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1. INTRODUCTION
The simplicity of the interface between cloud providers

and tenants has significantly contributed to the increas-
ing popularity of cloud datacenters offering on-demand
use of computing resources. Tenants simply ask for the
amount of compute and storage resources they require,
and are charged on a pay-as-you-go basis.

While attractive and simple, this interface misses a
critical resource, namely, the (intra-cloud) network.1 Cloud
providers do not offer guaranteed network resources to
tenants. Instead, a tenant’s compute instances (virtual
machines or, in short, VMs) communicate over the net-
work shared amongst all tenants. Consequently, the band-
width achieved by traffic between a tenant’s VMs de-
pends on a variety of factors outside the tenant’s con-
trol, such as the network load and placement of the
tenant’s VMs, and is further exacerbated by the over-
subscribed nature of datacenter network topologies [1].
Unavoidably, this leads to high variability in the per-
formance offered by the cloud network to a tenant [2–5]
which, in turn, has several negative consequences for
both tenants and providers.
–Unpredictable application performance and tenant cost.
Variable network performance is one of the leading causes
for unpredictable application performance in the cloud [3],
which is a key hindrance to cloud adoption [6,7]. This
applies to applications across the spectrum; from user-
facing web applications [3,8] to transaction-processing
web applications [9] and even MapReduce-like data-
intensive applications [3,10]. Further, since tenants pay
based on the time they occupy their VMs, and this time
is influenced by the network, tenants implicitly end up
paying for the network traffic; yet, such communication
is supposedly free (hidden cost).
–Limited cloud applicability. The lack of guaranteed net-
work performance severely impedes the ability of the
cloud to support various classes of applications that rely
on predictable performance. The poor and variable per-
formance of HPC and scientific computing applications
in the cloud is well documented [11,12]. The same ap-
plies to data-parallel applications like MapReduce that
rely on the network to ship large amounts of data at
high rates [10]. As a matter of fact, Amazon’s Clus-
terCompute [13] addresses this very concern by giving
tenants, at a high cost, a dedicated 10 Gbps network
with no oversubscription.
–Inefficiencies in production datacenters and revenue
loss. The arguments above apply to not just cloud dat-
acenters, but to any datacenter with multiple tenants
(product groups), applications (search, ads, MapReduce),
and services (BigTable, HDFS, GFS). For instance, in
production datacenters running MapReduce jobs, vari-

1In the rest of this paper, we use “network” to refer to the
intra-cloud network connecting compute instances within a
datacenter. The “external network” is referred to as such.

able network performance leads to poorly performing
job schedules, and severely impacts datacenter through-
put [10,14,15]. Also, such network-induced application
unpredictability makes job scheduling qualitatively harder
and hampers programmer productivity, not to mention
significant loss in revenue [15].

These limitations result from the mismatch between
the desired and achieved network performance by ten-
ants which hurts both tenants and providers. Motivated
by these factors, this paper tackles the challenge of ex-
tending the interface between providers and tenants to
explicitly account for network resources, while main-
taining its simplicity. Our overarching goal is to allow
tenants to express their network requirements while en-
suring providers can flexibly account for them. To this
end, we propose “virtual networks” as a means of ex-
posing tenant requirements to providers. Tenants, apart
from getting compute instances, are also offered a vir-
tual network connecting their instances. The virtual
network isolates tenant performance from the under-
lying infrastructure. Such decoupling benefits providers
too– they can modify their physical topology without
impacting tenants.

The notion of a virtual network opens up an im-
portant question: What should a virtual network topol-
ogy look like? On one hand, the abstractions offered
to tenants must suit application requirements. On the
other, the abstraction governs the amount of multiplex-
ing on the underlying physical network infrastructure
and hence, the number of concurrent tenants. Guided
by this, we propose two novel abstractions that cater to
application requirements while keeping tenant costs low
and provider revenues attractive. The first, termed vir-
tual cluster, emulates a “virtual Ethernet cluster” suited
for data-intensive applications like MapReduce. The sec-
ond, named virtual oversubscribed cluster, offers an over-
subscribed tree-like structure that suits applications that
feature local communication patterns.

Hence, the primary contribution of this paper is the
design of virtual network abstractions that explore the
trade-off between the guarantees offered to tenants, the
tenant cost and provider revenue. We further present
Oktopus, a system that implements our abstractions.
Oktopus maps tenant virtual networks to the physical
network in an online setting, and enforces these map-
pings. Using extensive simulations and deployment on a
25-node testbed, we show that expressing requirements
through virtual networks enables a symbiotic relation-
ship between tenants and providers; tenants achieve bet-
ter and predictable performance while the improved dat-
acenter throughput (25-435%, depending on the abstrac-
tion) increases provider revenue.

A key takeaway from Oktopus is that our abstrac-
tions can be deployed today: they do not necessitate
any changes to tenant applications, nor do they require
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Study Source Provider Duration
A [5] Amazon EC2 NA
B [3] Amazon EC2 31 days

C/D/E [2] 3 providers 1 day
F/G [17] Amazon EC2 1 day

H [4] Amazon EC2 1 day

Table 1: Studies measuring intra-cloud network
bandwidth.

changes to routers and switches. Further, offering guar-
anteed network bandwidth to tenants opens the door for
explicit bandwidth charging. Using today’s cloud pric-
ing data, we find that virtual networks can reduce me-
dian tenant costs by up to 74% while ensuring revenue
neutrality for the provider.

On a more general note, we argue that predictable
network performance is a small yet important step to-
wards the broader goal of offering an explicit cost-versus-
performance trade-off to tenants in multi-tenant data-
centers [16] and hence, removing an important hurdle
to cloud adoption.

2. NETWORK PERFORMANCE
VARIABILITY

Network performance for tenants in shared datacen-
ters depends on many factors beyond the tenant’s control–
the volume and kind of competing traffic (TCP/UDP),
placement of tenant VMs, etc. Here, we discuss the ex-
tent of network performance variability in cloud and
production datacenters. Overall, we find that there is
significant variability that cannot be ignored - jobs may
take up to 4-5 times their median completion time.

2.1 Cloud datacenters
A slew of recent measurement studies characterize the

CPU, disk and network performance offered by cloud
vendors, comment on the observed variability, and its
impact on application performance [2–5,17]. We con-
tacted the authors of these studies and summarize their
measurements of the intra-cloud network bandwidth,
i.e., the TCP throughput achieved by transfers between
VMs in the same cloud datacenter. Table 1 presents rel-
evant information about the measurements, while Fig-
ure 1 plots the percentiles for the network bandwidth.
The figure shows that tenant bandwidth can vary signif-
icantly, even by a factor of five or more in some studies
(A, B, F and H).

While more work is needed to determine the root-
cause for such bandwidth variations, anecdotal evidence
suggests that the variability is correlated with system
load (EU datacenters, being lightly loaded, offer bet-
ter performance than US datacenters) [3,14], and VM
placement (e.g., VMs in the same availability zone per-
form better than ones in different zones) [3]. Further,
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Figure 1: Percentiles (1-25-50-75-99th) for intra-
cloud network bandwidth observed by past stud-
ies.
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Figure 2: Production datacenter running data
analytics jobs.

as mentioned in Section 1, such network performance
variability leads to poor and unpredictable application
performance [3,8–10].

2.2 Production datacenters
Production datacenters are often shared amongst mul-

tiple tenants, different (possibly competing) groups, ser-
vices and applications, and these can suffer from perfor-
mance variation. We characterize such variation based
on data from [15] that reflects a production datacen-
ter with tens of thousands of commodity servers. These
servers run data analytics jobs for a major search pro-
vider using a data-parallel framework similar to Map-
Reduce [18], Dryad [19] and Cosmos [20]. Individual
jobs are comprised of phases (map, reduce, join, etc.)
while phases contain multiple tasks, each operating on
a different part of the input for the phase.

Since tasks for a given phase perform the same oper-
ation, their runtime is expected to be similar. To verify
this, we look at the runtime of tasks in each phase. The
CDF for the ratio of the runtime of individual tasks to
the median task runtime is plotted in Figure 2(a). While
many tasks finish close to the median task, the distri-
bution has a long tail. This is important since, in most
cases, the slowest task dictates the phase finish time
and hence, the job finish time. The figure also shows
the CDF for the ratio of the runtime of the slowest task
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to the median task. In 25% of cases, the runtime of the
slowest task is more than 4 times the median task (1.85
times in 50% of the cases)! These results show that task
runtimes vary significantly, and this can adversely im-
pact job completion times [10].

Variability in task runtimes can result from a num-
ber of factors– unequal distribution of data amongst
tasks, failures, network performance, etc. We perform
an analysis similar to [15] and determine the fraction of
slowest tasks (with runtime greater than 1.5 times the
median) that could be explained by the amount of data
read across cross-rack links where congestion typically
occurs. We find that 20% of such slow tasks can be
explained through the amount of cross-rack transfers.
Since the logs do not contain information about data
read by tasks from machines in the same rack, we were
unable to extend this analysis to account for all data
read from the network. However, the result shows that
at least 20% of the slowest tasks can be attributed to the
network. Further, the bandwidth achieved by tasks that
read data across cross-rack links can vary by more than
an order of magnitude (from 8.4 Mbps at the 5th per-
centile to 270 Mbps at the 95th percentile, Figure 2(b)).

In summary, we observe significant variability in net-
work performance which negatively impacts application
performance. Further, our evaluation shows that in both
cloud and production datacenters, the mismatch be-
tween required and achieved network performance hurts
datacenter throughput and hence, provider revenue. Since
our proposed abstractions cover both cloud and pro-
duction datacenters, we will henceforth use the term
“multi-tenant” to refer to both.

3. VIRTUAL NETWORK ABSTRACTIONS
In multi-tenant datacenters, tenants request virtual

machines (VMs) with varying amounts of CPU, mem-
ory and storage resources. For ease of exposition, we
abstract away details of the non-network resources and
characterize each tenant request as <N>, the num-
ber of VMs requested. The fact that tenants do not
expose their network requirements hurts both tenants
and providers. This motivates the need to extend the
tenant-provider interface to explicitly account for the
network. Further, the interface should isolate tenants
from the underlying network infrastructure and hence,
prevent provider lock-in. Such decoupling benefits the
provider too; it can completely alter its infrastructure
or physical topology, with tenant requests being unaf-
fected and unaware of such a change. To this end, we
propose virtual networks as a means of exposing tenant
network requirements to the provider. Apart from spec-
ifying the type and number of VMs, tenants also specify
the virtual network connecting them.

The “virtual” nature of the network implies that the
provider has a lot of freedom in terms of the topology

VM 1 VM N

Bandwidth B
B Each VM can send and 

receive at rate B

Switch bandwidth needed 

= N*B

Virtual Switch
Request <N, B>

Figure 3: Virtual Cluster abstraction

of this network, and can offer different options to ten-
ants for different costs. Beyond the overarching goal of
maintaining the simplicity of the interface between ten-
ants and providers, the topologies or virtual network
abstractions should be guided by two design goals:

1. Tenant suitability. The abstractions should allow ten-
ants to reason in an intuitive way about the network
performance of their applications when running atop
the virtual network.

2. Provider flexibility. Providers should be able to mul-
tiplex many virtual networks on their physical net-
work. The greater the amount of sharing possible,
the lesser the tenant costs.

Motivated by the above discussion, we propose two
novel abstractions for virtual networks in the following
sections. Our designs aim at balancing these compet-
ing goals through the richness of the virtual network
topology.

3.1 Virtual Cluster
The “Virtual Cluster” abstraction is motivated by the

observation that in an enterprise (or any private set-
ting), tenants typically run their applications on dedi-
cated clusters with compute nodes connected through
Ethernet switches. This abstraction, shown in figure 3,
aims to offer tenants with a similar setup. With a virtual
cluster , a tenant request <N ,B> provides the following
topology: each tenant machine is connected to a virtual
switch by a bidirectional link of capacity B, resulting
in a one-level tree topology. The virtual switch has a
bandwidth of N ∗B. This ensures that the virtual net-
work has no oversubscription and the maximum rate at
which the tenant VMs can exchange data is N ∗B. How-
ever, this data rate is only feasible if the communication
matrix for the tenant application ensures that each VM
sends and receives at rate B. Alternatively, if all N ten-
ant VMs were to send data to a single destination VM,
the data rate achieved will be limited to B.

Since a virtual cluster offers tenants a network with
no oversubscription, it is suitable for data-intensive ap-
plications like MapReduce, BLAST, etc. For precisely
such applications, Amazon’s Cluster Compute provides
tenants with compute instances connected through a
dedicated 10 Gbps network with no oversubscription.
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Bandwidth B B

N VMs in groups of size S, Oversubscription factor O

Group switch bandwidth = S*B, Root switch bandwidth = N*B/O

Root Virtual 

Switch

Request <N, S, B, O>

VM1 VM S VM1 VM S VM1 VM S
Group 1 Group 2 Group N/S

B

Bandwidth 

B*S/O

Group Virtual 

Switch

Figure 4: Virtual Oversubscribed Cluster ab-
straction

This may be regarded as a specific realization of the
virtual cluster abstraction with <N , 10 Gbps>.

While a network with no oversubscription is impera-
tive for data-intensive applications, this does not hold
for many other applications [21,22]. Instead, a lot of
cloud bound applications are structured in the form of
components with more intra-component communication
than inter-component communication [23,24]. A “Vir-
tual Oversubscribed Cluster” is better suited for such
cases; it capitalizes on application structure to reduce
the bandwidth needed from the underlying physical in-
frastructure compared to virtual clusters, thereby im-
proving provider flexibility and reducing tenant costs.
We describe this abstraction in the following section.

3.2 Virtual Oversubscribed Cluster
With a virtual oversubscribed cluster , a tenant re-

quest <N ,B ,S ,O> entails the topology shown in Fig-
ure 4. Tenant machines are arranged in groups of size
S, resulting in P = N

S groups2. VMs in a group are
connected by bidirectional links of capacity B to a (vir-
tual) group switch. The group switches are further con-
nected using a link of capacity B′ = S∗B

O to a (virtual)
root switch. The resulting topology has no oversubscrip-
tion for intra-group communication through the group
switches. However, inter-group communication has an
oversubscription factor O, i.e., the aggregate bandwidth
at the VMs is O times greater than the bandwidth at
the root switch. Hence, this abstraction closely follows
the structure of typical oversubscribed datacenter net-
works. Note, however, that O neither depends upon, nor
requires physical topology oversubscription.

The maximum data rate with this topology is still
N ∗ B. Yet, the localized nature of the tenant’s band-
width demands resulting from this abstraction allows
the provider to fit more tenants on the physical net-
work. Compared to virtual cluster , this abstraction does
2While we focus on groups of uniform size, the virtual over-
subscribed cluster abstraction and the algorithm presented
in Section 4.2 apply to variable-sized groups as well.

not offer as dense a connectivity but, as our evalua-
tion shows, has the potential to significantly limit ten-
ant costs. Hence, in effect, by incentivizing tenants to
expose the flexibility of their communication demands,
the abstraction achieves better multiplexing which ben-
efits both tenants and providers. Amazon’s EC2 Spot
Instances [25] is a good example of how tenants are
willing to be flexible, especially when it suits their ap-
plication demands, if it means lowered costs.

Other topologies. A number of network abstractions
have been proposed in other contexts and could poten-
tially be offered to tenants today. For example, many
topologies have been studied for HPC platforms, such
as multi-dimensional cubes, hypercube and its variants,
and even more complex topologies such as Butterfly net-
works, de Bruijn, and ShuffleNet [26]. Similarly, Second-
Net [27] provides tenants with bandwidth guarantees for
pairs of VMs, resulting in a clique virtual topology.

We believe that these existing proposals suffer from
several drawbacks due to their dense connectivity, and
hence significantly limit the true flexibility a multi-tenant
datacenter can provide. First, they are of interest to a
small niche set of applications (violating goal 1). Sec-
ond, their dense connectivity also makes it difficult for
the provider to multiplex multiple tenants on the un-
derlying network infrastructure (violating goal 2). For
instance, the analysis in [27] shows that with the over-
subscribed physical networks prevalent in today’s dat-
acenters, only a few tenants demanding clique virtual
networks are sufficient to saturate the physical network.
This hurts the provider revenue and translates to high
tenant costs. Finally, these abstractions offer multiple
links per VM which makes it difficult to account for
resource bottlenecks; for instance, the disk bandwidth
at a VM may prevent the VM from saturating the N
links offered by the clique topology, resulting in resource
wastage.

Table 2 illustrates how the topologies discussed com-
pare with respect to our design goals. The virtual cluster
provides rich connectivity to tenant applications that is
independent of their communication pattern but lim-
its provider flexibility. The virtual oversubscribed clus-
ter utilizes information about application communica-
tion patterns to improve provider flexibility. The clique
abstraction, chosen as a representative of existing pro-
posals offers very rich connectivity but severely limits
provider flexibility and reflects only a few applications.

4. Oktopus
To illustrate the feasibility of virtual networks, we

present Oktopus, a system that implements our abstrac-
tions3. The provider maintains a datacenter containing
3Oktopus provides predictable performance, and is named
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Abstraction Max Suitable for Provider Tenant
Rate applications Flexibility Cost

Virtual O(N) All Medium Medium
Cluster
Oversub. O(N) (Almost) High Low
cluster All
Clique O(N2) Limited Very Low Very High

Table 2: Virtual network abstractions present
a trade-off between application suitability and
provider flexibility.

physical machines with slots where tenant VMs can be
placed. With Oktopus, tenants requesting VMs can opt
for a (virtual) cluster or a (virtual) oversubscribed clus-
ter to connect their VMs. Further, to allow for incre-
mental deployment, we also support tenants who do not
want a virtual network, and are satisfied with the status
quo where they simply get some share of the network
resources. Two main components are used to achieve
this:

• Management plane. A logically centralized network
manager (NM), upon receiving a tenant request, per-
forms admission control and maps the request to
physical machines. This process is the same as to-
day’s setup except that the NM needs to further ac-
count for network resources and maintain bandwidth
reservations across the physical network.

• Data plane. Oktopus uses rate-limiting at endhost
hypervisors to enforce the bandwidth available at
each VM. This ensures that no explicit bandwidth
reservations at datacenter switches are required.

The network manager implements allocation algorithms
to allocate slots on physical machines to tenant requests
in an online fashion. For tenant requests involving a vir-
tual network, the NM needs to ensure that the corre-
sponding bandwidth demands can be met while max-
imizing the number of concurrent tenants. To achieve
this, the NM maintains the following information– (i).
The datacenter network topology, (ii). The residual band-
width for each link in the network, (iii). The empty slots
on each physical machine, and (iv). The allocation in-
formation for existing tenants, including the physical
machines they are allocated to, the network routes be-
tween these machines and the bandwidth reserved for
the tenant at links along these routes. In the follow-
ing sections, we describe how the NM uses the above
information to allocate tenant requests.

4.1 Cluster Allocation
A virtual cluster request r :<N,B> requires a virtual

topology comprising N machines connected by links of

after “Paul the Oktopus” (German spelling), famous for be-
ing able to predict the outcome of football World Cup games.

Pod Switch

Top of Rack 

switch (ToR)

Root Switch

ToR Switch

Racks of four physical machines with two VM slots per machine

Request 

<3 VMs, 100Mbps>

Edge divides 

tenant tree into 

two components 

with 2 and 1 VM 

respectively.

B/W needed on 

the edge 

  = min(2, 1)*100 

= 100Mbps

Figure 5: An allocation for a cluster request r:
<3, 100 Mbps>. Three VMs are allocated for
the tenant at the highlighted slots. The dashed
edges show the tenant tree T .

bandwidth B to a virtual switch. In designing the al-
location algorithm for such requests, we focus on tree-
like physical network topologies; for instance, the multi-
rooted trees used in today’s datacenters and richer topolo-
gies like VL2 [1] and FatTree [28]. Such topologies are
hierarchical and are recursively made of sub-trees at
each level. For instance, with a three-level topology, the
network is a collection of pods, pods comprise racks,
and racks comprise hosts.

At a high level, the allocation problem involves al-
locating N empty VM slots to the tenant such that
there is enough bandwidth to satisfy the corresponding
virtual topology. We begin by characterizing the band-
width requirements of an already allocated tenant on
the underlying physical links. Further, we start with
the assumption that the physical links connecting the
tenant’s N VMs form a simple tree T . This is shown in
Figure 5. Section 4.4 relaxes the assumption. Note that
the set of switches and links in T form a “distributed
virtual switch” for the tenant. Given that the tenant’s
virtual switch has a bandwidth of N ∗ B, a trivial yet
inefficient solution is to reserve this bandwidth on each
link in the tenant tree.

However, the actual bandwidth needed to be reserved
is lower. Let’s consider a link in T. As shown in Fig-
ure 5, removing this link from the tree leads to two
components; if the first one contains m VMs, the other
contains (N-m) VMs. The virtual topology dictates that
a single VM cannot send or receive at rate more than B.
Hence, traffic between these two components is limited
to min(m,N − m) ∗ B. This is the bandwidth required
for the tenant on this link.

For a valid allocation, the tenant’s bandwidth require-
ment should be met on all links in the tenant tree.
Hence, the Virtual Cluster Allocation Problem boils down
to determining such valid allocations. An optimization
version of this problem involves determining valid al-
locations that maximize Oktopus’ future ability to ac-
commodate tenant requests.

Allocation algorithm. Allocating virtual cluster re-
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quests on graphs with bandwidth-constrained edges is
NP-hard [29]. We design a greedy allocation algorithm.
The intuition here is that the number of tenant VMs
that can be allocated to a sub-tree (a machine, a rack,
a pod) is constrained by two factors. The first is the
number of empty VM slots in the sub-tree. The second
is the residual bandwidth on the physical link connect-
ing the sub-tree to the rest of the network. This link
should be able to accommodate the bandwidth require-
ments of the VMs placed inside the sub-tree. Given the
number of VMs that can be placed in any sub-tree, the
algorithm finds the smallest sub-tree that can fit all ten-
ant VMs.

Below we introduce a few terms and explain the algo-
rithm in detail. Each physical machine in the datacenter
has K slots where VMs can be placed, while each link
has capacity C. Further, kv ∈ [0,K] is the number of
empty slots on machine v, while Rl is the residual band-
width for link l. We begin by deriving constraints on the
number of VMs that can be allocated at each level of
the datacenter hierarchy. Starting with a machine as the
base case, the number of VMs for request r that can be
allocated to a machine v with outbound link l is given
by the set Mv:

Mv = {m ∈ [0, min(kv, N)]
s.t. min(m,N −m) ∗B ≤ Rl}

To explain this constraint, we consider a scenario
where m (< N) VMs are placed at the machine v. As
described earlier, the bandwidth required on outbound
link l, Br,l is min(m,N − m)*B. For a valid alloca-
tion, this bandwidth should be less than the residual
bandwidth of the link. Note that in a scenario where
all requested VMs can fit in v (i.e., m = N), all com-
munication between the VMs is internal to the machine.
Hence, the bandwidth needed for the request on the link
is zero4.

The same constraint is extended to determine the
number of VMs that can be placed in sub-trees at each
level, i.e., at racks at level 1, pods at level 2 and on-
wards. These constraints guide the allocation shown in
Figure 6. Given the number of VMs that can be placed
at each level of the datacenter hierarchy, the algorithm
greedily tries to allocate the tenant VMs to the lowest
level possible. To achieve this, we traverse the topology
tree starting at the leaves (physical machines at level 0)
and determine if all N VMs can fit (lines 2-10). Once the
algorithm determines a sub-tree that can accommodate
the VMs (line 5), it invokes the “Alloc” function to al-
locate empty slots on physical machines in the sub-tree
to the tenant. While not shown in the algorithm, once
the assignment is done, the bandwidth needed for the

4We assume that if the provider offers N slots per physical
machine, the hypervisor can support N*B of internal band-
width (within the physical machine).

Require: Topology tree T
Ensure: Allocation for request r :< N, B >
1: l = 0 //start at level 0, i.e., with machines
2: while true do
3: for each sub-tree v at level l of T do
4: Calculate Mv //v can hold Mv VMs
5: if N ≤ max(Mv) then
6: Alloc(r, v, N)
7: return true
8: l = l + 1 // move to higher level in T
9: if l == height(T ) then

10: return false //reject request

//Allocate m VM slots in sub-tree v to request r
11: function Alloc(r, v, m)
12: if (level(v) ==0) then
13: // Base case - v is a physical machine
14: Mark m VM slots as occupied
15: return m
16: else
17: count = 0 //number of VMs assigned
18: //Iterate over sub-trees of v
19: for each sub-tree w in v do
20: if count < m then
21: count += Alloc(r, w, min(m− count, max(Mw)))
22: return count

Figure 6: Virtual Cluster Allocation algorithm

request is effectively“reserved”by updating the residual
bandwidth for each link l as Rl = Rl −Br,l.

The fact that datacenter network topologies are typi-
cally oversubscribed (less bandwidth at root than edges)
guides the algorithm’s optimization heuristic. To maxi-
mize the possibility of accepting future tenant requests,
the algorithm allocates a request while minimizing the
bandwidth reserved at higher levels of the topology.
This is achieved by packing the tenant VMs in the small-
est sub-tree. Further, when multiple sub-trees are avail-
able at the same level of hierarchy, our implementation
chooses the sub-tree with the least amount of residual
bandwidth on the edge connecting the sub-tree to the
rest of the topology. This preserves empty VM slots in
other sub-trees that have greater outbound bandwidth
available and hence, are better positioned to accommo-
date future tenants.

4.2 Oversubscribed Cluster Allocation
An oversubscribed cluster request, r :<N,S,B,O>,

requires N VMs arranged in groups of size S. VMs
within the same group are connected by links of band-
width B to a virtual switch. Inter-group bandwidth is
given by B′ = S∗B

O (see Section 3.2).
Consider a request with three groups. As with the vir-

tual cluster , any physical link in the tenant tree divides
the tree into two components. Let gi denote the VMs of
group i that are in the first component, implying that
the rest are in the second component (S − gi). We ob-
serve that the bandwidth required by the request on the
link is the sum of the bandwidth required by individual
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Component 1 Component 2

Number of VMs: g1

Max outgoing rate:  

g1B

Group 1

Number of VMs: S - g1

Max outgoing rate:  

(S - g1)B

Number of VMs: (S - g2)+(S - g3)

Max outgoing rate to Group 1:  

D = min(B’, ((S - g2)+(S - g3))B)

Group 1

Groups 2,3

Total requirements for Group 1: 

min(Component 1 rate, 

Component 2 rate)

i.e., min(g1B, (S - g1)B + D)
Component 2 rate: (S - g1)B + D

intra-group 

traffic

inter-group 
traffic

Figure 7: An oversubscribed cluster request with
three groups. Figures illustrates bandwidth re-
quired by Group 1 VMs on a link dividing the
tenant tree into two components.

groups. Focusing on the Group 1 VMs in the first com-
ponent, their traffic on the link in question comprises
the intra-group traffic to Group 1 VMs in the second
component and inter-group traffic to VMs of Groups 2
and 3 in the second component. This is shown in Fig-
ure 7.

In the first component, Group 1 VMs cannot send (or
receive) traffic at a rate more than gi ∗B. In the second
component, Group 1 VMs cannot receive (or send) at
a rate more than (S − gi) ∗ B while the rate for VMs
of other groups cannot exceed the inter-group band-
width B′. The rate of these other VMs is further lim-
ited by the aggregate bandwidth of the Group 2 and 3
members in the second component, i.e., ((S − g2) +
(S − g3)) ∗ B). Hence, as shown in the figure, the to-
tal bandwidth needed by Group 1 of request r on link
l, Br,1,l = min(g1 ∗ B, (S − g1) ∗ B + D). Finally, the
total bandwidth required on the link is the sum across
all three groups, i.e.,

∑
i=1,3Br,i,l.

Generalizing the analysis above, the bandwidth re-
quired for Group i on link l is given by

Br,i,l = min(gi ∗B, (S − gi) ∗B+
+ min(B′,

∑
j 6=i (S − gj) ∗B)).

The bandwidth to be reserved on link l for request r
is the sum across all the groups, i.e., Br,l =

∑P
i=1Br,i,l.

For the allocation to be valid, link l must have enough
residual bandwidth to satisfy Br,l. Hence, Br,l ≤ Rl is
the validity condition.

Allocation algorithm. The key insight guiding the
algorithm is that allocating an oversubscribed cluster
involves allocating a sequence of virtual clusters (<S,B>)
for individual groups. This allows us to reuse the clus-
ter allocation algorithm. Hence, the allocation for a re-
quest r proceeds one group at a time. Let’s assume that
groups 1 to (i-1) have already been allocated and we
need to allocate VMs of group i. As with the cluster al-
location algorithm, we derive constraints on the number
of VMs for this group that can be assigned to each sub-

tree. Consider a sub-tree with outbound link l already
containing gj members of group j, j ∈ [1, i − 1]. Using
the analysis above, the conditional bandwidth needed
for the jth group of request r on link l is:

CBr,j,l(i− 1) = min(gj ∗B, (S − gj) ∗B + min(B′, E))

where,

E =
∑i−1
k=1,k 6=j (S − gk) ∗B +

∑P
k=i S ∗B.

This bandwidth is conditional since groups i, . . . , P
remain to be allocated. We conservatively assume that
all subsequent groups will be allocated outside the sub-
tree and link l will have to accommodate the resulting
inter-group traffic. Hence, if gi members of group i were
to be allocated inside the sub-tree, the bandwidth re-
quired by groups [1,i] on l is at most

∑i
j=1 CBr,j,l(i).

Consequently, the number of VMs for group i that can
be allocated to sub-tree v, designated by the set Mv,i,
is:

Mv,i = {gi ∈ [0, min(kv, S)]
s.t.

∑i
j=1 CBr,j,l(i) ≤ Rl}.

Given the number of VMs that can be placed in sub-
trees at each level of the datacenter hierarchy, the allo-
cation algorithm proceeds to allocate VMs for individ-
ual groups using the algorithm in Figure 6. A request
is accepted if all groups are successfully allocated.

4.3 Enforcing virtual networks
The NM ensures that the physical links connecting

a tenant’s VMs have sufficient bandwidth. Beyond this,
Oktopus also includes mechanisms to enforce tenant vir-
tual networks.
Rate limiting VMs. Individual VMs should not be
able to exceed the bandwidth specified in the virtual
topology. While this could be achieved using explicit
bandwidth reservations at switches, the limited num-
ber of reservation classes on commodity switches im-
plies that such a solution certainly does not scale with
the number of tenants [27].

Instead, Oktopus relies on endhost based rate enforce-
ment. For each VM on a physical machine, an enforce-
ment module resides in the OS hypervisor. The key
insight here is that given a tenant’s virtual topology
and the tenant traffic rate, it is feasible to calculate
the rate at which pairs of VMs should be communi-
cating. To achieve this, the enforcement module for a
VM measures the traffic rate to other VMs. These traf-
fic measurements from all VMs for a tenant are peri-
odically sent to a tenant VM designated as the con-
troller VM. The enforcement module at the controller
then calculates the max-min fair share for traffic be-
tween the VMs. These rates are communicated back to
other tenant VMs where the enforcement module uses
per-destination-VM rate limiters to enforce them.
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This simple design where rate computation for each
tenant is done at a controller VM reduces control traf-
fic. Alternatively, the enforcement modules for a ten-
ant could use a gossip protocol to exchange their traf-
fic rates, so that rate limits can be computed locally.
We note that the enforcement modules are effectively
achieving distributed rate limits; for instance, with a
cluster request <N,B>, the aggregate rate at which
the tenant’s VMs can source traffic to a destination VM
cannot exceed B. This is similar to the Distributed Rate
Limiting (DRL) problem [30]. The authors discuss the
trade-offs between accuracy and responsiveness versus
the communication overhead in DRL; the same trade-
offs apply here. Like Hedera [31], we perform central-
ized rate computation. However, our knowledge of the
virtual topology makes it easier to determine the traffic
bottlenecks. Further, our computation is tenant-specific
which reduces the scale of the problem and allows us to
compute rates for each virtual network independently.
Section 5.4 shows that our implementation scales well
imposing low communication overhead.
Tenants without virtual networks. The network
traffic for tenants without guaranteed resources should
get a (fair) share of the residual link bandwidth in the
physical network. This is achieved using two-level prior-
ities, and since commodity switches today offer priority
forwarding, we rely on switch support for this. Traffic
from tenants with a virtual network is marked as and
treated as high priority, while other traffic is low prior-
ity. This, when combined with the mechanisms above,
ensures that tenants with virtual networks get the vir-
tual topology and the bandwidth they ask for, while
other tenants get their fair share of the residual network
capacity. The provider can ensure that the performance
for fair share tenants is not too bad by limiting the
fraction of network capacity used for virtual networks.

4.4 Design discussion
NM and Routing. Oktopus’ allocation algorithms

assume that the traffic between a given tenant’s VMs
is routed along a tree. However, they do not rely on
any assumptions about the underlying physical topology,
which may offer multiple paths between physical ma-
chines. The NM can ensure a routing tree for individual
tenants using the following two approaches.

The spanning tree protocol ensures that traffic be-
tween machines in a layer2 domain is forwarded along
a spanning tree. To scale up, datacenter networks typ-
ically comprise of multiple layer2 domains stitched up
using a couple of layers of IP routers [32]. The IP routers
are connected with a mesh of links that are used in ac-
tive/passive mode or load balanced using ECMP. Given
the amount of multiplexing over the mesh of links, they
can be treated as a single aggregate link for bandwidth
reservations. Hence, with today’s setup, the physical rout-

ing paths themselves form a tree and our assumption
holds. The NM only needs to infer this tree to determine
the routing tree for any given tenant and hence, reserve
bandwidth appropriately. This can be achieved using
SNMP queries of the 802.1D-Bridge MIB on switches
(products like Netview and OpenView support this) or
through active probing [33].

Alternatively, the NM can control datacenter routing
to actively build routes between tenant VMs, and recent
proposals present backwards-compatible techniques to
do just this. SecondNet [27] moves routing decisions
from switches to a central controller that directly sends
routing paths to endhosts. Endhosts use MPLS-based
source routing to send traffic along these paths. Simi-
larly, SPAIN [32] builds multiple VLANs over the under-
lying physical topology and allows endhosts to specify
the VLAN to use for their packets. The Oktopus NM
can adopt either approach to build tenant-specific rout-
ing trees on top of rich physical topologies, and direct
the OS hypervisor to do the source route marking (for
SecondNet) or VLAN tagging (for SPAIN).

Failures. Failures of physical links and switches in
the datacenter will impact the virtual topology for ten-
ants whose routing tree includes the failed element. With
today’s setup, providers are not held responsible for
physical failures and tenants end up paying for them [16].
Irrespective, our allocation algorithms can be extended
to determine the tenant VMs that need to be migrated,
and reallocate them so as to satisfy the tenant’s vir-
tual topology. For instance, with the cluster request,
the failed edge divides the tenant’s routing tree into
two components. If the NM cannot find alternate links
with sufficient capacity to connect the two components,
it will reallocate the VMs present in the smaller com-
ponent.

Further, such an extended allocation scheme can also
accommodate tenant contraction and expansion wherein
tenants want to decrease or increase the size of their vir-
tual topology in an incremental fashion.

5. EVALUATION
We evaluate two aspects of Oktopus. First, we use

large-scale simulations to quantify the benefits of pro-
viding tenants with bounded network bandwidth. Sec-
ond, we show that the Oktopus NM can deal with the
scale and churn posed by datacenters, and benchmark
our implementation on a small testbed.

5.1 Simulation setup
Since our testbed is restricted to 25 machines, we de-

veloped a simulator that coarsely models a multi-tenant
datacenter. The simulator uses a three level, tree-like
network topology (as described in Section 4). The re-
sults in the following sections involve a datacenter with
16,000 physical machines and 4 VMs per machine, re-
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sulting in a total of 64,000 VMs.
Given the poor performance of packet level simulators

at such scales [31], our simulator models flow level com-
munication between tenant VMs. For today’s setup, the
per-flow bandwidth is calculated according to max-min
fairness, and a flow’s rate is its fair share across the most
bottlenecked physical link it traverses. For tenants with
virtual networks, flow rates are determined by a similar
fair share calculation over the tenant’s virtual topology.
Allocation. We implemented the allocation algorithms
presented in Section 4. For today’s setup, we also im-
plemented a locality-aware allocation algorithm. The al-
gorithm greedily allocates tenant VMs as close to each
other as possible.
Tenant workload. We adopt a broad yet realistic model
for jobs/applications run by tenants. Tenant jobs com-
prise computation and network communication. To this
effect, each tenant job is modeled as a combination of
the minimum compute time for the job (Tc) and a set
of network flows between tenant VMs. We start with a
simple communication pattern wherein each tenant VM
is a source and a destination for one flow, and all flows
are of uniform length (L). A job is complete when both
the computation and the network flows finish. Hence,
the completion time for a job, T = max(Tc, Tn), where
Tn is the time for the last flow to finish. This reflects
real-world workloads. For instance, with MapReduce,
the job completion time is heavily influenced by the
last shuffle flow and the slowest task [15].

This naive workload model was deliberately chosen;
the job compute time Tc abstracts away the non-network
resources required and allows us to determine the ten-
ant’s “network requirements”. Since tenants pay based
on the time they occupy VMs and hence, their job com-
pletion time, tenants can minimize their cost by en-
suring that their network flows do not lag behind the
computation, i.e., Tn ≤ Tc. With the model above, the
network bandwidth needed by tenant VMs to achieve
this is B = L

Tc
.

Tenant requests. To allow direct comparisons, we ensure
that any given tenant request with the above workload
can be expressed as a status quo request and as a vir-
tual network request. Tenant requests have the form
of <N>, <N,B> and <N,S,B,O> to represent to-
day’s setup, the cluster and oversubscribed cluster re-
spectively. For the latter case, to ensure that the under-
lying job workload matches the request specification,
the number of inter-group flows is proportional to the
oversubscription factor O. For example, if O=10, on av-
erage N

10 inter-group flows are generated per request.
Simulation breadth. Since there are currently no avail-
able datasets describing job bandwidth requirements
to guide our workload, our evaluation explores the en-
tire space for most parameters of interest in today’s
datacenters; these include tenant bandwidth require-
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Figure 8: Completion time for a batch of 10,000
tenant jobs today and with various virtual net-
work abstractions.

ments, datacenter load, and physical topology oversub-
scription. This is not only useful for completeness, but,
further, provides evidence of Oktopus’s performance at
the extreme points. Finally, for parameters that can be
inferred through our datasets in Section 2, such as job
sizes (i.e., N), we use the corresponding values or dis-
tributions.

5.2 Production datacenter experiments
We first consider a scenario involving a large batch of

tenant jobs to be allocated and run in the datacenter.
The experiment is representative of the workload ob-
served in production datacenters running data-analytics
jobs from multiple groups/services. We compare the
throughput achieved with virtual network abstractions
against the status quo.

In our experiments, the number of VMs (N) requested
by each tenant is exponentially distributed around a
mean of 49. This is consistent with what is observed
in production and cloud datacenters [14]. For oversub-
scribed cluster requests, the tenant VMs are arranged
in
√
N groups each containing

√
N VMs, ensuring that

the number of groups do not grow linearly with N . We
begin with a physical network with 10:1 oversubscrip-
tion, a conservative value given the high oversubscrip-
tion of current data center networks [1], and 4 VMs
per physical machine. We simulate the execution of a
batch of 10,000 tenant jobs with varying mean band-
width requirements for the jobs. To capture the vari-
ability in network intensiveness of jobs, their bandwidth
requirements are taken from an exponential distribution
around the mean. The job scheduling policy is the same
throughout– jobs are placed in a FIFO queue, and once
a job finishes, the topmost job(s) that can be allocated
are allowed to run.

Job completion time. Figure 8 plots the time to
complete all jobs with different abstractions for tenants–
today’s setup, virtual cluster (VC), and virtual over-
subscribed cluster with varying oversubscription ratio
(VOC-10 refers to oversubscribed clusters with O=10).
The figure shows that for any given approach, the com-
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pletion time increases as the mean bandwidth require-
ment increases (i.e., jobs become network intensive).

In all cases, virtual clusters provide significant im-
provement over the completion time observed today. For
oversubscribed clusters, the completion time depends
on the oversubscription ratio. The completion time for
VOC-2, omitted for clarity, is similar to that of virtual
cluster . With VOC-10, the completion time at 500 Mbps
is 18% (6 times less) of today’s setup (31% with 100 Mbps).
Note that increasing O implies greater locality in the
tenant’s communication patterns. This allows for more
concurrent tenants and reduces completion time which,
in turn, improves datacenter throughput. However, the
growth in benefits with increasing oversubscription di-
minishes, especially beyond a factor of 10.

Beyond improving datacenter throughput, providing
tenants with virtual networks has other benefits. It en-
sures that network flows comprising a job do not lag
behind computation. Hence, a tenant job, once allo-
cated, takes the minimum compute time Tc to complete.
However, with today’s setup, varying network perfor-
mance can cause the completion time for a job to ex-
ceed Tc. Figure 9 plots the CDF for the ratio of today’s
job completion time to the compute time and shows
that tenant jobs can be stretched much longer than
expected. With BW=500 Mbps, the completion time
for jobs is 1.42 times the compute time at the median
(2.8 times at the 75th percentile). Such performance un-
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Figure 11: Completion time increases with phys-
ical oversub. Mean BW = 500 Mbps

predictability is highly undesirable and given the iter-
ative program/debug/modify development, hurts pro-
grammer productivity [15].

Utilization. To understand the poor performance
with today’s setup, we look at the average VM and net-
work utilization over the course of one experiment. This
is shown in Figure 10. Today, the network utilization re-
mains low for a majority of the time. This is because the
allocation of VMs, though locality aware, does not ac-
count for network demands causing contention. Thus,
tenant VMs wait for the network flows to finish and
hurt datacenter throughput. As a contrast, with over-
subscribed cluster (VOC-10), the allocation is aware
of the job’s bandwidth demands and hence, results in
higher network utilization.

We repeated the experiments above with varying pa-
rameters. Figure 11 shows how the completion time
varies with the physical network oversubscription. We
find that even when the underlying physical network is
not oversubscribed as in [1,28], virtual networks can re-
duce completion time (and increase throughput) by a
factor of two5. Further, increasing the virtual oversub-
scription provides greater benefits when the physical
oversubscription is larger. Similarly, increasing the ten-
ant size (N) improves the performance of our abstrac-
tions relative to today since tenant traffic is more likely
to traverse core network links. We omit these results
due to space constraints.
Mis-estimating network requirements. In the ex-
periment above, the bandwidth requested is exactly what
is required to finish the tenant’s flows on time. In prac-
tice, a tenant’s characterization of her network require-
ments is likely to be imprecise. Hence, we introduce
“errors in job demands”; an error of 50% implies that
the bandwidth requested by tenants is normally dis-
tributed around the actual bandwidth needed with a
standard deviation of 50%. This means that for ∼35%
of tenants, the bandwidth requested is < 1

2x or >2x the
actual bandwidth. Note that when tenants ask for less
5Since there are 4 VMs per machine, flows for a VM can
still be network bottlenecked at the outbound link.
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Figure 13: Percentage of rejected tenant requests with varying datacenter load and varying mean
tenant bandwidth requirements. At load>20%, virtual networks allow more requests to be accepted.
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Figure 12: Error in job demands impacts com-
pletion time. Mean BW = 500 Mbps.

bandwidth than needed, their flows will lag behind their
computation while when they ask for more, they will
under-utilize the underlying network.

Figure 12 shows that even with “loose” specifications
of tenant demands, the completion time, while increas-
ing for large errors, still does not exceed today’s com-
pletion time (which is independent of errors in job de-
mands). Further, since the bandwidth that tenants de-
mand is restricted to [50, 1000 Mbps], increasing the er-
ror beyond 100% does not impact virtual network com-
pletion time.

5.3 Cloud datacenter experiments
The experiments in the previous section involved a

static set of jobs. We now introduce tenant dynamics
with tenant requests arriving over time. This is repre-
sentative of cloud datacenters. By varying the tenant
arrival rate, we vary the load imposed in terms of the
number of VMs. Assuming Poisson tenant arrivals with
a mean arrival rate of λ, the load on a datacenter with
M total VMs is λNTc

M , where N is the mean request size
and Tc is the mean compute time. A request may be re-
jected if it cannot be allocated. We simulate the arrival
and execution of 10,000 tenant requests with varying
mean bandwidth requirements for the tenant jobs.

Rejected requests. Figure 13 shows that only at
very low loads, today’s setup is comparable with the vir-
tual abstractions in terms of rejected requests, despite
the fact that virtual abstractions explicitly reserve the
bandwidth requested by tenants. At low loads, requests
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Figure 14: CDF for increase in completion time
and cost (upper X-axis) with today’s setup.
Mean BW = 500Mbps

arrive far apart in time and, thus, they can be always
allocated even though today’s setup prolongs job com-
pletion. As the load increases, today’s setup rejects far
more requests. For instance, at 70% load (Amazon EC2’s
operational load [34]) and bandwidth of 500Mbps, 31%
of requests are rejected today as compared to 15% of
VC requests and only 5% of VOC-10 requests.
Tenant costs and provider revenue. Today’s cloud
providers charge tenants based on the time they oc-
cupy their VMs. Assuming a price of k dollars per-VM
per unit time, a tenant using N VMs for time T pays
kNT dollars. This implies that while intra-cloud net-
work communication is not explicitly charged for, it is
not free since poor network performance can prolong
tenant jobs and hence, increase their costs. Figure 14
shows the increase in tenant job completion times and
the corresponding increase in tenant costs (upper X-
axis) today. For all load values, many jobs finish later
and cost more than expected– the cost for 25% tenants
is more than 2.3 times their ideal cost had the network
performance been sufficient (more than 9.2 times for 5%
of the tenants).

The fraction of tenant requests that are accepted and
the costs for accepted requests govern the provider rev-
enue. Figure 15 shows the provider revenue when ten-
ants use virtual networks relative to today’s revenue. At
low load, the provider revenue is reduced since the use of
virtual networks ensures that tenant jobs finish faster
and they pay significantly less. However, as the load
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Figure 15: Provider revenue with virtual net-
work abstractions. Mean BW = 500Mbps

increases, the provider revenue increases since virtual
network approaches allow more requests to be accepted,
even though individual tenants pay less than today. For
efficiency, providers like Amazon operate their datacen-
ters at an occupancy of 70-80% [34]. Hence, for practi-
cal load values, virtual networks not only allow tenants
to lower their costs, but also increase provider revenue!
Further, this estimation ignores the extra tenants that
may be attracted by the guaranteed performance and
reduced costs.
Charging for bandwidth. Providing tenants with vir-
tual networks opens the door for explicitly charging for
network bandwidth. This represents a more fair charg-
ing model since a tenant should pay more for a virtual
cluster with 500Mbps than one with 100Mbps. Here,
we explore the following simple charging model. Apart
from paying for VM occupancy (kv), tenants also pay a
bandwidth charge of
kb

$
bw*unit-time . Hence, a tenant using a virtual cluster

<N,B> for time T pays NT (kv + kbB).
Such a charging model presents an opportunity to re-

dress the variability in provider revenue observed above.
To this effect, we performed the following analysis. We
used current Amazon EC2 prices to determine kv and
kb for each virtual network abstraction so as to main-
tain provider revenue neutrality, i.e., the provider earns
the same revenue as today.6 We then determine the ra-
tio of a tenant’s cost with the new charging model to
the status quo cost. The median tenant cost is shown
in Figure 16. We find that except at low loads, virtual
networks can ensure that providers stay revenue neutral
and tenants pay significantly less than today while still
getting guaranteed performance. For instance, with a
mean bandwidth demand of 500 Mbps, Figure 16 shows
that tenants with virtual clusters pay 68% of today at
moderate load and 37% of today at high load (31% and
25% respectively with VOC-10).

The charging model above can be generalized from

6For Amazon EC2, small VMs cost 0.085$/hr. Sample esti-
mated prices in our experiments are at 0.04$/hr for kv, and
0.00016$ /GB for kb.
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Figure 16: Relative tenant costs based on
the bandwidth charging model while main-
taining provider revenue neutrality (mean
BW=500 Mbps). For load>20%, tenants pay
substantially less than today.

linear bandwidth costs to NT (kv+kbf(B)), where f is a
bandwidth charging function. We repeated the analysis
with other bandwidth functions (B

3
2 , B2) and obtained

similar results.

5.4 Implementation and Deployment
Our Oktopus implementation follows the description

in Section 4. The NM maintains reservations across the
network and allocates tenant requests in an on-line fash-
ion. The enforcement module on individual physical ma-
chines implements the rate computation and rate limit-
ing functionality (Section 4.3). For each tenant, one of
the tenant’s VMs (and the corresponding enforcement
module) acts as a controller and calculates the rate lim-
its. Enforcement modules then use the Windows Traffic
Control API [35] to enforce local rate limits on individ-
ual machines.
Scalability. To evaluate the scalability of the NM, we
measured the time to allocate tenant requests on a dat-
acenter with 105 endhosts. Over 105 requests, the me-
dian allocation time is 0.35ms with a 99th percentile of
508ms. Note that this only needs to be run when a ten-
ant is admitted, and hence, the NM can scale to large
datacenters.

The rate computation overhead depends on the ten-
ant’s communication pattern. Even for a tenant with
1000 VMs (two orders of magnitude more than mean
tenant size today [14]) and a worst-case scenario where
all VMs communicate with all other VMs, the computa-
tion takes 395ms at the 99th percentile. With a typical
communication pattern [36], 99th percentile computa-
tion time is 84ms. To balance the trade-off between ac-
curacy and responsiveness of enforcement and the com-
munication overhead, our implementation recomputes
rates every 2 seconds. For a tenant with 1000 VMs and
worst-case all-to-all communication between the VMs,
the controller traffic is 12 Mbps (∼1 Mbps with a typ-
ical communication pattern). Hence, the enforcement
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Figure 17: Testbed experiments show that vir-
tual networks provide performance gains and
validate our simulator.

module imposes low overhead.
Deployment. We deployed Oktopus on a testbed with
25 endhosts arranged in five racks. Each rack has a
Top-of-Rack (ToR) switch which is connected to a root
switch. Each interface is 1 Gbps. Hence, the testbed
has a two-tier tree topology with a physical oversub-
scription of 5:1. All endhosts are Dell Precision T3500
servers with a quad core Intel Xeon 2.27GHz proces-
sor and 4GB RAM, running Windows Server 2008 R2.
Given our focus on quantifying the benefits of Oktopus
abstractions, instead of allocating VMs to tenants, we
simply allow their jobs to run on the host OS. However,
we retain the limit of 4 jobs per endhost, resulting in a
total of 100 VM or job slots.

We repeat the experiments from Section 5.2 on the
testbed and determine the completion time for a batch
of 1000 tenant jobs (mean tenant size N is scaled down
to 9). As before, each tenant job has a compute time
(but no actual computation) and a set of TCP flows
associated with it. Figure 17(a) shows that virtual clus-
ters reduce completion time by 44% as compared to
today (57% for VOC-10). We repeated the experiment
with all endhosts connected to one switch (hence, no
physical oversubscription). The bars on the right in Fig-
ure 17(a) show that virtual clusters match today’s com-
pletion time while VOC-10 offers a 9% reduction. Since
the scale of these experiments is smaller (smaller topol-
ogy and tenants), virtual networks do not have much op-
portunity to improve performance and the reduction in
completion time is less significant. However, tenant jobs
still get guaranteed network performance and hence,
predictable completion times.
Cross-validation. We replayed the same job stream
in our simulator and for each tenant request, we deter-
mined the ratio of the completion time on the testbed
and the simulator. Figure 17(b) shows that for the vast
majority of jobs, the completion time in the simulator
matches that on the testbed. Some divergence results
from the fact that network flows naturally last longer
in the live testbed than in the simulator which optimally

estimates the time flows take. We note that jobs that
last longer in the testbed than the simulator occur more
often with today’s setup than with virtual networks.
This is because today’s setup results in more network
contention which, in turn, causes TCP to not fully uti-
lize its fair share. Overall, the fact that the same work-
load yields similar performance in the testbed as in the
simulator validates our simulation setup and strength-
ens our confidence in the results presented.

6. RELATED WORK
The increasing prominence of multi-tenant datacen-

ters has prompted interest towards datacenter network
virtualization. Seawall [14] and NetShare [37] share the
network bandwidth among tenants based on weights.
The resulting proportional bandwidth distribution leads
to efficient multiplexing of the underlying infrastruc-
ture; yet, in contrast to Oktopus, tenant performance
still depends on other tenants. SecondNet [27] provides
pairwise bandwidth guarantees where tenant requests
can be characterized as <N, [Bij ]N×N>; [Bij ]N×N re-
flects the complete pairwise bandwidth demand matrix
between VMs. With Oktopus, we propose and evaluate
more flexible virtual topologies that balance the trade-
off between tenant demands and provider flexibility.

Duffield et al. [29] introduced the hose model for wide-
area VPNs. The hose model is akin to the virtual clus-
ter abstraction; however, the corresponding allocation
problem is different since the physical machines are fixed
in the VPN setting while we need to choose the ma-
chines. Our argument regarding the greater flexibility
of the virtual cluster over a clique virtual topology is,
in part, guided by the flexibility of the hose model over
the pipe model in VPN settings. Other allocation tech-
niques like simulated annealing and mixed integer pro-
gramming have been explored as part of testbed map-
ping [38] and virtual network embedding [39]. These ef-
forts focus on allocation of arbitrary (or, more general)
virtual topologies on physical networks which hampers
their scalability and restricts them to small physical net-
works (O(102) machines).

The use of network virtualization as an enabler for
next-generation network protocols has been studied, both
in the wide-area [40] and local production networks [41].
Beyond this, there is a large body of work focusing on
bandwidth guarantees (e.g., IntServ) and differentiated
services (e.g., DiffServ) in the Internet. Sun’s Crossbow
network stack [42] provides virtual NICs with config-
urable local bandwidth limits. that prevent interference
from co-located VMs. IBM iCorpMaker and HP Utility
Data Center (UDC) provide support for virtual circuits
and bandwidth reservation for several classes of traf-
fic. If available, Oktopus can use these technologies to
enforce virtual networks.
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7. CONCLUDING REMARKS
This paper presents virtual network abstractions that

allow tenants to expose their network requirements. This
enables a symbiotic relationship between tenants and
providers; tenants get a predictable environment in shared
settings while the provider can efficiently match ten-
ant demands to the underlying infrastructure, without
muddling their interface. Our experience with Oktopus
shows that the abstractions are practical, can be effi-
ciently implemented and provide significant benefits.

Our abstractions, while emulating the physical net-
works used in today’s enterprises, focus on a specific
metric– inter-VM network bandwidth. Tenants may be
interested in other performance metrics, or even non-
performance metrics like reliability. Examples include
bandwidth to the storage service, latency between VMs
and failure resiliency of the paths between VMs. In this
context, virtual network abstractions can provide a suc-
cinct means of information exchange between tenants
and providers.

Another interesting aspect of virtual networks is cloud
pricing. Our experiments show how tenants can im-
plicitly be charged for their internal traffic. By offer-
ing bounded network resources to tenants, we allow for
explicit and more fair bandwidth charging. More gen-
erally, charging tenants based on the characteristics of
their virtual networks eliminates hidden costs and re-
moves a key hindrance to cloud adoption. This, in effect,
could pave the way for multi-tenant datacenters where
tenants can pick the trade-off between the performance
of their applications and their cost.
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