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ABSTRACT 
 

Automatic object detection for an arbitrary class is an 

important but very challenging problem, due to the countless 

kinds of objects in the world and the large amount of 

labeling work for each object. In this work, we target at 

solving the problem of automatic object detection for an 

arbitrary class without the laborious human effort. Motivated 

by the explosive growth of Web images and the phenomenal 

success of search techniques, we develop an unsupervised 

object detection framework by automatically training the 

object detector on the top returns of certain image search 

engine queried by the name of the object class. In order to 

automatically isolate the objects from the Web images for 

training, only clipart images with simple background are 

used, which keep most of the shape information of the 

objects. A two-stage shape-based clustering algorithm is 

proposed to mine typical shapes of the object, in which the 

inner-class variance of object shapes is considered and 

undesired images are filtered out. In order to reduce the gap 

between clipart images and real-world images, we introduce 

an efficient algorithm to synthesize the real-world images 

from clipart images, and only shape feature is used in the 

detector training part. Finally, the synthetic images could be 

used to train object detectors by an off-the-shelf 

discriminative algorithm, e.g., boosting and SVM. Extensive 

experiments show the effectiveness of the proposed 

framework on objects with simple and representative shapes, 

and the proposed framework could be considered as a good 

beginning of solving this challenging problem. 
 

1. INTRODUCTION 
 

Object detection is a basic problem in computer vision. 

Currently, most of object detection systems are trained based 

on a huge amount of labeled samples, which are difficult to 

generalize to an arbitrary class since there are countless 

objects in the world and the labeling work for each object is 

very laborious and time-consuming. 

  In order to reduce human labor, learning algorithms such as 

online learning [1] [3] and semi-supervised learning 

algorithms [9] are proposed to use in object detection works. 

Online learning algorithms try to incrementally utilize the 

incoming unlabeled samples based on an automatic labeler, 

while semi-supervised learning algorithms are also well 

known for leveraging a large amount of unlabeled data as 

well as a small amount of labeled data to improve 

classification performance. However, the above works need 

labeled sets, which still require much human supervision 

when considering to design detectors for unlimited classes. 

Unsupervised category learning methods [10] [11] [22] 

make it possible to collect the training samples without 

human supervision. Recently, [4] proposed to discover 

shapes from unlabeled image collections and showed 

promising results on the Caltech-101 dataset [5]. This kind 

approach requires the number of the categories (object 

classes). This kind of work might not work well on the web 

images since it is hard to specify this number for web images 

with countless objects. The probabilistic latent semantic 

analysis was introduced to solve object discovering problem 

in noisy web images [17] [18]. However, this method mainly 

focused on a classification task (i.e., object present/absent 

within image), making little attempt to localize the object. 

 
Fig.1. Mining typical shapes of the objects from Internet. The top 

returned clipart images of certain image search engine are clustered 

based on shape matching. In the right bottom of the figure, the 

average edge map in each cluster and its major curve are shown. 
 



  In this work, we study the problem of automatic object 

detection for an arbitrary class with little human supervision. 

Motivated by the explosive growth of Web images and the 

success of search engines, our objective is to use the top 

results of an image search engine queried by the object name 

as a noisy database related to the object, based on which the 

object detector is hoped to be obtained. However, it is still 

very challenging to convert this noisy collection to the final 

object detector due to the following three issues. First, Web 

images usually contain cluttered background and it is 

difficult to isolate the object from the background without 

human supervision. Second, the objects themselves have 

various appearances (see Fig.1 for example) due to different 

factors, such as shape differences, view-point changes, 

rotation variance, and translation variance. It is difficult to 

train an effective detector without considering the inner-

class variance. Third, the top results of mainstream image 

search engines usually contain some irrelevant images and 

thus could be considered as a very noisy training set.  

    In this work, we circumvent this first problem by 

leveraging the clipart images from Internet. The clipart 

images preserve the shape “essence” of the object class to a 

large extent and also have simple background. It is easy to 

isolate the objects from the background for the clipart 

images. We propose a two-stage clustering algorithm to 

handle the second and third issues. In the first stage, similar 

shapes of the corresponding object are grouped together 

based on a basic shape matching technique, i.e., chamfer 

matching, and then the undesired images are removed. In 

this stage, due to rotation, translation and scale variance, 

some similar shapes might be grouped into different clusters. 

Thus we propose to use an invariant chamfer matching 

approach in the second-stage clustering to handle these 

variances. In order to reduce the gap between clipart images 

and real-world images, we introduce an efficient algorithm 

to synthesize the real-world images from clipart images, and 

only shape feature is used in the detector training part. 

Finally, a well-known boosting framework [23] is used to 

train object detectors. The experiments on public datasets 

have shown promising results on the object detection tasks. 
 

2. PROPROSED UNSUPERVISED OBJECT 

DETECTION FRAMEWORK 
 

In this section, we introduce the proposed unsupervised 

object detection framework. Using the top results retrieved 

from Google clipart image search engine queried by the 

name of the target object. As shown in Fig.2, first, we 

extract the major contours of clipart images. Then, a two-

stage shape-based clustering approach is introduced to mine 

typical shapes of the target object and remove noisy images. 

Finally, an efficient algorithm is used to synthesize the real-

world images from clipart images, based on which the object 

detector could be trained. 

2.1. Shape extraction and matching 

 

Shape is one of the most important cues for object 

recognition and the clipart images preserve the shape 

“essence” of the object class to a large extent. First, we 

generate the edge maps of the clipart images using canny 

edge detector [19]. Since objects usually have large and 

continuous contours, we then crop the main objects by 

finding the major contours in the edge maps. The continuous 

contours can be found using the well-known flood fill 

algorithm. The cropped parts are then normalized to be a 

size with maximal side being 100 pixels.  

  Then, we measure the similarity (distance) among the 

shapes of the target object for the further shape-based 

clustering. The chamfer distance [20] is widely used for 

measuring the similarity of two contours. Given the edge 

maps p and q, the basic chamfer distance is given by 
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where ei is the i
th

 edgel (edge pixel) in p and ||p|| is the 

number of edgels in p.  

  The time complexity of Eqn. 1 is O(||p||×||q||). Distance 

transform, which can be calculated in linear time [14], can 

reduce this complexity of Eqn. 1 to O(||p||). [12] proposed to 

extend the basic chamfer matching by dividing the edge map 

into multiple sub-maps according to the orientations of 

edgels and sum the chamfer distances of all the sub-maps as 

the final score. The oriented chamfer matching is 

represented by 
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where p
o
 is the o

th
 sub -map of p. 

  Since the basic chamfer matching and oriented chamfer 

matching are sensitive to rotation, position and scale, we 

introduce an invariant chamfer distance, which is invariant 

to rotation, position and scale: 
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where p(tx,ty,s,r) is a new edge map, and can be obtained by 

translating p by (tx,ty), then resizing to scale s and finally 

rotating with angle of r. In the invariant chamfer distance, q 

is fixed and we change p to find the best match between 

these two contours. Obviously, the invariant chamfer 

distance is more expensive than the oriented chamfer 

matching in terms of computation complexity and not very 

practical to handle a large number of samples. Therefore, we 

only use the invariant chamfer matching in the second stage 

of the clustering while use the oriented chamfer matching in 

the first stage. It should be noted that the above chamfer 

distances are asymmetric. It is easy to obtain the symmetric 

chamfer distance as follows: 

2/)),(),((),()( qpdqpdqpd oooS  , (4.1) 

2/)),(),((),()( qpdqpdqpd IIIS  . (4.2) 



2.2. Two-stage shape-based clustering 
 

Lots of clustering algorithms can be used for grouping the 

shapes of a target object, e.g., K-Means, spectral clustering, 

and hierarchical clustering. In practice, it is not easy to tell 

the typical shape number of an object class before 

clustering. Thus, in this work we adopt the complete linkage 

clustering algorithm [21], which does not need this number 

in advance. The complete linkage clustering is a kind of the 

well-known agglomerative hierarchical clustering algorithms, 

which regards each sample as an individual cluster at the 

beginning and gives the  hierarchical  clustering result  by  

progressively merging clusters. The distance between two 

clusters C1 and C2 is measured as 
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where xi, xj are the samples in cluster C1, C2 and d (,) is a 

certain distance measure. 

  The clustering algorithm progressively merges two clusters 

with the minimum distance (Eqn. 5) until there remains only 

one cluster. In practice, we terminate the clustering process 

if the minimum distance is larger than a threshold τ.  

  In the first stage, the shape distance is calculated by Eqn. 

4.1. The clusters with more than N samples will be reserved, 

while others will be considered as noisy images or images 

with non-typical shapes. For example, in the “butterfly” 

collections as shown in Fig. 1, the cluster containing 

ladybugs and eagles will be removed since it is an outlier 

cluster and thus its size would be small. From the average 

edge maps of the clusters in Fig.1, we can see that there are 

common silhouettes and repeatable inner edges, namely 

major curves (right bottom of Fig.1). The major curves  can 

be obtained by extracting edges from the average edge maps. 

  Similar shapes with different rotations, scales and positions 

might be grouped into different clusters in the first stage. In 

the second stage, we need to further merge these clusters 

together. For each sample, we calculate the total distance 

with other samples in the same cluster and choose a 

representative shape that has the minimum distance for each 

cluster. In the second stage, the complete linkage clustering 

is also used to group the clusters (representative shapes) by 

matching the major curves of the average edge maps based 

on invariant chamfer distance in Eqn. 4.2. 

  In the final cluster after the second stage, all shapes will be 

aligned with the representative shape in this cluster. For 

example, for a shape Mi, it will be aligned to be Mi(tx*,ty*, 

s*,r*), and the alignment parameters is represented by 
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where Mi
rep

 is the representative shape of the cluster 

containing Mi. As shown in Fig.2, some butterflies with 

similar shapes may be grouped into different clusters in the 

first stage due to rotation variance. However, these 

butterflies will be grouped into one cluster and aligned to the 

same angle in the second stage. 

2.3. From clipart images to real-world images 

In order to reduce the gap between clipart images and real-

world images, we adopt a heuristic and efficient algorithm to 

synthesize the real-world image from clipart images. We 

observe that there are two main differences between clipart 

images and real-world images. First, most of the clipart 

images have very simple background. Second, some of the 

clipart images are cartoons or drawings, and it means that 

the shape and texture may be different from those of real-

world images. Some examples are shown in Fig.3.  

  Overlaying the objects cropped from clipart image set on 

the real-world background is able to reduce the “background 

gap”. To achieve this target, we first crop the object from 

clipart background on pixel level. As shown in Fig.3, the 

background of the clipart images is simple and usually 

contains only one color. Therefore, we can use the color 

information to distinguish the foreground and background. 

However, the foreground may have similar color with the 

background. As shown in Fig.4, the middle of the car has 

similar color with the white background, and this region will 

be considered as background only using color information. 

 
Fig.2. The framework of the unsupervised object detection. First, we extract the edges from clipart images and crop the objects by finding 

large and consistent edges. Then, a two-stage shape-based clustering algorithm is proposed to mine the typical shapes of the target object. 

In the first stage, we group the objects based on oriented chamfer matching [12] and remove the noisy images. In the second stage, we 

group the clusters again based on invariant chamfer matching.  In the synthesis phase, we isolate the objects from clipart images on pixel 

level and overlay the objects on the background image. Finally, the synthetic images are used to train the object detectors. 



  Thus it is unreliable to segment the objects only based on 

color information. Therefore, we propose a segmentation 

algorithm by leveraging both color and shape information 

for clipart images. Since most of the objects locate in the 

center of the cropped image patch, we use the median color 

(rm,gm,bm) of the four corner regions (see Fig.4) to estimate 

the background color. The initial background is obtain by  

      },,|),,{( TbbTggTrrbgr mmm  ,      (7) 

where T is a threshold. We can obtain the shape prior is by 

averaging all the initial segmentation results. As shown in 

Fig.4, the shape prior is represented as a gray level image. 

Each point of the shape prior can be mapped to a probability 

of being foreground (shape evidence ps). Obviously, a larger 

ps means more confident to be foreground. We assume that 

the background color is in Gaussian distribution for each 

individual color channel. For each pixel, we can calculate 

the probability of being foreground (color evidence pc) from 

the color value. For a pixel, the final probability of being 

foreground is given by 

argmax( , )s cp p p . (8) 

Intuitively, the probability of being a foreground is 

determined by the more confident evidence, either ps or pc. 

A pixel is considered as foreground if p is larger than 0.5. 

Thus, we can crop the object from background on pixel level 

using the above method, and then overlay the objects on the 

background images, which can be obtained from Internet.  
 

2.4. Discriminative training for object detection 
 

We use the synthetic images as positive training samples and 

collect negative samples from the Web images of other 

objects. The positive and negative samples are normalized to 

a standard size, e.g., 100×40 for side-view car. We can use 

the average size of the synthetic images as this standard size. 

Then, many off-the-shelf classifiers can be applied on these 

training samples, such as boosting [23] and SVM [8]. 

  We adopt the Histogram of Oriented Gradient (HOG) 

based boosting framework [16] to train object detectors. 

HOG reflects the statistical information of the object contour, 

whose effectiveness and efficiency has been shown in object 

detection tasks. Using HOG feature could somewhat reduce 

the gap between clipart images and real-world images, since 

the clipart images may preserve the “essence” of contour 

information. Please refer to [16] for details. 
 

3. EXPERIMENTS 
 

We first provide the shape clustering results for the 101 

objects in the Caltech-101 dataset [5], followed by object 

detection experiments on UIUC car dataset [7] and 

VOC2006 dataset [6]. 
 

3.1. Shape clustering results for Caltech-101 objects 
 

For each object category of Caltech-101 dataset, we use the 

object name as the query to retrieve the top 1,000 clipart 

images from Google clipart image search engine. The two-

stage shape clustering algorithm is used to cluster the major 

contours of the top 1000 images for each object. The 

average edge maps of the biggest clusters of all 101 objects 

are shown in Fig.5. From Fig.5 we can see that, the 

clustering algorithm achieves good results for the objects 

with simple and typical shape structures, such as anchor, 

bass, butterfly and so on. However, there are also some 

objects that we cannot see clear shapes from the average 

edge maps, such as brain, mayfly and airplane side. The 

undesired results might be caused by the following three 

reasons. First, the object may not have representative shapes 

and it is not suitable to describe the objects using contours, 

such as brain and ant. Second, the image search results of 

some objects may be unsatisfactory, and thus it is not easy to 

obtain the representative shapes for the corresponding 

objects. For example, the retrieval results of cougar body are 

very noisy and contain many humans and cars, and thus our 

approach fails to find the typical shapes. Third, some 

keywords used to retrieve images may be somewhat 

ambiguous. For example, the first cluster of ibis shows the 

shape of bicycle, since IBIS is a well-known brand of 

mountain bicycles. 

  For a detailed analysis, we select 12 classes and show the 

largest four clusters in Fig.6. From Fig.6 we can see that, the 

clustering algorithm can find several representative shapes 

of the objects but cannot guarantee that the clusters are all 

meaningful. The major reason may be that the retrieved 

images by the search engine sometimes contain too many 

undesired objects, and it is not easy to remove all noisy 

images in the first-stage clustering. However, we hope the 

clustering results could become better once the retrieval 

quality of image search engines is improved. 

3.2. Detection experiments on UIUC car dataset 
 

UIUC car dataset consists of two sub-datasets, i.e., single 

scale dataset containing 200 side-view cars and multi-scale 

dataset containing 139 side-view cars. We adopt the Equal-

Precision-Recall (EPR) rate to evaluate the performance.    

Six unsupervised methods are compared, namely Proposed, 

ProposedNoSyn, Top300Image, Top300Clipart,  

Top1000Image, and Top1000Clipart. Proposed is the 

proposed method. The only difference between 

ProposedNoSyn and Proposed is that there is no synthetic 

stage in ProposedNoSyn, i.e., the clipart images are directly 

 
Fig.3. Clipart images vs. real-world images. 

 
Fig.4.Clipart images segmentation. 

 



used for training the classifier in ProposedNoSyn, which is 

used to test the usefulness of the synthetic stage. For the 

other four methods, the synthetic images for training are 

replaced by different strategies, in which the effectiveness of 

the proposed framework, the usefulness of the typical shape 

mining algorithm, and the rationality of the use of clipart 

images are evaluated. In Top300Image, we use the top 300 

images returned by Google image search engine to replace 

the synthetic images. In Top300Clipart, we adopt the top 

300 clipart images returned by Google clipart image search 

engine. The top 1000 images are also tried in Top1000Image 

and Top1000Clipart. 

  The results of the above six unsupervised methods are 

listed in Table 1. We can see that Top300Image and 

Top1000Image produced quite bad performance. It shows 

that we cannot directly use the top results of Google image 

search engine (real-image engine) as the positive training set 

to automatically train object detectors without human 

supervision. This is because that there are too many noisy 

images in the retrieval results and the objects in the natural 

images are not well-aligned. As a result, the training 

algorithm cannot learn useful information from the noisy 

image collection. But by leveraging clipart images, we can 

find the objects and crop them from the images. Comparing 

to the top returned natural images, the cropped clipart 

images are well aligned in scale. That is why Top300Clipart 

and Top1000Clipart achieved better performance than 

Top300Image and Top1000Image. Moreover, the significant 

improvement of ProposedNoSyn over Top1000Clipart 

shows the effectiveness of the two-stage clustering algorithm. 

Finally, Proposed still outperforms ProposedNoSyn a lot, 

which shows the importance of the synthetic stage. 

  Besides the unsupervised approaches, we also provide the 

experimental results of two supervised approaches, i.e., 

CascadeHOGClipart and CascadeHOGUIUC. In 

CascadeHOGClipart, we manually collect training samples 

from Google Clipart images and then synthesize real-world 

images in the same way. In CascadeHOGUIUC, we use the 
training samples provided by UIUC dataset to train the 

object detector. The object detector training approaches of 

the two methods are the same as that of Proposed. The 

results are also shown in Table 1. We can see that, the 

supervised manner in clipart dataset (CascadeHOGClipart ) 

only brings a little improvement compared with our 

unsupervised framework (Proposed), and the manually 

collected real-world training samples (CascadeHOGUIUC) 

also do not bring much improvement (4%), which shows the 

effectiveness of the proposed unsupervised method. 
 

3.3. Detection experiments on VOC2006 dataset 
 

VOC2006 dataset consists of 2686 real-world images with 

cluttered background, with 326 bicycles and 274 

motorbikes. We adopt the Average Precision (AP) measure 

as in [6], and the precision-recall curves for unsupervised 

algorithms are also provided. The comparison results of six 

unsupervised algorithms are shown in Fig.7 and Table 2, 

from which we can draw similar conclusions as Section 4.2. 

  For comparing with supervised methods, Proposed has 

similar performance as CascadeHOGClipart, which shows 

the effectiveness of the unsupervised framework. However, 

the performance gap between Proposed and 

CascadeHOGClipart (10%) is larger than that in UIUC 

dataset (4%). One reason of the accuracy loss is that the 

VOC2006 dataset is a challenging dataset and many objects 

of this dataset are partially occluded. However, most of the 

clipart training samples are not occluded and the final 

learned detector may fail to detect the occluded objects. The 

part-based object detection approaches might improve the 

accuracy on this dataset. For both of UIUC and VOC2006 

datasets, online-learning [1] or transfer learning [15] may 

help to reduce the “background gap” between clipart images 

and real-world images and further improve the accuracy. 

  Besides the side-view cars, bicycles, motorbikes, we also 

trained object detectors for other object classes, such as 

Table 1. Performance comparison on UIUC car dataset. 

                    Approach                          Single-scale   Multi-scale 

Top300Image (unsupervised) 9.0% 3.7% 

Top300Clipart (unsupervised) 46.5% 30.4% 

Top1000Image (unsupervised) 22.0% 3.2% 

Top1000Clipart (unsupervised) 50.0% 32.0% 

ProposedNoSyn (unsupervised) 77.5% 82.5% 

Proposed (unsupervised) 92.5% 92.1% 

CascadeHOGClipart [16](supervised) 93.0% 92.4% 

CascadeHOGUIUC [16] (supervised) 96.6% 96.0% 

 
 

 

  
Fig.5.Average edge maps and major contours of the biggest 

clusters of the 101 objects in Caltech-101 dataset. 

 
Fig.6. Average edge maps of the largest four clusters. 



butterflies, anchors, and so on. Some detection results of 

these objects are shown in Fig.8. 
 

4. CONCLUSIONS 
 

We proposed a novel framework for unsupervised object 

detection by leveraging web images. To automatically find 

and isolate objects from Web images, only clipart images 

were used. A two-stage clustering algorithm was proposed to 

group the objects by shape matching and remove noisy 

images. Our approach could automatically mine the typical 

shapes of the target object, and save a lot the manually 

labeling work. We also analyzed the gap between clipart 

images and real-world images and proposed an image 

synthetic approach for reducing this gap. Experiments have 

shown the effectiveness of proposed framework on objects 

with simple and representative shapes. 

  Actually, automatically generating object detector for an 

arbitrary object class is a very challenging problem. In this 

work, we studied the problem and only gave some primary 

attempts. Some approaches in this paper may be not optimal 

and better approaches are worthy to be further studied. 
 

5. REFERENCES 
 

[1] B. Wu and R. Nevatia. Improving part based object detection 

by unsupervised online boosting. CVPR, „07. 

[2] V. Nair and J. Clark. An Unsupervised, Online learning 

framework for moving object detection. CVPR, „04. 

[3] M. Pham and T. Cham. Online learning asymmetric boosted 

classifiers for object detection. CVPR, „07. 

[4] Y. Lee and K. Grauman. Shape discovery from unlabeled 

image collections. CVPR,„09. 

[5] L. Fei-Fei, R. Fergus and P. Perona. Learning generative 

visual models from few training examples: an incremental 

Bayesian approach tested on 101 object categories. CVPR,„04. 

[6] M. Everingham and A. Zisserman. The Pascal Visual Object 

Classes Challenge 2006 (VOC2006) Results.  

[7] S. Agarwal, A. Awan, and D. Roth. Learning to detect objects 

in images via a sparse, part-based representation. PAMI, 2004. 

[8] N. Dalal and B. Triggs. Histograms of oriented gradients for 

human detection. CVPR, '05. 

[9] W. Wu and J. Yang. Semi-supervised learning of object 

categories from paired local features. CIVR, '08.  

[10] G. Kim, C. Faloutsos, and M. Hebert. Unsupervised modeling 

of object categories using link analysis Techniques. CVPR, „08. 

[11] D. Liu and T. Chen. Unsupervised image categorization and 

object localization using topic models and correspondences 

between images.  ICCV, '07. 

[12] B. Stenger, A. Thayananthan, P.H.S. Torr, and R. Cipolla. 

Model-based hand tracking using a hierarchical bayesian filter. 

PAMI, 2006. 

[13] L.Chen, R. S. Feris, and M. Turk. Efficient Partial Shape 

Matching Using Smith Waterman Algorithm. Workshop on 

NORDIA'08. CVPR,'08. 

[14] P.F. Felzenszwalb and D.P. Huttenlocher. Distance 

transforms of sampled functions. Technical report, 2004. 

[15] G. Heitz, G. Elidan, and D. Koller. Transfer learning of object 

classes: from cartoons to photographs. NIPS, „05. 

[16] Q. Zhu, S. Avidan, M. Yeh and K. Cheng. Fast human 

detection using a cascade of histograms of oriented gradients. 

CVPR, '06. 

[17] L. Fei-Fei, R. Fergus and P. Perona. and A. Zisserman. 

Learning object categories from Internet image searches. 

IEEE Special Issue on Internet Vision, 2010. 

[18] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. Learning 

object categories from Google‟s image search. ICCV, „05. 

[19] J. Canny. A computational approach to edge detection. PAMI, 

1986. 

[20] H.G. Barrow, J.M. Tenenbaum, R.C. Bolles, and H.C. Wolf. 

Parametric correspondence and chamfer matching. In IJCAI. 

[21] F. Murtagh. A survey of recent advances in hierarchical 

clustering algorithms. The Computer Journal. 

[22] R. Fergus, P. Perona, and A.Zisserman. Object class 

recognition by unsupervised scale-Invariant learning. CVPR, 

'03. 

[23] P. Viola, M.J. Jones. Robust Real-Time Face Detection. IJCV, 

'04. 

[24] L. Chen, J. J. McAuley, R. S. Feris, T. S. Caetano, and M. 

Turk. Shape Classification Through Structured Learning of 

Matching Measures. CVPR,'09. 

Table 2. Performance comparison on VOC2006 dataset. 

Approach Bicycle Motorbike 

Top300Image(unsupervised) 13.6% 15.0% 

Top300Clipart(unsupervised) 13.5% 10.0% 

Top1000Image(unsupervised) 14.9% 12.5% 

Top1000Clipart(unsupervised) 12.6% 10.3% 
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Proposed (Unsupervised) 42.5% 27.7% 

CascadeHOGClipart [16] (Supervised) 43.0% 28.5% 

CascadeHOGVOC [16] (Supervised) 52.7% 35.6% 
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(a) VOC2006 bicycle.
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(b) VOC2006 motorbike.
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Fig.7. Precision vs. recall curves on VOC2006 dataset.  

 
Fig.8. Example results of detection for different objects. 
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