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Abstract

Bayesian approaches to density estimation and clustering using mixture distributions allow
the automatic determination of the number of components in the mixture. Previous treat-
ments have focussed on mixtures having Gaussian components, but these are well known
to be sensitive to outliers, which can lead to excessive sensitivity to small numbers of data
points and consequent over-estimates of the number of components. In this paper we de-
velop a Bayesian approach to mixture modelling based on Student-t distributions, which
are heavier tailed than Gaussians and hence more robust. By expressing the Student-t distri-
bution as a marginalisation over additional latent variables we are able to derive a tractable
variational inference algorithm for this model, which includes Gaussian mixtures as a spe-
cial case. Results on a variety of real data sets demonstrate the improved robustness of our
approach.
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1 Introduction

Mixture models are ubiquitous in virtually every facet of statistical analysis, ma-
chine learning and data mining. For data sets comprising continuous variables, the
most common approach involves mixture distributions having Gaussian compo-
nents fitted by maximum likelihood, for which the EM algorithm has a closed-form
M-step.
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A central issue in mixture modelling is the choice of the number of components
in the mixture. Maximum likelihood is unable to address this issue since it favours
ever more complex models, leading to over-fitting. Another difficulty concerns the
infinities which plague the likelihood function, associated with the collapsing of
Gaussian components onto individual data points. These problems can be resolved
elegantly by adopting a Bayesian framework in which we marginalize over the
model parameters with respect to appropriate priors. The resulting model likelihood
can then be maximized with respect to the number of components in the mixture if
the goal is model selection, or combined with a prior over the number of compo-
nents if the goal is model averaging. While exact Bayesian inference for Gaussian
mixtures is intractable, it has been addressed through Markov chain Monte Carlo
(MCMC). Diebolt and Robert (8) described the case with a fixed number of compo-
nents, although this framework could incorporate model selection by simply com-
paring the (MCMC-approximated) marginal likelihood (also known as theevidence
(12)) of models with different number of components. Richardson and Green (15)
proposed an alternative MCMC-based model fitting procedure which involves also
the number of components, and also other MCMC-schemes have been proposed,
e.g. (14). The main drawbacks of MCMC-techniques are that they are generally
computationally demanding, and that it can be difficult to diagnose convergence.
More recently, variational methods have emerged as a deterministic alternative for
doing Bayesian inference, with much better scaling properties in terms of compu-
tational cost (10; 16). They have been applied to Gaussian mixture models (1; 4),
thereby avoiding the singularity problems of maximum likelihood.

A major limitation of Gaussian mixture models, however, is their lack of robust-
ness to outliers. This is easily understood by recalling that maximization of the
likelihood function under an assumed Gaussian distribution is equivalent to finding
the least-squares solution, whose lack of robustness is well known. In the Bayesian
model determination context, the presence of outliers or other departure of the em-
pirical distribution from Gaussianity can lead to errors in the determination of the
number of clusters in the data. In particular, the Gaussian mixture model tends to
over-estimate the number of clusters since it uses additional components to capture
the tails of the distributions.

In an earlier paper (3) we proposed a Bayesian treatment of mixture models based
on components having a Student distribution (13) which has heavier tails compared
to the exponentially decaying tails of a Gaussian. In this paper, we extend the ear-
lier description of this model to give a full account of the variational inference
framework employed. The next section will describe the Bayesian mixture of Stu-
dent distributions, and in Section 3, we describe how to infer a tractable variational
posterior distribution over the parameters in the Student mixture model, with full
details given in the appendix. Section 4 presents results on applying this model to
real data sets, focussing on its robustness in presence of outliers as compared to a
Bayesian Gaussian mixture model.
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Fig. 1. The plot shows the univariate Student distributionS(x|µ,Λ, ν) with µ andΛ fixed
for various values ofν, in whichν → ∞ corresponds to a Gaussian.

2 Bayesian Student Mixture Models

Our approach to robust Bayesian mixture modelling is based on component distri-
butions given by a multivariate Student distribution, also known as at-distribution,

S(x|µ,Λ, ν) =
Γ(ν/2 + d/2)|Λ|1/2

Γ(ν/2)(νπ)d/2

(
1 +

∆2

ν

)−(ν+d)/2

(1)

where
Γ(y) =

∫ ∞

0
zy−1e−z dz (2)

is the Gamma function and

∆2 = (x − µ)TΛ(x − µ) (3)

is the squared Mahalanobis distance fromx to µ. µ andΛ denote the mean and
precision (inverse covariance) matrix, respectively,d denotes the dimensionality of
x, andν is a parameter known as the number of ‘degrees of freedom’. The Student
distribution represents a generalization of the Gaussian, and in the limitν → ∞
it reduces to a Gaussian with meanµ and precisionΛ. For finite values ofν this
distribution has heavier tails than the corresponding Gaussian having the sameµ
andΛ, as shown in Figure 1.

In contrast to the Gaussian, there is no closed form solution for maximizing likeli-
hood under a Student distribution. However, there is a useful representation of the
Student distribution as an infinite mixture of scaled Gaussians. In particular we can
write the Student distribution in the form

S(x|µ,Λ, ν) =
∫ ∞

0
N (x|µ, uΛ)G(u|ν/2, ν/2) du (4)
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whereN (x|µ,Λ) denotes the Gaussian distribution,

N (x|µ,Λ) =
|Λ|1/2

(2π)d/2
exp

(
−∆2

2

)
(5)

and∆2 is defined by (3). The Gamma distribution is given by

G(u|a, b) =
1

Γ(a)
abuae−bu.

Using (2), it is straightforward to evaluate the left hand side of (4) to obtain (1).
We can think of (4) as introducing an implicit latent variableu for each observation
of x, and this can be exploited to find maximum likelihood solutions using the
EM algorithm (11), in which the E step involves an expectation with respect to
the posterior distribution of the latent variableu. The M-step then has closed form
solutions forµ andΛ, and the value ofν can be found by solution of a simple
nonlinear equation. An analogous strategy will be exploited in Section 3 to obtain a
tractable Bayesian treatment of Student mixture distributions based on variational
inference.

We now consider densities comprising mixtures of Student distributions,

p(x|{µm,Λm, νm}, π) =
M∑

m=1

πmS(x|µm,Λm, νm) (6)

where the mixing coefficientsπ = (π1, . . . , πM)T satisfyπm � 0 and
∑

m πm = 1.

In order to find a tractable variational treatment of this model, we re-express the
mixture density in terms of a marginalization over a binary latent variables of
dimensionalityM having components{sj} such thatsj = 1 for j = m andsj = 0
for j �= m, giving

p(x|s, {µm,Λm, νm}) =
M∏

m=1

S(x|µm,Λm, νm)sm (7)

with a corresponding multinomial prior distribution overs of the form

p(s|π) =
M∏

m=1

πsm
m . (8)

It is easily verified that marginalization of the product of (7) and (8) over the latent
variables recovers the Student mixture (6).

We consider a data setX comprising observations{xn}, wheren = 1, . . . , N ,
which we shall suppose are drawn independently from the distribution (6). Thus for
each data observationxn we have corresponding discrete latent variablesn speci-
fying which component of the mixture generated that data point, and a continuous
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latent variableunm specifying the scaling of the precision for the corresponding
equivalent Gaussian from which the data point was hypothetically generated.

In a Bayesian treatment, we also need priors over the other variables in the model,
and again for tractability we choose conjugate priors1 from the exponential family:

p(µm) = N (µm|m0, ρ0I)

as defined in (5),

p(Λm) =W(Λm|W0, η0)

=CW(W0, η0)Λ
(η0−d−1)/2
m exp

(
−1

2
Tr
(
W−1

0 Λm

))
(9)

which is the Wishart distribution, where the normalisation constant is given by

CW(W0, η0) = |W0|−η0/2

(
2η0d/2πd(d−1)/4

d∏
i

Γ
(

η0 + 1 − i

2

))−1

. (10)

Finally,

p(π) = D(π|α) = CD
M∏
m

παm−1
m (11)

which is the Dirichlet distribution, where

CD =
Γ(α0)∏M

m Γ(αm)
(12)

and

α0 =
M∑
m

αm . (13)

The parameters of the prior onµm are chosen to give broad distributions,m0 = 0,
ρ0 = 10−3, whereas the prior forΛm is chosen more moderate,W0 = I and
η0 = 1. For the prior overπ we can interpret the parametersα = {αm} as effective
numbers of prior observations, which we set toαm = 10−3.

The joint distribution of all random variables can be expressed as a directed graph,
as shown in Figure 2. Note thatν is treated as a (non-stochastic) parameter since
there is no conjugate prior forν. However, since there is only one such parameter
per mixture component, so we set its value by optimization as part of the variational
procedure discussed next.

1 The fully conjugate prior for unknown mean and precision of a Gaussian is the normal-
Wishart. Here we use separate normal and Wishart priors, and this is tractable due to the
later assumed factorization, although the analysis is easily extended to the normal-Wishart
distribution if desired.
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Fig. 2. The diagram shows a representation of the Bayesian Student mixture distribution
as a directed graphical model. The boxes denote ‘plates’, comprising replicas of the enti-
ties inside the plates. TheM -plate represents theM mixture components and theN -plate
the independent identically distributed observationsxn. The circular nodes denote ran-
dom variables, whereas labels not associated with nodes denote constants (e.g.α) or ad-
justable parameters (νm). The shading of thexn node indicates that this variable is observed
whereas variables denoted by the other (unshaded) nodes are hidden. Note that{unm}
belong to both plates, indicating that there are corresponding random variables for each
mixture component and each observation.

3 Variational Inference

Exact inference in our Bayesian model is intractable. However, the choice of con-
jugate-exponential distributions allows us to find an elegant variational framework.
To do this we consider the well known equality (10) for the log marginal likelihood
given by

ln p(X) = L(q) + KL(q‖p), (14)

where

L(q) =
∫

q(θ) ln

{
p(X, θ)

q(θ)

}
dθ, (15)

where in turnθ denotes the set of all unobserved stochastic variables, which for our
model comprise{µm,Λm}, π, {sn,un}. Hereq(θ) denotes a variational posterior
distribution, andp(X, θ) is the joint distribution over all hidden and observed vari-
ables, as defined by the model in Figure 2. The second term on the right hand side
of (14) is the Kullback-Leibler (KL) divergence between the variational posterior
distributionq(θ) and the true posteriorp(θ|X),

KL(q‖p) = −
∫

q(θ) ln
p(θ|X)

q(θ)
dθ.

Since the KL divergence is non-negative,L(q) is a lower bound of the log marginal
likelihood. This bound would become exact ifq(θ) = p(θ|X), in which case the
KL-divergence would vanish, but if so, we would not have had to resort to approx-
imate inference in the first place.
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3.1 Variational Posteriors

In order to make progress, we choose a constrained family of distributions forq(θ)
such that the evaluation of the lower boundL(q) becomes tractable. Here we as-
sume a factorized variational distribution of the form

q(θ) = q({µm})q({Λm})q(π)q({sn})q({un}) (16)

where we are using a generic notationq(·) for all of the factors, since the particular
distribution involved can be determined from its argument. This fully factorized
approximation is often referred to as the ‘mean field approximation’ and has its
roots in statistical physics (e.g. (6)). It can be seen as one particular instance from
the set of variational approximations (10). A consequence of this choice is that our
variational approximation will not capture correlations among the factors, which in
turn will lead to an under-estimation of the variance in the posterior distribution,
the consequences of which we will see in Section 4.

With a chosen family of approximating distributions, we can now search for the
optimal member of this family by maximization ofL(q), which is equivalent to
minimization of the KL divergence. This is achieved by optimizing with respect to
each factor in turn, holding the others fixed. It is easily shown that the log of the
optimum solution for a particular factor is obtained, up to an additive constant, by
taking the log of the joint distribution for the model and averaging with respect to
variational distributions of all the remaining factors. Since this represents a coupled
solution, it is necessary to cycle through the factors in turn in an iterative manner.
As a consequence of the conjugate-exponential structure of the model, the result-
ing optimal factors take the same functional form as the corresponding conditional
distributions comprisingp(X, θ) (2; 16).

For instance, for the variational posterior distributionq({Λm}) this yields

ln q(Λm) = 〈ln p(X|θ)p(θ|m0, ρ0,W0, η0, ν, α)〉µ,u,s + const. (17)

=
N

2
ln |Λm| − 1

2
Tr

[
N∑
n

〈
(xn − µm)(xn − µm)Tunmsnm

〉
µ,u,s

Λm

]

+
η0 − d − 1

2
ln |Λm| − 1

2
Tr[W−1

0 Λm] + const. (18)

where in (17) we have used Bayes’ theorem and the last term summarizes terms
independent ofΛm. Here〈·〉µ,u,s denotes expectations with respect to the corre-
spondingq(·).

From (9) and (18) we see that

q(Λm) = W (Λm|Wm, ηm) (19)
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where

W−1
m =W−1

0 +
N∑
n

〈
(xn − µm)(xn − µm)Tunmsnm

〉
µ,u,s

=W−1
0 +

N∑
n

〈unm〉〈snm〉
(
xnx

T
n − 2xn〈µm〉T + 〈µmµT

m〉
)

(20)

and

ηm = η0 +
N∑
n

〈snm〉. (21)

Thus the optimal solution for the factorq(Λm) depends on moments evaluated with
respect to other factors in the variational posterior, in this case〈snm〉, 〈unm〉 , 〈µm〉
and〈µmµT

m〉. Analogous results are obtained for the other factors in (16), and the
details of these, together with formulae for the necessary moments can be found
in Appendix A. Since the solutions for the variational factors are all coupled we
solve them iteratively by first initializing the distributions and then cycling round
each factor in turn and replacing its current estimate by its optimal solution given
the current estimates for the other factors. We also updateνm for each mixture
component, replacing it with its log-marginal maximum likelihood estimate, by
setting the corresponding gradient to zero and solving the resulting (independent)
non-linear equations2

1 +
1

ŝm

N∑
n

〈snm〉 [〈ln unm〉 − 〈unm〉] + ln
νm

2
− Ψ

(
νm

2

)
= 0

where

ŝm =
N∑
n

〈snm〉
and

Ψ(a) =
d ln Γ(a)

da
(22)

commonly known as the di-gamma function.

Note that the only assumption made aboutq(θ) is that it factorizes as in (16). It is
thus interesting to note that the optimal solutions for the factors in the variational
posterior distribution exhibit additional factorizations arising from interactions be-
tween the assumed form of (16) and the conditional independence properties of the
joint distributionp(D, θ) (2). For instance, in the optimal solution forq({Λm})
given by (19) there is an additional factorization with respect to the different com-
ponentsΛm. Similar ‘consequential’ factorizations with respect tom are observed
in q({µm}), and with respect ton in q({un}) andq({sn}).
2 We are using thefzero function in MatlabR©
(http://www.mathworks.com/matlab) to do this.
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3.2 The Lower Bound

The lower bound (15) can be re-written as:

L(q) = 〈ln p(x|{µm,Λm},u, s)〉 +
M∑
m

〈ln p(µm|m0, ρ0)〉

+
M∑
m

〈ln p(Λm|W0, η0)〉 + 〈ln p(u|ν)〉 + 〈ln p(π|α̂)〉 + 〈ln p(s|π)〉

−
M∑
m

〈ln q(µm)〉 −
M∑
m

〈ln q(Λm)〉 − 〈ln q(u)〉 − 〈ln q(π)〉 − 〈ln q(s)〉. (23)

Thus, it can be evaluated in terms of moments of the variational posterior factors,
which typically already have been computed as part of the inference procedure, and
can therefore be efficiently computed. Details are given in Appendix B. The value
of the bound can be monitored during the optimization and can be used to set a
convergence criterion.

Evaluation of the lower bound plays a useful role in checking the correctness of
the variational formulae, as well as their software implementation, since at every
update the value of the bound must not decrease. We have taken this a stage further
and used numerical central differences to evaluate the derivatives of the bound with
respect to the parameters of each factor in the variational distribution immediately
after the corresponding factor has been updated. The central differences must take
account of constraints such as positivity, symmetry, or summation to unity and this
is done through appropriate changes of variables. For instance the variational pos-
terior distributionq(π) is a Dirichlet with parameters̃αm and by expressing these
using a softmax (normalized exponential) transformation applied to unconstrained
variablesγm we can make small variations in theγm and ensure that the positivity
and summation constraints on theα̃m remain satisfied. The central difference eval-
uation of the derivatives should give zero immediately after each update, and this
provides a powerful check on the correctness of the software implementation. This
diagnostic is switched off once the correctness of the code is confirmed, in order to
save computation.

The lower bound is a non-convex function of the variational posterior distribution,
and so there will in general exist multiple maxima, and the resulting solution will
depend on the initialization. We address this by performing multiple optimizations
from random starts, and retaining the solution giving the largest value of the result-
ing boundL(q). Note that, as a consequence of adopting a Bayesian approach, this
procedure can make use of the entire training set in a single pass of training and
does not require cross-validation.
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4 Experimental Results

We now present the results of applying the Student mixture model to four real
data sets. First, however, we note that if a model with an excess of components
is used, then in our Bayesian treatment the unwanted components simply revert
to their prior distributions, and do not interact with the data. The corresponding
prior and posterior terms in the lower bound cancel out, and there is no contribu-
tion to the predictive distribution, so that such components are effectively pruned
out of the model. This arises because any component whose parameters deviate
from their prior distributions will incur a penalty, the significance of which will be
determined by the deviation and the broadness of the prior (12). We say that theef-
fective number of components is the number of components for which there exists
at least one data point for which the posterior probability, or ‘responsibility’, that
the component generated this data point is numerically greater than zero.

We have compared mixture models with Gaussian (GMM) and Student (SMM)
components on four real data sets, to which we optionally add outliers. Specifi-
cally, we have fitted GMMs and SMMs having between 1 and 6 mixture compo-
nents to these data sets, with and without the added outliers, and then compared
them in terms of the resulting bounds as well as the effective number of mixture
components used in the fitted models. For each model we used 50 different ran-
dom initializations to handle the non-convexity of the lower bound. In maximum
likelihood approaches it is common to use cross-validation against an independent
data set to select an appropriate model complexity. However, in our Bayesian ap-
proach we can simply use the value of the boundL at its maximum to select the
best model, since this approximates the log marginal likelihood for the model. Not
only does this save on expensive cross-validation, but it allows all of the available
data to be used for training without running into over-fitting problems.

The data sets were the Enzyme, Acidity and Galaxy data used by (15) and the Old
Faithful data (9). These data sets were also used by (7) to demonstrate a similar
method for model complexity selection for GMMs. All data sets were normalized to
zero mean and unit variance. Outliers, numbering 2% of the size of the original data
set, were drawn from a uniform distribution on[−10, 10] along each dimensions,
and added after the normalization.

The results are shown in Figure 3. We first note that although all models initially
had six components, the maximum number of effective components is never higher
than five. Moving on to the individual data sets, let us start with the top row of plots,
which corresponds to the Enzyme data set. Without the outliers added (columns one
and two), the GMM and SMM give similar results, in each case strongly favouring
models having two effective components. With the addition of outliers, however,
the best performing GMM (column three) now favours three components, whereas
the SMM (column four) continues to favour two components. Results from the
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Fig. 3. Comparison of Gaussian (GMM) and Student (SMM) mixture models in their ro-
bustness to outliers, showing plots of the lower boundL(q) of the fitted model versus the
number of effective components. Each row corresponds to one data set, and all plots on the
same row have the same scale on the vertical axis. The first two columns show the results
of the GMM and SMM, respectively, on the original data sets, whereas columns three and
four show the corresponding results after the addition of outliers. All plots share the same
horizontal range of [0, 6]. In the plots, a small amount of uniform noise has been added to
the horizontal position of the points, in order to obtain a better visualization of the results.
Each plot contains a total of 300 points, corresponding to the 50 random initializations of
each model in which the initial number of components is varied in the range 1 to 6.

Acidity data set, corresponding to the second row of plots, show the same pattern.

In the case of the Old Faithful data set, corresponding to row three, both the GMM
and the SMM consistently use two components without outliers. Once outliers are
added the GMM strongly prefers three components, whereas the SMM now has
solutions for both two and three components which have almost identical values of
the bound.
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Fig. 4. Histogram plot of the Galaxy data together with densities of the optimal single
component SMM (solid) and the optimal dual component GMM (dashed). The density
curves have been computed using the expected values of{µm,Λm,πm} together with the
optimal value ofν.

Finally, for the Galaxy data set, corresponding to the fourth row in Figure 3, we see
a rather different picture. Before adding outliers, the GMM has a clear preference
for two components whereas the SMM strongly favours just one component. In-
sight into this result is obtained by plotting a histogram of the data, along with the
best solutions from the GMM and from the SMM, as shown in Figure 4. It turns
out that the two components of the Gaussian mixture model are almost concentric
but have significantly different variances. Thus the GMM is effectively modelling
the data set as a single cluster but with heavy tails, and in this sense is approximat-
ing the Student distribution (which is an infinite mixture of concentric Gaussians)
with a mixture of just two Gaussian components. The addition of artificial out-
liers (columns three and four) leaves this situation unchanged, with the GMM still
favouring two components and the SMM strongly preferring just one component.
In effect the data set already has outliers and the addition of further artificial outliers
has no qualitative influence on the clustering algorithms.

It is worth noting that, for the Enzyme, Acidity and Galaxy data sets, the GMM
models preferred by the variational bound have fewer components than those pre-
ferred under the MCMC selection scheme used by Richardson and Green (15). This
is unsurprising since the factorized variational distribution tends to under-estimate
the variance of the posterior distribution, leading in turn to an under-estimate of the
model evidence, and this effect becomes more pronounced as the number of hidden
variables increases. However, the advantage of a variational approach compared
with MCMC is its applicability to large scale applications without incurring high
computational cost (5).
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5 Conclusions

In this paper we have developed a novel approach to Bayesian mixture modelling
which includes Gaussian mixture models as a special case, but which is more robust
to non-Gaussianity in the data. Singularities of the kind associated with maximum
likelihood are absent, and surplus components revert to the prior distribution and
play no role in the predictive density.

It should be emphasized that our approach involves only a small computational
overhead compared to the use of maximum likelihood techniques, since the domi-
nant computational costs arise from the evaluation and inversion of weighted em-
pirical precision matrices, which is also the dominant cost in maximum likelihood
EM.

A further advantage of our approach is that the inference of themean of a cluster of
data points is also less sensitive to outliers when a heavy tailed Student distribution
is used in place of a Gaussian. In fact one of the most common motivations for
using Student distributions is to obtain robust estimates for the mean of a set of
data points.

A Variational Distributions

Here we provide the formulae for the variational distributions over the random vari-
ables in our model,{µm,Λm}, π, {sn,un}, and the necessary moments of these.
The formulae are all derived in the same fashion asq(Λm) in section 3.1, i.e., we
equate the logarithm of the variational posterior distribution of interest with the log-
arithm of the corresponding true posterior and then take the expectations of both
sides with respect to all other factors under their respective current variational pos-
terior (see equation (18)). Dropping terms independent of the factor of interest, we
arrive at familiar distributions for all variables.

A.1 q(s)

ln q(s) ∝
N,M∑
n,m

snm ln rnm,
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where

rnm =

exp

(
〈ln πm〉 +

1

2
〈ln |Λm|〉 +

d

2
〈lnunm〉 − 〈unm〉 〈∆2

nm〉
2

− d

2
ln 2π

)
, (A.1)

where in turn (cf. (3))

〈
∆2

nm

〉
=
〈
(xn − µm)TΛm(xn − µm)

〉
µm,Λm

=xT
n 〈Λm〉xn − 2xT

n 〈Λm〉〈µm〉 + Tr
[〈

µmµT
m

〉
〈Λm〉

]
(A.2)

Taking into account that the probability distributionq(sn) must be normalised for
each data pointxn, we see that

q(s) =
N,M∏
n,m

psnm
nm (A.3)

which is a multinomial distribution, where

pnm =
rnm∑M
m′ rnm′

. (A.4)

although the last term in the argument for the exponential in (A.1) will cancel out
in (A.4). From (A.3), we see directly that

〈snm〉 = pnm.

A.2 q(π)

ln q(π) ∝
N,M∑
n,m

(〈snm〉 + (αm − 1)) ln πm

from which we see that
q(π) = D (π|α̂) (A.5)

which is Dirichlet distribution, as defined in (11), with parameter

α̂m =
N∑
n

〈snm〉 + αm

From (A.5) and (11)–(13), we can deduce that

〈ln πm〉 = Ψ(α̂m) − Ψ(α̂0),

whereΨ(·) is defined in (22).
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A.3 q(Λm)

The formulae forq(Λm) were given in (19)–(21). The required moments under this
posterior are

〈Λm〉 = ηmWm

and

〈ln |Λm|〉 = d ln 2 − ln |Wm| +
d∑
i

Ψ
(

ηm + 1 − i

2

)
.

A.4 q(µm)

For q(µm), we obtain
q(µm) = N (µm|mm,Rm)

where

Rm = 〈Λm〉
N∑
n

〈wnm〉 + ρ0I,

mm = R−1
m

(
〈Λm〉

N∑
n

〈wnm〉xn + ρ0m0

)
and

〈wnm〉 = 〈snm〉〈unm〉.

We have
〈µm〉 = mm

and
〈µmµT

m〉 = mmmT
m + Rm.

A.5 q(u)

Finally, for q(u), we get

q(unm) = G (unm |anm, bnm )

where

anm =
νm + 〈snm〉d

2
(A.6)

and

bnm =
νm + 〈snm〉 〈∆2

nm〉
2

(A.7)

where〈∆2
nm〉 is defined as in (A.2). The required moments are

〈unm〉 =
anm

bnm
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and
〈ln unm〉 = Ψ(anm) − ln bnm.

B The Lower Bound

Given values forq({µm}), q({Λm}), q(s), q(u), q(π) and{ηm}, we can evaluate
the lower bound of the log-marginal likelihood, (23). This is useful for several
purposes, as discussed in section 3.2. We evaluate the terms of (23) separately:

〈ln p(X|{µmΛm},u, s)〉 =

1

2

N,M∑
n,m

〈snm〉
(
〈ln |Λm|〉 − d ln(2π) + d〈lnunm〉 − 〈unm〉

〈
∆2

nm

〉)

where we have used (A.2).

〈ln p(µm|m0, ρ0)〉 =
d

2
ln

ρ0

2π
− ρ0

2

〈
‖µm − m0‖2

〉

〈ln p(Λm|W0, η0)〉 = lnCW(W0, η0) +
η0 − d − 1

2
〈ln |Λm|〉 − 1

2
Tr[W−1

0 〈Λm〉],

whereCW(·) is defined in (10).

〈ln p(u|{νm})〉=
M∑
m

N
(

νm

2
ln
(

νm

2

)
− ln Γ

(
νm

2

))

+
N∑
n

((
νm

2
− 1

)
〈ln unm〉 − νm

2
〈unm〉

))

〈ln p(π|α)〉 = ln Γ(α0) +
M∑
m

((αm − 1)〈ln πm〉 − ln Γ(αm))

〈ln p(s|π)〉 =
N,M∑
n,m

〈snm〉〈lnπm〉.

Note that the last five terms of (23) are simply the entropies of the corresponding
variational distributions.
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〈ln q(µm)〉 =
1

2
ln |Rm| − d

2
(1 + ln(2π))

〈ln q(Λm)〉 = ln CW(Wm, ηm) +
ηm − d − 1

2
〈ln |Λm|〉 − ηmd

2
whereCW(·) is defined in (10).

〈ln q(u)〉 =
N,M∑
n,m

((anm − 1)Ψ(anm) − anm − ln Γ(anm) + ln bnm) ,

where we have used (A.6) and (A.7).

〈ln q(π)〉 = ln Γ(α̂0) +
M∑
m

((α̂m − 1)〈ln πm〉 − ln Γ(α̂m))

〈ln q(s)〉 =
N,M∑
n,m

〈snm〉 ln〈snm〉.
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