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Outline

* Alternating Minimization
* Empirically successful
* Very little theoretical understanding

* Three problems:
* Low-rank Matrix Completion
* Phase Retrieval
* Dictionary Learning

* Open problems



Optimization over two variables

min (U, V)

* Alternating Minimization:

* Fix U, optimize for V
Vt =arg min fUL V)

* Fix V, optimize for U
Uttt = arg min f (U, VS

* Generic technique
* If each individual problem is “easy”
* Forms basis for several generic algorithm techniques like EM algorithms



A few known ML-related applications

* EM algorithms

e Recommendation systems
* Dictionary Learning

* Low-rank matrix estimation
* Active Learning

* Phase Retrieval



Known Theoretical Results

 Known Results:
* f: convex function jointly in U,V
* f:smooth function in both U,V
* Then, Alternating minimization converges to global optima

* Known counter-examples if either of the conditions not satisfied
* Does not converge to correct solution even if f is not smooth

* In many practical problems: f is non-convex !!!!
e But surprisingly method works very well in practice



Our Contribution

 Studied three important ML-related problems
* Low-rank Matrix Completion (Recommendation systems)
* Phase Retrieval (X-ray Crystallography)
 Dictionary Learning (Image Processing)

* For all the problems
* The underlying function f is non-convex
* Alternating Minimization was known to be very successful
* But there were some situations where the algorithm will not succeed

* We provide certain enhancements to the basic algorithm
* Provide first theoretical analysis under certain standard assumptions



Low-rank Matrix Completion
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* Task: Complete ratings matrix
* Applications: recommendation systems, PCA with missing entries
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e M: characterized by U,V « DoF: mk + nk
 No. of variables:

e UmXk=mk

e VinXk=nk



Low-rank Matrix Completion

. 2
min Errorq(X) = z (Xl-j —Ml-j)
(i,j)eQ
s.t rank(X) <k
e (): set of known entries

* Problem is NP-hard in general
* Two approaches:
e Relax rank function to its convex surrogate (Trace-norm based method)
e Use alternating minimization



Existing method: Trace-norm minimization

. 2
(i,j)EQ
st |1X]]. < A(k)

* ||X||«: sum of singular values

* Candes and Recht prove that above problem solves matrix
completion (under assumptions on () and M)

* However, convex optimization methods for this problem
don’t scale well



Alternating Minimization

mXin Errorq(X) = z ( ij — u)
(i,j)eq
s.t rank(X) <k
If X has rank-k:

n
<€

X

AR min Errorg (UL, V)

Uttt = min Errorg(U,VttH



Initialization [JNS'13]

e |nitialization:

0 3 0
2 5 0
0 0 2




Results [JNS'13]

* Assumptions: ): set of known entries
— Q) is sampled uniformly s.t. |Q] = O(k’nlogn B°)
* B = o01/0y
— M: rank-k “incoherent” matrix
* Most of the entries are similar in magnitude

 Then, ||M — UVT||r < € after only O(log (i)) steps



Proof Sketch

. T
Assume Rank-1 case,i.e., M =u"v”*

Fixing u, update for v is given by:

. . )2
v = argmin z (uivj —U; U;
(i,))EQ

ES
. Z(i, Hea Uil

Z(i, HEQ uiz

*

Vj

Vj
If Q = [m]x|n],
vj = (u, u")v;

Power method update!



Proof Sketch

v=_Mu — B'B<uu >-Cv*

N —

Power Error Term
Method Term

Problems:
1. Show error term decreases with iterations
2. Also, need to show “incoherence” of each v

Tools:
1. Spectral gap of random graphs
2. Bernstein-type concentration bounds



Alternating Minimization Trace-Norm Minimization

IM —UV"||p < €|IM]|F
after O (log G)) steps

Requires O(log G)) steps

Each step require solving 2
least squares problems

Require Singular value
decomposition

Intermediate iterate always
have rank-k

Intermediate iterates can
have rank larger than k

Assumptions: random
sampling and incoherence

Similar assumption

12| = 0(k7B°d log?(d) )
d=m-+n

Q] = 0(k dlog?(d) )
d=m+n




Empirical Performance

* Generated 100 low-rank matrix completion problems:
* Vary fraction of total entries observed
* Success: ||[M — X|| < .1||M]]
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Fraction of total entries observed (k=10, m=500, n=500)
* Variants of alternating minimization form important
component of the winning entry for Netflix Challenge



Comparison to Keshavan’12

* Independent of our work

* Show results for Matrix Completion
— Alternating minimization method

— Similar linear convergence

Q] = 0(kB8(m + n) log(m + n))
— Ours:

Q] = 0(k”B°(m + n) log(m + n))

* Recent work of Hardt & Wooters improve bounds to:
Q| = O(poly(k)log 8 (m + n)log(m + n))

— But use a modified and more complicated version of AltMin



Recap

e Study Alternating Minimization method for:
— Low-rank Matrix Completion
— Low-rank Matrix Sensing

* The objective function in these problems is hon-convex
* Provide convergence to the global optima guarantees

— Use similar assumptions as existing methods
— But slightly worse no. of measurements (or entries)



Phase Retrieval-Problem Definition

m mXn
Magnitude Sensing Matrix

Measurements



Motivation (X-ray Crystallography)

; ' ' ?/i

R"
Crystan.zed\. :
molecule '

Problem: Detectors record intensities only
* Magnitude measurements only; Phase Missing



Importance of Phase

.

keep magnitude
swap phase

=)

DFT

B

=)

DFT

Slide from Candes’ISIT2013



Phase Retrieval

Vi = |<ai1x*>|) 1 <1< m,
x,E C"

* Only magnitudes of measurements available

* Goal: Recovery x™ i.e., given A,y
Find x s.t. y;=|{a; x)| Vi

Find x s.t. vy ={(aqaj,xxT) Vi



PhaselLift

min || X]]|.
s.t yl-2 = (X, alalT
X=0

* Exact recoveryifm = O(nlogn) [CTV11]
* Later improved tom = O(n) [CL12]

* Optimization procedure is computationally
expensive



Alternating Minimization

Find x s.t. y;=a,x) Vi<i<m
* Let say phase of measurements is known
— P;; = Phase({a;, x"))
* Then the problemiis: Find x s.t. P’y = Ax

— Simple system of linear equation

e Make P also as a variable

Find X,P S. T. Pil--yl-=(al-,x) Vi<i<m



Alternating Minimization

A variant was proposed by Gerchberg and Saxton in 1972
— Random initialization

Heavily used in practice
However, no analysis for last 41 years
Our contributions:

— Better initialization
— Provide first theoretical analysis for the algorithm
* Results hold in “certain settings”



Our Modification

nput: 4,y
nitialize: x, = Largest Eigenvector (ZiyizaiaiT)
ort=1toT
— P, = Phase(A x;)
Measurements

— X¢4q = arg min ||P,y — Ax]|? yi = lap %)

Measurement vector

EndFor

Output: xr



Our Results [JNS'13]

* Assumptions:
— a;: Gaussian distributed
—m = 0(nlog3n/e)
* m: number of measurements, n: dimensionality
* Alternating minimization recovers X

— || X —x"[], < €l|x7]]
— Number of iteration: log(i)

— First analysis for alternating minimization for Phase Retrieval

e Assumptions similar to existing methods (convex relaxation based)
—m = 0(n) suffices
— Typically no. of iterations: 1/+/€



Sample Complexity

3000

Empirical Results

Random Gaussian Measurements
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Summary

Given:

— Measurements:
y; = {a;,x)],1<i<m, x,€C"

— Measurement matrix:
A=laa,..a,,]
a; ~ N(O, I)

Recover x,
Alternating minimization with proper initialization require:

n
m = 0(nlog> E)

Open problem: use more realistic Fourier measurements



Dictionary Learning

r-dim, k-sparse
vector

Data Point Dictionary




Dictionary Learning

X

IR

 Overcomplete dictionaries: r > d
 Goal:GivenY, compute 4, X
* Using small number of samples n



Existing Results

* Generalization error bounds [VMB’11, MPR’12, MG’13, TRS'13]
— But assumes that the optimal solution is reached
— Do not cover exact recovery with finite many samples

* |dentifiability of A, X [HS'11]
— Require exponentially many samples

* Exact recovery [SWW’12]

— Restricted to square dictionary (d = 1)
— In practice, overcomplete dictionary (d <« r) is more useful



Generating Model

* Generate dictionary A4
— Assume A to be incoherent, i.e., {(4;, A;) < u/d
—r>d

* Generate random samples X = [xq, x5, ..., x,,] € RAxn
— Each x; is k-sparse

e Generate observations: Y = AX



Algorithm

* Typically practical algorithm: alternating minimization
— Xpy1 = argming||Y — AtX”lz:
— A¢yq = argming||Y — AXt+1||12~"

* Initialize 4,
— Using clustering+SVD method of [AAN’13] or [AGM’13]



Results [AAIJNT 13]

* Assumptions:
— Ais u — incoherent ((4;, 4;) < u/Nd, ||4;]] = 1)
-1 < |X;;] < 100

1

— Sparsity: k < d—i (better result by AGM’13)
13
—n = 0(r?logr)

* After log(i)-steps of AltMin:
147 — Alll; < €



Proof Sketch

* |nitialization step ensures that:

* Lower bound on each element of X;; + above bound:

— supp(x;) is recovered exactly
— Robustness of compressive sensing!

* A;,4 can be expressed exactly as:
— Aty = A+ Errory, x)

— Use randomness in supp(X;)



Error in A (log scale)

Error vs N (d=100, r=100, k=3, n=C k r log(r})

Simulations

F

—

—

—

=¢=|nitialization

© Alternating Minimization

C (n=Ckrlog(r)

Prob. of success

d=200,k=5

Error in A (log scale)

107

Error vs lteration (d=100, r=200, k=3, n=1.5 k r log(r))

Iteration No.

Emirically: n = 0(r)
Known result: n = 0(r4logr)




Summary

e Studied three problems

— Low-rank matrix estimation
 Recommendation systems, matrix sensing

— Phase Retrieval
* Important problem in x-ray crystallography; several other applications

— Dictionary Learning
e Alternating Minimization

— Empirically successful

— Rigorous analysis was unknown
* Our contribution

— Good initialization

— Rigorous theoretical guarantees
» Setting similar to that of existing theoretical results



Future Work

e Low-rank MC:

— Remove dependence on condition number

* Phase Sensing:
—m = 0(nlog®>n) = m = 0(n)?
— Better measurement scheme?



Future Work Contd...

* Dictionary Learning:
— Efficient solution for k = 0(d) (best known solution for k = 0(+/d))
— Sample complexity: n = 0(r?logr) = n = 0(rlogr)?

* Explore Alt-Min as a generalized approach for a whole class of
problems
— Tensor completion (Ongoing Project)
— Generalized analysis of AltMin (Ongoing Project)
— General EM-method



Thank You!!l



