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Abstract

Data center infrastructures are highly underutilized on
average. Typically, a data center manager computes the
number of servers his facility can host by dividing the total
power capacity of each rack by an assigned “peak power
rating” for each server. However, this scheme suffers from
the weakness of all static provisioning schemes – it does not
account for the variability of load on the servers. We pro-
pose an algorithm that studies the power consumption be-
havior of the servers over time and suggests optimal ways
to combine them in racks to maximize rack power utiliza-
tion. Our algorithm – RackPacker – smooths aggregate rack
power utilization by grouping together servers that are un-
likely to peak together. Our evaluation of RackPacker on
data from an MSN Messenger deployment shows substan-
tially superior results than static packing.

1 Introduction

Modern data center infrastructure, excluding the IT
equipment they host, can cost hundreds of millions of dol-
lars to construct. A majority of this cost is attributed to the
electrical and mechanical system, which distributes power
and cooling to servers, storage, and network devices. De-
signing data centers to maximally utilize their capacitiesis
therefore a crucial architectural concern.

The capacity of a data center is defined in many dimen-
sions: power, water, cooling, space, network bandwidth,
etc. Running out of resources in any of these dimensions
means that the service provider needs infrastructure expan-
sion, such as building or renting other facilities. Among
these resources, power is usually the first to be exhausted
because of the load limitation on the power grid and the
increasing power density of computing. However, recent
studies [8, 4] have found that on average data center’s power
resources are highly underutilized.

Salient factors that lead to under utilization of provi-
sioned power are overly-conservative estimates of server

power needs, combined with overlooking the dynamic na-
ture of load on servers. The common practice of power
provisioning in data centers relies on estimatedname-
platepower consumptions published by the server vendors,
which indicates the maximum possible power consumption
of the server. In reality, the nameplate power allocated to
a server is almost never fully used. To overcome the prob-
lem, researchers have proposed to use discounted power rat-
ing, obtained by profiling for power provisioning [5]. Static
power provisioning, even with discounted power rating, can
still leave a large amount of power stranded for two rea-
sons. First, server power consumptions change due to the
load fluctuation. Slow and quasi-periodic load fluctuation
has been observed in a lot of web traffic, including web
sites [1] and instant messaging [3]. This fluctuation can
become even more significant as idle power consumption
is decreasing for newer servers. Secondly, in addition to
the slow fluctuation, there are spikes, caused by short term
load variation such as scheduled processing intensive tasks
or flash crowd visitors. The discounted power rating – be-
ing a worst case estimate – must include both the peak of
the fluctuation and the highest spikes; thus it can be overly
conservative.

These observations motivate us to design RackPacker, a
data-driven approach for power (over-)provisioning, which
statistically guarantees that over-subscribed sets of servers
do not exceed rack level power caps with high probability.
RackPacker takes advantage of two dynamic properties of
actual server power traces: (1) Not all servers fluctuate to
the peak at the same time. The usage patterns of on-line
services can be diverse. If we can bundle services that are
maximally out of phase, then the peak of the sum is less
than the sum of the peaks. (2) Servers that are managed
by the same load balancer or have close dependencies can
have strong correlations among their spikes. Statistically,
placing services that areanti-correlatedwill lead to smaller
probability of their seeing simultaneous spikes. We verify
the effectiveness of RackPacker through real workload trace
collected from more then 800 servers from Windows Live
Messenger cluster.
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Note that RackPacker is not a power capping solution.
In fact, it relies on power capping techniques, such as those
proposed by Ranganathan et. al. [9] or Wang and Chen
[10], to provide the safety net in rare events when total rack
power exceeds the cap.

2 A Running Example

Throughout the rest of the paper, we use 831 servers
from a production Messenger service deployment as a run-
ning example for our discussion. Functionality-wise, these
servers largely belong to three categories, which we call
Types 1, 2, and 3. They are divided into several clusters,
where each cluster is managed by a load balancer. Server
workloads show strong correlations, because of both func-
tionality dependencies and load balancing effects. For ex-
ample, when there is a flash crowd, servers behind the same
load balancer experience a power spike at the same time,
while servers across load balancers are less correlated. Due
to the nature of the application, we also observe that about
2 hours after servers of type 1 reach their peak workload,
servers of type 3 reach their peak. In addition to the tight
coupling among server tiers, the relatively high CPU uti-
lization, reaching over 75% at peak load, make this a chal-
lenging set of servers for rack packing.

These servers have a nameplate power rating of 350W;
based on this number, a 11.2KW rack can host 32 servers.
In other words, we need 26 racks to host these servers in the
most conservative situation.

3 The RackPacker Approach

RackPacker takes a data-driven approach that uses col-
lected power consumption traces to support server place-
ment decisions. We assume that services are hosted by
virtual machines, even though there may be only one VM
per physical server. VMs enable fast re-positioning of ser-
vices without moving the servers physically. This allows
the server placement decisions to be made frequently – at
a weekly or even daily basis– and aggressively. The Rack-
Packer algorithm, thus, only needs to predict short term traf-
fic growth. Further, we assume that a power capping mecha-
nism is in place to ensure power consumption never exceeds
capacity; in the (probabilistically guaranteed) rare event that
power consumption approaches capacity, the power capping
mechanism kicks in.

By profiling or monitoring a server operation, we model
the server power consumption with a time series (rather than
a single number). Figure 3 shows a power consumption
trace of a server over a week. The data are sampled ev-
ery 30 seconds. From the trace, we can see clearly quasi-
periodicity that is correlated with the number of users in the
system.
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Figure 1. A power trace of a server over a
week.

The time series is first filtered to obtain the low
frequency power consumption baseline, and the high-
frequency noise that captures spikes. The noise signal has
zero mean. Its variance represents how “spiky” the tran-
sient power consumption can be. The goal of obtaining
the low-frequency components is to identify the baseline
fluctuations reflecting workload trends, specifically their
phase. Using this phase information, we can sift through
the servers and bundle those that are most out of phase.
The bundles are then treated as the unit for rack packing.
The high-frequency noise goes through a covariance analy-
sis that measures the likelihood that two bundles may have
spikes at the same time. This statistical measure, together
with the baseline of the bundles is used in a statistical bin
packing algorithm to find a (sub-)optimal server placement
solution.

Thus, RackPacker has three major steps: filtering,
bundling, and packing. In the rest of this section, we de-
scribe each of these steps in detail.

3.1 Filtering and Classification

The goal of filtering is to separate workload trends from
noisy transients. A typical approach is to compute a moving
average with a sliding window on the power traces, which is
equivalent to low-pass filtering. LetS be the set of servers
of interest,Ps be the power profile time series of server
s ∈ S with M samples, andT be the sliding window size to
compute the moving average. Then, the baselineBs is com-
puted asBs(i) = 1

T

∑i

j=(i−T+1) Ps(j), i = {1...M} (with
patching zeros wheni ≤ T ), and noiseNs = Ps − Bs.

To obtain and compare the relative times at which dif-
ferent servers peak, we perform discrete Fourier trans-
form (FFT) on the baseline signal. In particular, since
the most significant fluctuation has the period of a day,
we expect that the second FFT coefficient has the largest
magnitude. Indeed, for the power profile of the servers
we studied, the normalized magnitude of the first 10 FFT
coefficients are[0, 4.2790, 0.2240, 0.7166, 0.4953, 0.1057,
0.1303, 0.0738, 0.0393, 0.0609]. It is clear that the second
component is at least an order of magnitude greater than
other components, indicating that it is a good approxima-
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tion of the overall shape of the power profile.
We denote the second FFT coefficient of the baseline

power profile byfs. Note thatfs is a complex number that
represents a sine wave that can be written as|fs|Sin(ωt +
φs), where|fs| is the magnitude andφs is the phase. In a
slight abuse of terminology, we callφs the primary phase
of the service.

Based on the relative magnitudes of the noise level and
the fluctuation|fs|, the servers can be classified asflat or
fluctuating. Intuitively, a fluctuating server shows substan-
tial load variation above and beyond its noise. In our exam-
ple, we consider servers whose power profile has|fs| < 3σs

to be flat. By this definition, 830 out of the 831 servers fluc-
tuate. Fluctuating servers that show significant phase differ-
ence will potentially pack well together, and deserve special
attention. This brings us to the bundling step.

3.2 Bundling

The goal of bundling is to find small sets of servers
whose primary phases “match”. Ideally, if the average offs

across all servers is 0, then the fluctuations cancel each other
out . However, in real data centers, this may not be possible.
Therefore, the total power load fluctuates at the data center
level. Let φ̄ be the average phase of allfs. Then the best
packing approach should spread the data center peak load
evenly to all racks. Hence, the target for the bundling pro-
cess is to make the average phase of each bundle as close to
φ̄ as possible.

Another benefit of a common phase for all bundles is di-
mension reduction. As stated earlier, given a set of power
profile time series, we need to verify that at each time in-
stance the total power consumption at each rack does not
exceed the power cap with high probability. When server
power profiles show distinct phases, we need to perform
this verification at the peak time of every power profile. By
bundling servers into common phase groups, we only need
to verify the time instance when the common phase sine
wave reaches the peak.

The bundling process can be explained using complex
vectors. The complex coefficientfs of servers can be
viewed as a vector in the complex coordinates, as can the
average vector̄f with phasēφ. Then each vector can be de-
composed by projecting it to the direction off̄ and to the
direction that is orthogonal tōf . Let f1 be the2nd FFT co-
efficient of server 1, and̄f be the average vector across all
servers. Then we projectf1 on f̄s to obtainf̄1, and then
f̃1 = f1 − f̄1. If there existsf2, whose projectioñf2 on
the direction that is orthogonal tofs satisfies,f̃2 + f̃1 = 0,
then bundling server 1 and server 2 together achieves the
common phase. Once common phase bundles are created,
further bundling can be performed along thef̄ direction so
that positive and negative magnitudes cancel each other out
.

3.3 Packing

Once bundles are created with the same phase, the pack-
ing process uses a modified bin packing algorithm for the fi-
nal placement. A particular challenge that the packing step
addresses is the correlations among the spikes.

The goal of the packing phase is to assign bundles to
racks in such a manner as to minimize the probability of
exceeding the rack power cap. In order to minimize this
probability, the packing phase packs together bundles that
show minimal correlation in their spikes (noise). Correlated
bundles spike in lockstep; this can result in a heightened
likelihood of exceeding the rack cap in the event of load
spikes such as flash crowds.

In order to compute sets of bundles that show mini-
mal noise correlation, the packing phase proceeds as fol-
lows. First, the bundles are ordered in descending or-
der of size. Bundle size for a bundleb is computed as∑

s∈b Bs + CF ∗ σb, whereσb is the standard deviation
of the bundle noise, and CF stands for confidence factor, a
configuration parameter (3, here).

We then iterate through this ordered list of bundles and
assign them to racks one by one. A bundleb is deemed to
fit into a rackr if

∑
b′∈r Bb′ + Bb + CF ∗ σr,b < Cr,

whereσr,b is the standard deviation of the rack noise (=
sum of the noise of each bundle in that rack) combined with
the noise of bundleb, andCr is the rack cap. Given a non-
empty rackr, to arrive at the next bundle that we’ll attempt
to pack intor, we order the unassigned bundles in ascending
order of their covariance with the current contents ofr. We
then try to find a bundle from this ordered list that will fit
into r. If no such bundle is found, we create a new rack and
repeat the process.

4 Evaluation

Parameter Value
Rack Cap 11200 W

Bundle Cap 1120 W
εB 20

Confidence Factor (CF) 3
(a) RackPacker Configuration Parameters
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Figure 2. Simulation parameter choices.

We have implemented RackPacker in MATLAB. Fig-
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ure 2 shows our choice of parameters for the implementa-
tion. The choice of the parameter “Confidence Factor (CF)”
is illustrated in figure 2. Here assignment confidence is
computed as the percentage of racks that fail to stay within
the rack cap over a week’s trace of data. We see that the
choice of the CF value results in a tradeoff between assign-
ment confidence and packing efficiency.

In evaluating RackPacker, we wish to answer the follow-
ing questions:

1. How does RackPacker compare with the prevalent
server assignment algorithms?

2. What kinds of workloads is RackPacker best suited
for? Conversely, are there workloads for which Rack-
Packer is not suitable?

This section addresses these questions.

4.1 RackPacker: Comparative Perfor-
mance

To compare the efficacy of RackPacker against current
solutions, we use the following metrics:

• Stranded Power: This is the difference between pro-
visioned power and actual power consumed per rack.
The less the stranded power per rack, the better the
server assignment algorithm.

• Packing Efficiency: This is the number of racks
needed to host the given set of servers. The smaller
this number, the better the data center utilization.

We compare RackPacker with two flavors of static as-
signment: (1) Nameplate Rating-Based assignment, and (2)
Peak Power-Based assignment. Both these schemes em-
ploy striping, where each type of server is distributed uni-
formly across all the racks. Thenameplate rating-based
schemeuses the power rating on the server as a measure of
its power consumption. Since this number is usually a sub-
stantial over-estimate, we also provide a comparison point
called thepeak power-based scheme, which uses the mea-
sured peak power consumption of the server in place of the
nameplate rating. This is the most aggressive static power
provisioning approach, which assumes that the peak in the
future does not exceed the peak in the past. In the graphs
that we present, the algorithm labelled “Static” refers to the
peak power-based scheme.

We evaluate each of these three server assignment algo-
rithms on real power consumption data obtained from a pro-
duction data center. The data spans 831 servers and hosts
the MSN Messenger application. The servers belong to one
of three types, corresponding to different tiers of the appli-
cation. Table 1, and figure 3 describe the data. The data
spans a week, but we train the various algorithms on one

Number of server types 3

Number of servers

Type 1 329
Type 2 283
Type 3 219
Total 831

Average power consumed
Type 1 199.4 W
Type 2 194.7 W
Type 3 210.1 W

Peak power consumed
Type 1 268.8 W
Type 2 262.6 W
Type 3 270 W

Data timespan 1 week
Data time granularity 30 s

Table 1. MSN Messenger Trace Characteris-
tics
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Figure 3. Average Power Consumption Be-
havior For The Different Server Types

day’s data, and validate the computed assignment against
the remaining days. An assigment is deemed valid if it
causes no power capping incidents. Note that packing ag-
gressiveness can be tuned by tuning this notion of a valid
assignment. We had collected over six months’ worth of
data, but we noticed clear diurnal patterns with each day
being largely self-similar, and weekends showing slightly
lighter load. Hence the week’s worth of data we use in our
evaluation is representative of the observed workload.

Figure 4.1 is a pictorial representation of the server as-
signments computed by RackPacker, and the peak power-
based scheme. We find that RackPacker results in 14%
more efficient assignment, using only 18 racks against 21
for the peak power-based static assignment. RackPacker
does even better when compared with the nameplate rating-
based scheme. Recall that using nameplate numbers, we
need 26 racks to host these servers. Thus here we see a
30% improvement in packing efficiency.

4.2 RackPacker: Workload Exploration

In the previous section we showed that RackPacker can
improve utilization substantially for a real data center sce-
nario. Now we will explore what kinds of workloads Rack-
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Figure 4. Server assignment results for MSN
Messenger trace.

Packer is best suited to.
The workload presented in figure 3 represents a single-

application hosting center. The three types of servers repre-
sent three tiers of the application; we see that these tiers
operate essentially in lockstep, with load variation being
consistent across the tiers. Here we will explore two other
data center scenarios. The data for these scenarios is gen-
erated through controlled modification of the real data from
table 1.
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Figure 5. Average Power Consumption Be-
havior For The Different Server Types

Dedicated Multi-Application Hosting Center: Here
we consider data centers that host a small number of appli-
cations (more than one). Figure 5 shows the data we gener-
ated to represent this scenario. Again, there are three types
of servers, but Types 2 and 3 belong to a different applica-
tion than Type 1 – they are thus phase shifted. Figure 4.2
shows the server assignment computed by RackPacker and
the peak power-based static scheme. Again, we find that
RackPacker achieves 19% better packing efficiency, using
17 racks against 21 for the static scheme. The nameplate
rating-based scheme needs 26 racks (as computed above);
RackPacker is now 34% more efficient. In general, we ex-
pect that phase shifted servers will benefit more from Rack-
Packer.

Mixed Hosting Center: Here we consider data centers

Figure 6. Server assignment results from a
workload trace with shifted phases.
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Figure 7. Average Power Consumption Be-
havior For The Different Server Types

that host a very large number of applications; this represents
the cloud computing scenario, where the servers are leased
out to various companies that host different applications on
them. Figure 7 shows the data we generated to represent
this scenario. Here we see that there are numerous types of
servers, and their correlations are less obvious. Figure 4.2
shows the server assignment computed by RackPacker and
the peak power-based static scheme. Again, we find that
RackPacker outperforms the static schemes substantially.

5 Related Work

In this paper, we present a scheme for intelligent over-
subscription of data center power. The idea of power over-
subscription is not new, and has been explored in the litera-
ture in numerous ways. The common theme in prior work,
however, is that power tracking/capping are the means used
to achieve this oversubscription. To the best of our knowl-
edge, server placement – which sets of servers are placed in
which racks – has not been studied as a means of improv-
ing data center utilization. Thus, RackPacker is intended to
supplement prior work by intelligent server placement that
reduces the need for rack-level power capping.

Power capping solutions attempt to provide a means
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Figure 8. Server assignment results from a
workload trace with randomized phases.

to control data center power consumption. This allows
data center owners to over-subscribe their facility safely;
in the event that power consumption approaches capacity,
the power capping mechanism kicks in and prevents it from
exceeding capacity. Fan et al [4] show that cluster-level
power capping presents a significant power-saving opportu-
nity in data centers through a measurement study. Lefurgy
et al [7] present a power capping mechanism that uses a
control feedback loop at each server to determine what fre-
quency to run the CPU at. Heath et al [6] add a degree of
sophistication to their controller by taking into account the
heterogeity of the servers in the data center. Muse [1] is a
game-theoretic, distributed power management architecture
that tries to allocate only as many servers as are needed to
serve the application workload.

Ranganathan et al [9] show the power savings possible
through over-subscription at enclosure-level. Their solu-
tion uses a controller at the enclosure level that determines
the power breakup across the blades, each of which houses
an agent to enforce these power budgets. Wang et al [10]
present a cluster-level power control scheme that is similar
in principle. Our solution takes this principle a step fur-
ther by determining server placement schemes that maxi-
mize over-subscription opportunities.

6 Conclusion

Efficient use of data center infrastructure is a pressing
issue for the scalability of the IT industry. Due to conser-
vative and static estimation of server power consumption,
traditional approaches for power provisioning leave large
amounts of provisioned power stranded. RackPacker is a
data driven approach for power provisioning. Our sim-
ulation results from real workload traces show that even
with tightly coupled and high utilization services, we can
achieve significantly better packing performance than static
schemes.

An interesting question is how RackPacker compares
with random server placement. While an improvement on

static packing efficiency may be achieved with a random
server placement scheme, we posit that it would take a
more structured approach like RackPacker to ensure min-
imal power capping incidents. This is ongoing work.

Although we implement RackPacker at the rack level, in
principle it is applicable at lower (eg, enclosure) as well as
higher (eg PDU) levels. Exploring implementation schemes
to translate RackPacker to these different levels is an inter-
esting direction for future work.

As a data driven approach for resource management,
RackPacker algorithm can be applied to other scenarios, in
particular service consolidation via virtualization. Thedif-
ference is that power is an additive resource, ignoring the
power factor, but other resources in a physical server may
not be additive. Modeling multi-modality resources and op-
timizing their utilization is challenging future work.
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