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ABSTRACT 
In order to do reliable and efficient real-time scheduling of a software application or component, it is necessary to 
know as much as possible of the temporal behavior of a program up front. To make it possible to compose 
schedules it is necessary to know about the temporal behavior of the various applications and components 
involved. We describe the behavior using a Partiture, a description of the temporal phases of a program and their 
interdependencies. We then treat the partiture as a graph and model its semantics using abstract state machines. 
We then convert the state machine to a set of constraints and use the Z3 theorem prover to validate and solve the 
schedule. Finally the output is converted to a partially instantiated schedule, which can be executed on hardware, 
ranging from 8-bit microcontrollers to multicores and distributed systems. This work-in-progress paper shows how 
a number of common execution patterns map to a graph and model and how this interfaces with the theorem 
prover. It introduces an improved semantic description of partitures and for the first time shows how satisfiability 
modulo theory (SMT) could be used to perform scheduling analysis, with the practical side demonstrated by a 
simple case study. This sets the stage for planned future extensions to multiple resources and multicore. 
 

INTRODUCTION 
To go from a program implementation and specification to an actual runtime execution that fulfills the constraints 

specified, we need a tool chain that consists of three parts: 1) discovering what an application or component does 

and what it should do; 2) figuring whether the program or a combination of programs can meet the specification 

and optimizing for specific requirements creating a schedule; and 3) executing the resulting schedule on actual 

hardware in a way that adheres to the validation of the previous step. 

The tool chain is analogous to a compiler, where the front end converts the program to an internal representation, 

which is then analyzed and optimized by the middle, and finally the back end generates code that is executed 

within a known runtime. The main difference is that a regular compiler deals with functional properties of the 

program, while the temporal behavior and the corresponding schedule is non-functional. 

The partiture describes temporal behavior 

We represent the intermediate states of the temporal behavior of the program as a partiture. It is analogous to the 

short score in music, also called a partiture, that specifies when and what individual instruments should be playing 

without dealing with how the first violin is supposed to implement the sounds or other details relevant only to that 

instrument. A partiture is a collection of scores, each consisting of a number of bars. Each score corresponds to a 

single activity and each bar corresponds to a single temporal phase of a program. The bar is the time where a note 

is played, or in our case where a phase of a program is executed without caring what exactly is played (determined 

by the notes in the bar or the implementation of a component).  The bar in essence is a single time constraint, 

determining when a note is played and for how long. More concretely we define it to have an earliest start time, a 

deadline, and a duration estimate. The duration is estimated by WCET analysis, stochastic methods based on 

instrumentation, or by programmer input. The quality of the estimate largely determines the hardness of the 

resulting schedule. 

In [2] we show how partitures could be generated by static analysis and tracing from existing concurrent programs. 

We have also experimented with using instrumentation and stochastic estimation to derive timing information 

from a program running in a potentially chaotic non-real-time environment. The partiture is represented by a 

domain-specific language and in [1] we use XML syntax. 
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The temporal requirements of a program still need to be specified. This can be done through a domain-specific 

language or any formal definition. 

The middle part of the time compiler validates, optimizes, and composes schedules 

The partiture can be converted to a graph. In [2] we looked at the topology of the graph and optimized the 

schedule for sequential execution on a microcontroller. In [1] we defined a model for part of the partiture 

semantics. However, the semantic definition we have presented earlier, while sufficient to describe a number of 

scenarios, is incomplete in the sense that it does not capture all or most relevant execution patterns and is not 

quite precise enough for formal analysis. In this paper we examine the relevant scenarios in more detail and 

enhance the semantic definition further. While this may not be the ultimate definition we are now attempting to 

make it precise enough that we can feed the graph into a theorem prover. 

We describe the semantics of the partiture graph as an abstract state machine based model program. The ASM 

essentially describes all possible valid schedules. If there are any valid schedules then the partiture is valid. If there 

are multiple valid schedules then some of them may be better than others. We attempt to find a single valid 

schedule by converting the partiture turned model program together with the partiture definition, platform 

constraints, and external constraints into a theorem using a process described in [5]. The result, if any, is again a 

valid schedule. The theorem prover does not have a concept of optimality. Instead it is possible to add further 

constraints, which may or may not be achievable. An iterative process can be used to use e.g. a binary search to 

find the best schedule. For instance to optimize for speed if no solutions were found, double the allowed time, if 

solutions were found decrease it by a quarter. 

The Z3 theorem prover [4] does not only answer by saying it has found an answer but it will also specify what it is. 

If the question is well constructed the result is meaningful and can be converted to a (partially) instantiated 

schedule, which is used at runtime. 

The runtime executes the schedule 

The resulting schedule depends on the platform constraints. On a single microcontroller without preemption the 

schedule becomes a fixed table. An example of how this can result in a very efficient but nonflexible 

implementation is demoed in [3] where an XML web server with a real-time scheduler and drivers could run in 

under 4KB ROM and 128 bytes of RAM. Here the schedule is a predetermined table. In the demo the values in the 

table were manually calculated. In this paper we attempt to automate the process. 

On a multicore, in a distributed system, or in a flexible system the schedule would be a partial evaluation, leaving 

flexibility to the runtime scheduler. The stochastic scheduler in [1] goes to an extreme and changes the estimates 

in the bar during runtime, yet an initial admission check is still required, which is difficult to do in a resource-

limited system in real-time, considering that the scheduling is after all fundamentally NP-hard. Thus an offline, or 

semi-offline service based approach would be appropriate even here. 

DEFINITION OF PARTITURE GRAPH 
The partiture and corresponding graph consist of bars. Each bar represents a temporal phase of a program. The 

bars (nodes) are linked by edges that depict dependencies between bars. A directed edge is a causality constraint, 

meaning one bar must complete before the other can start. A bar represents one time constraint [Error! Reference 

source not found.] and some resource requirements (e.g. CPU, memory, bandwidth) during the time. To make the 

definition more concise we make it recursive. 

 Partiture := set of scores 

 Score := Nodes connected by Edges 



 Node := Score | bar | choice 

 Bar := labeled time constraint = <label, earliest start time, deadline, duration, resources> 

 Edge := directed causal constraint | undirected exclusion constraint 

 Choice := set of scores representing alternative execution 

A node can be in a number of states: Waiting, Enabled, Expired, Completed. 

Each node can have multiple outgoing edges, representing parallel causality. The outgoing edge points to either 

another node inside or outside the current containing node or to the end of the current containing node. The 

outgoing edges are triggered when the node has completed (in the nested case when the edge leading to the node 

completion has been triggered). Each node can have any natural number of incoming edges. Depending on the 

node the incoming edges can be either treated as OR or as AND. The nodes with no incoming edges are enabled 

when the containing score is triggered. AND nodes are enabled when all incoming edges are triggered. OR nodes 

are enabled when any incoming node has been enabled. 

In addition to directed edges the graph can contain undirected edges, representing a mutual exclusion constraint. 

Two nodes connected by an undirected edge can never be enabled simultaneously, facilitating transactions and 

commutative operations. 

Remote dependencies are represented by a node that uses network bandwidth (message transfer) and a directed 

edge through it from the sender to the receiver. A further limitation is that no edges can pass between remote 

nodes without going through a message transfer node. Thus undirected edges are strictly local and no instant 

messageless triggers are possible remotely. 

In [2] we explored sequentialization of execution by use of bars. In that paper we used red directed edges to depict 

data dependencies and blue edges to depict execution order within a thread. Another way to look at this is to say 

that blue edges have two additional constraints compared to normal (red) directed edges: they cannot trigger 

remotely as a message transfer node is not present; and in order to schedule other bars between the nodes the 

target platform must support preemption. 

The goal of the scheduling tool is to convert a partiture into a schedule. 

 Schedule := a sequence of (partially) instantiated bars for each CPU 

In other words the goal is to flatten a potentially complex partiture to a simple sequence, one for each processor. 

There may be multiple processors either due to multicore or due to multiple machines. Other resources, such as 

network bandwidth or memory, are scheduled implicitly by scheduling the computation that allocates (frees) 

memory or sends (receives) messages. 

REPRESENTING EXECUTION PATTERNS AS GRAPHS  
Consider a simple robot controller that reacts to changes in the physical world by first reading 
a sensor value, analyzing it, and finally writing some computed value to an actuator. The score 
for such a scenario is depicted as a graph (Figure 1) and as an XML description (Figure 2). This 
is also the score we model and solve using a theorem prover later in this paper. 

While the score may seem simple it actually hides some implied complexity that we will now 
disseminate further. First, the pipeline needs to be executed multiple times. In [1] we argue 
that it is better to keep the loop in the scheduler than the program. Figure 3 depicts the score 
with a loop added, along with a sensor to actuator and an inter-iteration time constraint. 

Figure 1: Simple sensor to actuator 



<score name="hardsample"> 

  <bar name="read" duration="PT0.002S" 

       slack=”PT0.0005S”> 

    <repeats count="1000" offset="PT0.02S"/> 

    <trigger name="filter" />  

  </bar> 

 

  <bar name="analyze" duration="PT0.001S" /> 

    <trigger name="output/> 

  </bar> 

 

  <bar name="output" duration="PT0.001S">  

  </bar> 

</score>        

 

The sensor to actuator time constraint defines the maximum allowed time between reading and writing the 
physical environment. The inter-iteration time constraint defines how often the sensor should be read. Both 
become constraints in the model and SAT solver. If the loop is unrolled the score looks like figure 4, which depicts 
the semantics of the score. The resulting schedule could be repetitive, however, when the score is composed with 
other scores the loop may have to be partially unrolled to produce a valid scenario. In the unrolled graph all bars 
are initially not enabled. When the score is enabled the Init with no incoming edges will become enabled and it in 
turn will enable the rest. It can be seen from the graphs that all joins are OR joins. 

When there are multiple sensors 
and actuators the score would 
look like figure 5. The time 
constraints from each sensor to 
each actuator are omitted in the 
drawing. This score highlights an 
AND join. Here a pull-up can be 
performed only when there is 
no stalling but the ground is 
getting close. It goes without 
saying that the author would 
not like to be in this airplane, a 
real control algorithm would be 
far more complex. 

A simple web 2 server running on a 
microcontroller could look like figure 6. The last 
optional bar displays the result on the LCD. A 
server would process multiple messages. For 
instance in the demo we showed in [3] the 
messages can either result in an Add method or a 
Subtract method. While these two are remarkably 
similar, sometimes it may be useful to include 
explicit scores for alternative executions. A score 
with alternative bars for Add and Subtract are 
depicted in figure 8. 

 

 

Figure 3: Sensor to actuator with 
more detail.  TC = Time Constraint. 

Figure 2: Sensor to actuator as XML 

 

Figure 4: Sensor to actuator with loop unrolled 

Figure 5: AND join in 
airplane scenario 

Figure 6: Simple XML web server 



A web server that 
listens to multiple 
inputs then dispatches 
to multiple alternative 
methods and finally 
responds to 
alternative 
destinations is 
depicted in figure 9. 

Potentially parallel 
execution is depicted 
in figure 10. The video 

and audio processing 
are independent and can be done either in arbitrary sequence or in 
parallel, depending on resources available on the target machine. 
The partiture always expresses potential parallelism. As necessary it 
can be sequentialized either to a completely or to a partially 
sequential schedule, or executed in parallel when enough cores are 
available. The AND  join prevents the downstream code from 
executing before both audio and video processing has completed. 

Figure 11 is a remote 
procedure call. The 
message transmission is a bar that estimates the 
time taken for the message delivery and resources 
the required network bandwidth. Only message 
transmissions and time constraints can span 
multiple machines. 

Figure 12 depits software where media data is 
handled by multiple threads, each doing a phase in 
the processing. While it is debatable whether this is 
the best design it should at least be possible to 

describe its temporal behavior. All the joins are OR 
as the pipeline will be active whether there is data 
from various sources or not. 

 

 

Figure 13 depicts a mutual exclusion constraint for the purposes of transactions. A transaction is wrapped into a 
separate score that is then excluded with other transactions on the same object. This simply adds a constraint to 
be solved by z3.  Finally, figure 14 depicts composition, where two separate scores coexist in parallel. This is simply 
a combination of their set of constraints that are adhered to when scheduling. 

Figure 8: Web server with choice bars 

Figure 9: Web server with multiple inputs and 
choice bars. 

Figure 10: Parallel bars. 
Figure 11: Remote 
procedure call. 

Figure 12: Audio processing pipeline. 

Figure 13: Mutual exclusion constraint. Figure 14: Composition of two independent scores. 



namespace Timing  

 enum Bar A B C  

 

 var t as Integer = 0 

 var earliest as Map of Bar to Integer = {A -> _, B -> _, C -> _} 

 var deadline as Map of Bar to Integer = {A -> 2, B -> 4, C -> 6} 

 var duration as Map of Bar to Integer = {A -> 2, B -> 1, C -> 1} 

 

 [Action] 

 Do(b as Bar) 

  require t >= earliest(b) and t < deadline(b) 

  t := t + duration(b) 

 

 [Action] 

 Skip(dt as Integer) 

require dt >= 0 

t := t + dt 

  t := t + dt   

 

 

namespace Trigger 

 var bars as Set of Bar = {A,B,C} 

 var graph as Set of (Bar,Bar) = {(A,B),(B,C)} 

 

 [Action] 

 Do(b as Bar) 

  require b in bars 

  require not exists e in graph where Second(e)=b 

  bars := bars - {b} 

  graph := {e | e in graph where First(e) <> b} 

  graph := graph - {(b,b+1)}     

 

MODELING EXECUTION 
We model the valid executions of partitures as traces of an abstract state machine (ASM) based model program. 
The model itself is composed by the types of constraints that they define. The timing model (figure 15) deals with 
the timing of bars, the earliest start time, deadline, and estimated duration (e.g. WCET). The values do not need to 
be set for all bars. Each resulting schedule will set them to some valid value. The model describes all valid 
executions on a single processor machine (assuming bars are not preempted). The model describes a sequence 
and inter-bar synchronization is an indirect result of the bars waiting for the predecessor to complete. 

In a manycore machine that has unlimited numbers of cores, all parallelism can be fully exploited. However, the 
synchronization mechanism of the single processor does not work. Instead a time triggered schedule is possible, 
where the earliest start time of the follower >= deadline of predecessor. In a multicore with a limited number of 
parallel cores a hybrid of the two models we have explored so far is needed, including a combination of the 
synchronization models.  We are working on the correct formulation. 

The causality constraints are modeled in the trigger model (figure 16). The correct model formulation uses a 
comprehension or a bounded quantifier to describe the relationship (in comments). At the time of the submission 
of this paper we are in the process of fine-tuning the conversion of complex comprehensions to theorems and are 
limited to simple graphs for the time being. 

Adding memory budgeting to the scheduling is simple. In the timing model, add m := m + mem(b) after t:= t + 
duration(b). If mem(b) is the integer value of the memory allocated minus freed in the bar then m will keep track 
of the memory through any schedule. Like with the global time t, the memory m can be constrained by a global 
invariant. A memory budget is thus alike a time constraint (itself a time budget). The global constraints will limit 
the search space and thus possible schedules. The composition of models themselves limit the search space, the 
state space is the intersection of the composed models. 

USING THEOREM PROVING 
For theorem proving based bounded reachability analysis, a model program is viewed as a symbolic transition 
system [4] over a background T (including linear arithmetic).  Given is an upper bound on the number of steps, 
given by the total number of bars, and a reachability condition that represents the state where all bars have been 

scheduled. The given model program, together with the bound and the condition, are translated into a formula   

such that  is satisfiable in T iff a valid schedule exists. Provided that  is satisfiable, a valid schedule is a sequence 
of bars that is represented by a valid action trace of the model program. Such an action trace can be extracted 

from a model  for . Recent advances in SMT based theorem proving techniques, that is a middle ground between 

Figure 15: Timing model 

with partially fixed sample Figure 16: Trigger model with sample bars 



pure SAT solving and full first-order theorem proving, makes this approach feasible for expressive fragments of T. 
Instead of encoding the verification task as a propositional formula the task is encoded as a quantifier free 
formula. The SMT based bounded reachability analysis of model programs is described in [4,5] and is based on the 
SMT approach to bounded model checking introduced in [9]. We use the SMT solver Z3 [10]. Z3 supports equality 
reasoning, linear arithmetic, fixed-size bit-vectors, sets and arrays. 

Given a model program P a quantifier free reachability condition φ and a step bound k, a formula  of size 

k·(|P|+|φ|) is constructed as an input to z3. If the formula is satisfiable, a satisfying solution provides an action 

trace of length k from an initial state to a state satisfying φ. Such an action trace corresponds in our case to a fixed 

schedule. 

TURNING THE RESULT INTO A SCHEDULE 
Running the model through the analysis tool creates input for z3, which then produces a valid answer if there is 

one. The answer is converted by the tool back to a model trajectory in form of an action trace. Using the partiture 

in figures 2 and 3 and the models in figures 15 and 16, the trajectory is Do(A),Skip(1),Do(B),Do(C) as a solution to 

the reachability analysis of the composed model Timing*Trigger with the reachability condition bars = {} and a 

step bound 4. 

The z3 output is longer because it includes the full model, not just the action trace, see Figure 17. At this point it is 

too early to make statements about the performance, however z3 is being used to solve hundreds of thousands of 

simultaneous constraints  in seconds, in the context of program analysis. 

The resultant model trajectory representing the schedule can be converted to a table appropriate for the runtime 

environment (e.g. a C table of structs). This table is then executed by the scheduler, which can be quite simple. We 

previously demoed using a hand compiled schedule on an AVR 8-bit microcontroller [3]. The system implemented 

a small XML web service over a serial line with futures organized along the partiture in figure 7. 

RELATED WORK 
Graph based scheduling analysis was previously presented by the author in [2]. The bars in the partiture 

correspond to time constraints, described in [6]. Constraint based scheduling is itself an extension of earliest 

deadline first (EDF). Time constraint scheduling has later also been called logical execution time [8]. The partiture 

partitions: 

*0 -> true 

*1 -> false 

*2 {t0 action0 action1 action2} -> 0:int 

*3 {earliest0 earliest1 earliest2 earliest3 earliest4} -> {*10 -> *2; *6 -> *2; *8 -> *2; 

else -> *4} 

*4 {Undef_Integer} -> 7:int 

*5 -> {else -> *4} 

*6 {Do_00 action3 Skip_03} -> 1:int 

*7 -> {*6 -> *2; else -> *4} 

*8 {Do_01 t1} -> 2:int 

*9 -> {*8 -> *2; *6 -> *2; else -> *4} 

*10 {t2 Do_02 Do_03} -> 3:int 

*11 {deadline0 deadline1 deadline2 deadline3 deadline4} -> {*10 -> *14; *6 -> *8; *8 -> *10; 

else -> *4} 

*12 -> {*6 -> *8; else -> *4} 

*13 -> {*8 -> *10; *6 -> *8; else -> *4} 

*14 -> 6:int 

*15 {duration0 duration1 duration2 duration3 duration4} -> {*10 -> *6; *6 -> *8; *8 -> *6; 

else -> *4} 

*16 -> {*8 -> *6; *6 -> *8; else -> *4} 

*17 {bars0} -> {*10 -> *0; *6 -> *0; *8 -> *0; else -> *1} 

*18 {bars3 bars4} -> {else -> *1} 

*19 -> {*6 -> *0; else -> *1} 

*20 -> {*6 -> *0; *8 -> *0; else -> *1} 

*21 {graph0} -> {*25 -> *0; *23 -> *0; else -> *1} 

*22 {graph2 graph3 graph4} -> {else -> *1} 

*23 -> (Pair *6 *8) 

*24 -> {*23 -> *0; else -> *1} 

*25 -> (Pair *8 *10) 

*26 {bars1} -> {*8 -> *0; *10 -> *0; else -> *1} 

*27 {graph1} -> {*25 -> *0; else -> *1} 

*29 -> (Pair *2 *6) 

*31 {Skip_00} -> 8:int 

*33 {bars2} -> {*10 -> *0; else -> *1} 

*35 {Skip_01} -> 9:int 

*37 {t3} -> 4:int 

*38 -> (Pair *10 *37) 

*41 {Skip_02} -> 10:int 

*43 {t4} -> 5:int 

Figure 17: Part of z3 model of the above 

trajectory 



[1] is a description of temporal behavior, separate from the functional implementation. A limited form of a 

separate temporal virtual machine was first described in Giotto [5]. This was concept was generalized by the 

author to distributed computing [12], concurrent programs [2] and scalable execution together with futures [1]. 

This paper further expands that work. 

Time triggered architecture, one possible simple approach for manycore scheduling has been well researched, e.g. 

[11]. A visual grammar for describing temporal behavior together with system composition has been described e.g. 

in [13]. It can be used to describe time for data flow in media processing. The graph described in this paper can be 

used for media processing but is more general, with the obvious cost of being more difficult to process. 

Reachability analysis of model programs has been described in [4][5]. To the best of our knowledge, this is the first 

paper where using SMT for graph based schedulability analysis has been proposed. 

CONCLUSION 
We presented ongoing work in creating a comprehensive tool chain for scheduling and analysis of temporal 

properties in complex concurrent programs. A hierarchical graph was introduced for representing partitures, the 

temporal behavior of components and applications. The graph depicts time, causal, topological, and commutative 

constraints. Examples of how the graph can represent common programming patterns were shown. 

The graph was validated and serialized to a schedule using abstract state machines and a state of the art SMT 

solver.  While the fully general solution is still work in progress, we were able to show how to schedule a simple 

partiture sequentially for a single CPU together with memory requirements. 

We believe this work can lead to a better understanding and methods for scalable scheduling for concurrent 

programs, including distributed and parallel execution. Validation and partial evolution is done at (re)configuration 

time, leaving the simpler problem of correct implementation of the schedule to runtime. 
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