automating & sharing how-to knowledge in the enterprise. In
Proc. of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’08, pages 1719–1728, New York, NY,
USA, 2008. ACM.

[29] I. Li, J. Nichols, T. Lau, C. Drews, and A. Cypher. Here’s
What I Did: Sharing and Reusing Web Activity with Action-
Shot. In Proc. of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’10, pages 723–732, 2010.

[30] Localytics. http://www.localytics.com/.
[31] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Contin-

uously recording program execution for deterministic replay
debugging. SIGARCH Comput. Archit. News, 33(2):284–295,
May 2005.

[32] S. Nath, F. X. Lin, L. Ravindranath, and J. Padhye. SmartAds:
bringing contextual ads to mobile apps. In Proc. of MobiSys,
pages 111–124, 2013.

[33] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn. Paral-
lelizing security checks on commodity hardware. SIGPLAN
Not., 43(3):308–318, Mar. 2008.

[34] A. Safonov, J. A. Konstan, and J. V. Carlis. End-user web
automation: Challenges, experiences, recommendations. In
Proc. of WebNet 2001, pages 1077–1085, 2001.

[35] Soot. Soot: A Framework for Analyzing and transforming
Java and Android applications. http://sable.github.io/soot/.

[36] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou.
Flashback: A lightweight extension for rollback and deter-
ministic replay for software debugging. In Proc. of the Annual
Conference on USENIX Annual Technical Conference, pages
3–3. USENIX Association, 2004.

[37] SuSi - Sources and Sinks. http://sseblog.ec-spride.de/tools/
susi/.

[38] J. Teevan, E. Cutrell, D. Fisher, S. M. Drucker, G. Ramos,
P. André, and C. Hu. Visual snippets: Summarizing web
pages for search and revisitation. In Proc. of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’09,
pages 2023–2032. ACM, 2009.

[39] URX. http://www.urx.com.

[40] URX Blog. How Many of the Top 200 Mobile Apps
Use Deeplinks? http://blog.urx.com/urx-blog/how-many-of-
the-top-200-mobile-apps-use-deeplinks.

[41] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot - a Java Bytecode Optimization Frame-
work. In Proc. of the 1999 Conference of the Centre for Ad-
vanced Studies on Collaborative Research, CASCON ’99,
pages 13–. IBM Press, 1999.

[42] VentureBeat. Imagine a web without URLs. That’s
what the mobile app world looks like now. http:

//venturebeat.com/2014/07/08/imagine-a-web-without-urls-
thats-what-the-mobile-app-world-looks-like-now/.

[43] VentureBeat. Microsoft beats Google to the punch: Bing
for Android update does what Now on Tap will do.
http://venturebeat.com/2015/08/20/microsoft-beats-google-to-
the-punch-bing-for-android-update-does-what-now-on-tap-
will-do/.

[44] M. Xu, R. Bodik, and M. D. Hill. A Flight Data Recorder
for enabling full-system multiprocessor deterministic replay.
SIGARCH Comput. Archit. News, 31(2):122–135, May 2003.

