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ABSTRACT
Mobile app ecosystems have experienced tremendous growth in
the last six years. This has triggered research on dynamic analy-
sis of performance, security, and correctness properties of the mo-
bile apps in the ecosystem. Exploration of app execution using
automated UI actions has emerged as an important tool for this re-
search. However, existing research has largely developed analysis-
specific UI automation techniques, wherein the logic for exploring
app execution is intertwined with the logic for analyzing app prop-
erties. PUMA is a programmable framework that separates these
two concerns. It contains a generic UI automation capability (often
called a Monkey) that exposes high-level events for which users
can define handlers. These handlers can flexibly direct the Mon-
key’s exploration, and also specify app instrumentation for collect-
ing dynamic state information or for triggering changes in the envi-
ronment during app execution. Targeted towards operators of app
marketplaces, PUMA incorporates mechanisms for scaling dynamic
analysis to thousands of apps. We demonstrate the capabilities of
PUMA by analyzing seven distinct performance, security, and cor-
rectness properties for 3,600 apps downloaded from the Google
Play store.
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1. INTRODUCTION
Today’s smartphone app stores host large collections of apps.

Most of the apps are created by unknown developers who have
varying expertise and who may not always operate in the users’
best interests. Such concerns have motivated researchers and app
store operators to analyze various properties of the apps and to pro-
pose and evaluate new techniques to address the concerns. For such
analyses to be useful, the analysis technique must be robust and
scale well for large collections of apps.

Static analysis of app binaries, as used in prior work to iden-
tify privacy [21] and security [10, 12] problems, or app clones [9]
etc., can scale to a large number of apps. However, static analy-
sis can fail to capture runtime contexts, such as data dynamically
downloaded from the cloud, objects created during runtime, con-
figuration variables, and so on. Moreover, app binaries may be
obfuscated to thwart static analysis, either intentionally or uninten-
tionally (such as stripping symbol information to reduce the size of
the app binary).

Therefore, recent work has focused on dynamic analyses that ex-
ecute apps and examine their runtime properties (Section 2). These
analyses have been used for analyzing performance [26, 27, 15],
bugs [22, 25, 19], privacy and security [11, 24], compliance [20]
and correctness [18], of apps, some at a scale of thousands of apps.
One popular way to scale dynamic analysis to a large number of
apps is to use a software automation tool called a “monkey” that
can automatically launch and interact with an app (by tapping on
buttons, typing text inputs, etc.) in order to navigate to various ex-
ecution states (or, pages) of the app. The monkey is augmented
with code tailored to the target analysis; this code is systematically
executed while the monkey visits various pages. For example, in
DECAF [20], the analysis code algorithmically examines ads in
the current page to check if their placement violates ad network
policies.

Dynamic analysis of apps is a daunting task (Section 2). At
a high level, it consists of exploration logic that guides the mon-
key to explore various app states and analysis logic that analyzes
the targeted runtime properties of the current app state. The ex-
ploration logic needs to be optimized for coverage—it should ex-
plore a significant portion of the useful app states, and for speed—it
should analyze a large collection of apps within a reasonable time.
To achieve these goals, existing systems have developed a mon-
key from scratch and have tuned its exploration logic by leverag-
ing properties of the analysis. For example, AMC [18] and DE-
CAF [20] required analyzing one of each type of app page, and



hence their monkey is tuned to explore only unique page types. On
the other hand, SmartAds [23] crawled data from all pages, so its
monkey is tuned to explore all unique pages. Similarly, the mon-
keys of VanarSena [25] and ConVirt [19] inject faults at specific
execution points, while those of AMC and DECAF only read spe-
cific UI elements from app pages. Some systems even instrument
app binaries to optimize the monkey [25] or to access app runtime
state [23]. In summary, exploration logic and analysis logic are of-
ten intertwined and hence a system designed for one analysis can-
not be readily used for another. The end effect is that many of the
advances developed to handle large-scale studies are only utiliz-
able in the context of the specific analysis and cannot currently be
generalized to other analyses.
Contributions. In this paper we propose PUMA (Section 3), a dy-
namic analysis framework that can be instantiated for a large num-
ber of diverse dynamic analysis tasks that, in prior research, used
systems built from scratch. PUMA enables analysis of a wide va-
riety of app properties, allows its users to flexibly specify which
app states to explore and how, provides programmatic access to the
app’s runtime state for analysis, and supports dynamic runtime en-
vironment modification. It encapsulates the common components
of existing dynamic analysis systems and exposes a number of con-
figurable hooks that can be programmed with a high level event-
driven scripting language, called PUMAScript. This language cleanly
separates analysis logic from exploration logic, allowing its users
to (a) succinctly specify navigation hints for scalable app explo-
ration and (b) separately specify the logic for analyzing the app
properties.

This design has two distinct advantages. First, it can simplify
the analysis of different app properties, since users do not need to
develop the monkey, which is often the most challenging part of
dynamic analysis. A related benefit is that the monkey can evolve
independently of the analysis logic, so that monkey scaling and
coverage improvements can be made available to all users. Sec-
ond, PUMA can multiplex dynamic analyses: it can concurrently run
similar analyses, resulting in better scaling of the dynamic analysis.

To validate the design of PUMA, we present the results of seven
distinct analyses (many of which are presented in prior work) exe-
cuted on 3,600 apps from Google Play (Section 4). The PUMAScripts
for these analyses are each less than 100 lines of code; by contrast,
DECAF [20] required over 4,000 lines of which over 70% was ded-
icated to app exploration. Our analyses are valuable in their own
right, since they present fascinating insights into the app ecosys-
tem: there appear to be a relatively small number (about 40) of
common UI design patterns among Android apps; enabling content
search for apps in the app store can increase the relevance of results
and yield up to 50 additional results per query on average; over half
of the apps violate accessibility guidelines; network usage require-
ments for apps vary by six orders of magnitude; and a quarter of all
apps fail basic stress tests.

PUMA can be used in various settings. An app store can use PUMA:
the store’s app certification team can use it to verify that a newly
submitted app does not violate any privacy and security policies,
the advertising team can check if the app does not commit any ad
fraud, the app store search engine can crawl app data for index-
ing, etc. Researchers interested in analyzing the app ecosystem can
download PUMA and the apps of interest, customize PUMA for their
target analysis, and conduct the analysis locally. A third-party can
offer PUMA as a service where users can submit their analyses writ-
ten in PUMAScript for analyzing the app ecosystems.

2. BACKGROUND AND MOTIVATION
In this section, we describe the unique requirements of large-

scale studies of mobile apps and motivate the need for a programmable
UI-based framework for supporting these studies. We also discuss
the challenges associated with satisfying these requirements. In
Section 3, we describe how PUMA addresses these challenges and
requirements.

2.1 Dynamic Analysis of Mobile Apps
Dynamic analysis of software is performed by executing the soft-

ware, subjecting it to different inputs, and recording (and subse-
quently analyzing) its internal states and outputs. Mobile apps have
a unique structure that enables a novel form of dynamic analysis.
By design, most mobile app actions are triggered by user interac-
tions, such as clicks, swipes etc., through the user interface (UI).
Mobile apps are also structured to enable such interactions: when
the app is launched, a “home page” is shown that includes one
or more UI elements (buttons, text boxes, other user interface el-
ements). User interactions with these UI elements lead to other
pages, which in turn may contain other UI elements. A user in-
teraction may also result in local computation (e.g., updating game
state), network communication (e.g., downloading ads or content),
access to local sensors (e.g., GPS), and access to local storage (e.g.,
saving app state to storage). In the abstract, execution of a mobile
app can be modeled as a transition graph where nodes represent
various pages and edges represent transitions between pages. The
goal of dynamic analysis is to navigate to all pages and to analyze
apps’ internal states and outputs at each page.
UI-Automation Frameworks. This commonality in the structure
of mobile apps can be exploited to automatically analyze their dy-
namic properties. Recent research has done this using a UI automa-
tion framework, sometimes called a monkey, that systematically ex-
plores the app execution space. A monkey is a piece of software
that runs on a mobile device or on an emulator, and extracts the
user-interface structure of the current page (e.g., the home page).
This UI structure, analogous to the DOM structure of web pages,
contains information about UI elements (buttons and other widgets)
on the current page. Using this information, the monkey can, in an
automated fashion, click a UI element, causing the app to transi-
tion to a new page. If the monkey has not visited this (or a similar)
page, it can interact with the page by clicking its UI elements. Oth-
erwise, it can click the “back” button to return to the previous page,
and click another UI element to reach a different page.1 In the ab-
stract, each page corresponds to a UI-state and clicking a clickable
UI element results in a state transition; using these, a monkey can
effectively explore the UI-state transition graph.

2.2 Related Work on Dynamic Analysis of Mo-
bile Apps

As discussed above, our work is an instance of a class of dynamic
analysis frameworks. Such frameworks are widely used in software
engineering for unit testing and random (fuzz) testing. The field of
software testing is rather large, so we do not attempt to cover it; the
interested reader is referred to [6].

Monkeys have been recently used to analyze several dynamic
properties of mobile apps (Table 1). AMC [18] evaluates the con-
formance of vehicular apps to accessibility requirements; for ex-
ample, apps need to be designed with large buttons and text, to
minimize driving distractions. DECAF [20], detects violations of
ad placement and content policies in over 50,000 apps. Smar-
tAds [23] crawls contents from an app’s pages to enable contextual

1Some apps do not include back buttons; this is discussed later.



System Exploration Target Page Transition Inputs Properties Checked Actions Taken Instrumentation

AMC [18] Distinct types of pages UI events Accessibility None No
DECAF [20] Distinct types of pages

containing ads
UI events Ad layouts None No

SmartAds [23] All pages UI events Page contents None Yes
A3E [8] Distinct types of pages UI events None None Yes
AppsPlayGround [24] Distinct types of pages UI events, Text inputs Information flow None Yes
VanarSena [25] Distinct types of pages UI events, Text inputs App crashes Inject faults Yes
ContextualFuzzing [19] All pages UI events Crashes, performance Change contexts No
DynoDroid [22] Code basic blocks UI events, System events App crashes System inputs No

Table 1: Recent work that has used a monkey tool for dynamic analysis

advertising for mobile apps. A3E [8] executes and visits app pages
to uncover potential bugs. AppsPlayground [24] examines infor-
mation flow for potential privacy leaks in apps. VanarSena [25],
ContextualFuzzing [19], and DynoDroid [22] try to uncover app
crashes and performance problems by exposing them to various ex-
ternal exceptional conditions, such as bad network conditions.

At a high-level, these systems share a common feature: they use
a monkey to automate dynamic app execution and use custom code
to analyze a specific runtime property as the monkey visits various
app states. At a lower level, however, they differ in at least the
following five dimensions.
Exploration Target. This denotes what pages in an app are to be ex-
plored by the monkey. Fewer pages mean the monkey can perform
the analysis faster, but that the analysis may be less comprehensive.
AMC, A3E, AppsPlayground, VanarSena aim to visit only pages of
unique types. Their analysis goals do not require visiting two pages
that are of same type but contain different contents (e.g., two pages
in a news app that are instantiated from the same page class but dis-
plays different news articles), and hence they omit exploring such
pages for greater speed. On the other hand, SmartAds requires vis-
iting all pages with unique content. DECAF can be configured to
visit only the pages that are of unique types and that are likely to
contain ads.
Page Transition Inputs. This denotes the inputs that the monkey
provides to the app to cause transitions between pages. Most mon-
keys generate UI events, such as clicks and swipes, to move from
one page to another. Some other systems, such as AppsPlayground
and VanarSena, can provide text inputs to achieve a better coverage.
DynoDroid can generate system inputs (e.g., the “SMS received”
event).
Properties Checked. This defines what runtime properties the anal-
ysis code checks. Different systems check different runtime prop-
erties depending on what their analysis logic requires. For example,
DECAF checks various geometric properties of ads in the current
page in order to identify ad fraud.
Actions Taken. This denotes what action the monkey takes at each
page (other than transition inputs). While some systems do not take
any actions, VanarSena, ContextualFuzzing, and DynoDroid create
various contextual faults (e.g., slow networks, bad user inputs) to
check if the app crashes on those faults.
Instrumentation. This denotes whether the monkey runs an un-
modified app or an instrumented app. VanarSena instruments apps
before execution in order to identify a small set of pages to explore.
SmartAds instruments apps to retrieve page contents.

Due to these differences, each work listed in Table 1 has devel-
oped its own automation components from scratch and tuned the
tool to explore a specific property of the researchers’ interest. The
resulting tools have an intertwining of the app exploration logic and
the logic required for analyzing the property of interest. This has
meant that many of the advances developed to handle large-scale

studies are only utilizable in the context of the specific analyses
and cannot be readily generalized to other analyses.
PUMA. As mentioned in Section 1, our goal is to build a generic
framework called PUMA that enables scalable and programmable
UI automation, and that can be customized for various types of
dynamic analysis (including the ones in Table 1). PUMA separates
the analysis logic from the automated navigation of the UI-state
transition graph, allowing its users to (a) succinctly specify navi-
gation hints for scalable app exploration and (b) separately specify
the logic for analyzing the app properties. This has two distinct
advantages. It can simplify the analysis of different app proper-
ties, since users do not need to develop UI automation components,
and the UI automation framework can evolve independently of the
analysis logic. As we discuss later, the design of scalable and ro-
bust state exploration can be tricky, and PUMA users can benefit
from improvements to the underlying monkey, since their analysis
code is decoupled from the monkey itself. Existing monkey tools
only generate pseudo-random events and do not permit customiza-
tion of navigation in ways that PUMA permits. Moreover, PUMA can
concurrently run similar analyses, resulting in better scaling of the
dynamic analysis. We discuss these advantages below.

2.3 Framework Requirements
Table 1 and the discussion above motivate the following require-

ments for a programmable UI-automation framework:

• Support for a wide variety of properties: The goal of using
a UI-automation tool is to help users analyze app properties.
But it is hard (if not impossible) for the framework to prede-
fine a set of target properties that are going to be useful for all
types of analyses. Instead, the framework should provide a
set of necessary abstractions that can enable users to specify
properties of interest at a high level.

• Flexibility in state exploration: The framework should allow
users to customize the UI-state exploration. At a high-level,
UI-state exploration decides which UI element to click next,
and whether a (similar) state has been visited before. Permit-
ting programmability of these decisions will allow analyses
to customize the monkey behavior in flexible ways that can
be optimized for the analysis at hand.

• Programmable access to app state: Many of the analyses
in Table 1 require access to arbitrary app state, not just UI
properties, such as the size of buttons or the layout of ads.
Examples of app state include dynamic invocations of per-
missions, network or CPU usage at any given point, or even
app-specific internal state.

• Support for triggered actions: Some of the analyses in Ta-
ble 1 examine app robustness to changes in environmental
conditions (e.g., drastic changes to network bandwidth) or
exceptional inputs. PUMA must support injecting these run-



Figure 1: Overview of PUMA

time behaviors based on user-specified conditions (e.g., change
network availability just before any call to the network API).

These requirements raise significant research questions and chal-
lenges. For example, how can PUMA provide users with flexible
and easy-to-use abstractions to specify properties that are unknown
beforehand? Recall these properties can range from basic UI at-
tributes to those that aim to diagnose various performance bottle-
necks. Also, can it provide flexible control of the state exploration,
given that the state space may be huge or even infinite? We now
describe how PUMA meets these challenges.

3. PROGRAMMABLE UI-AUTOMATION
In this section, we describe PUMA, a programmable framework

for dynamic analysis of mobile apps that satisfies the requirements
listed in the previous section. We begin with an overview that de-
scribes how a user interacts with PUMA and the workflow within
PUMA. We then discuss how users can specify analysis code using
a PUMAScript, and then discuss the detailed design of PUMA and its
internal algorithms. We conclude the section by describing our im-
plementation of PUMA for Android.

3.1 PUMA Overview and Workflow
Figure 1 describes the overall workflow for PUMA. A user pro-

vides two pieces of information as input to PUMA. The first is a set
of app binaries that the user wants to analyze. The second is the
user-specified code, written in a language called PUMAScript2. The
script contains all information needed for the dynamic analysis.

In the first step of PUMA’s workflow, the interpreter component
interprets the PUMAScript specification and recognizes two parts in
the script: monkey-specific directives and app-specific directives.
The former provides necessary inputs or hints on how apps will be
executed by the monkey tool, which are then translated as input to
our programmable monkey component. The latter dictates which
parts of app code are relevant for analysis, and specifies what ac-
tions are to be taken when those pieces of code are executed. These
app-specific directives are fed as input to an app instrumenter com-
ponent.

The app instrumenter component statically analyzes the app to
determine parts of app code relevant for analysis and instruments
the app in a manner described below. The output of this component
is the instrumented version of input app that adheres to the app-
specific directives in PUMAScript.

2In the rest of paper, we will use PUMAScript to denote both the
language used to write analysis code and the specification program
itself; the usage will be clear from the context.

Then, the programmable monkey executes the instrumented ver-
sion of each app, using the monkey-specific directives specified in
the PUMAScript. PUMA is designed to execute the instrumented app
either on a phone emulator, or on a mobile device. As a side effect
of executing the app, PUMA may produce logs which contain out-
puts specified in the app-specific directives, as well outputs gener-
ated by the programmable monkey. Users can analyze these logs
using analysis-specific code; such analysis code is not part of PUMA.
In the remainder of this section, we describe these components of
PUMA.

3.2 The PUMAScript Language
Our first design choice for PUMA was to either design a new

domain-specific language for PUMAScript or implement it as an ex-
tension of some existing language. A new language is more gen-
eral and can be compiled to run on multiple mobile platforms, but it
may also incur a steeper learning curve. Instead, we chose the lat-
ter approach and implemented PUMAScript as a Java extension. This
choice has its advantage of familiarity for programmers but also
limits PUMA’s applicability to some mobile platforms. However,
we emphasize that the abstractions in our PUMAScript language are
general enough and we should be able to port PUMA to other mobile
platforms relatively easily, a task we have left to future work.

The next design challenge for PUMA was to identify abstractions
that provide sufficient expressivity and enable a variety of analysis
tasks, while still decoupling the mechanics of app exploration from
analysis code. Our survey of related work in the area (Table 1) has
influenced the abstractions discussed below.
Terminology. Before discussing the abstractions, we first intro-
duce some terminology. The visual elements in a given page of
the mobile app consist of one or more UI element. A UI element
encapsulates a UI widget, and has an associated geometry as well
as content. UI elements may have additional attributes, such as
whether they are hidden or visible, clickable or not, etc.

The layout of a given page is defined by a UI hierarchy. Anal-
ogous to a DOM tree for a web page, a UI hierarchy describes
parent-child relationships between elements. One can programmat-
ically traverse the UI hierarchy to determine all the UI elements on
a given page, together with their attributes and textual content (im-
age or video content associated with a UI element is usually not
available as part of the hierarchy).

The UI state of a given page is completely defined by its UI hier-
archy. In some cases, it might be desirable to define a more general
notion of the state of an app page, which includes the internal pro-
gram state of an app together with the UI hierarchy. To distinguish
it from UI state, we use the term total state of a given app.

Given this discussion, a monkey can be said to perform a state
traversal: when it performs a UI action on a UI element (e.g., clicks
a button), it initiates a state transition which may, in general, cause
a completely different app page (and hence UI state) to be loaded.
When this loading completes, the app is said to have reached a new
state.
PUMAScript Design. PUMAScript is an event-based programming
language. It allows programmers to specify handlers for events. In
general, an event is an abstraction for a specific point in the exe-
cution either of the monkey or of a specific app. A handler for an
event is an arbitrary piece of code that may perform various actions:
it can keep and update internal state variables, modify the environ-
ment (by altering system settings), and, in some cases, access UI
state or total state. This paradigm is an instance of aspect-oriented
programming, where the analysis concerns are cleanly separated
from app traversal and execution. The advantage of having a script-
able specification, aside from conciseness, is that it is possible (as



shown in Section 3.3) to optimize joint concurrent execution of
multiple PUMAScripts, thereby enabling testing of more apps within
a given amount of time.

PUMAScript defines two kinds of events: monkey-specific events
and app-specific events.
Monkey-specific Events. A monkey-specific event encapsulates a
specific point in the execution of a monkey. A monkey is a con-
ceptually simple tool3, and Alg. (1) describes the pseudo-code for
a generic monkey, as generalized from the uses of the monkey
described in prior work (Table 1). The highlighted names in the
pseudo-code are PUMA APIs that will be explained later. The mon-
key starts at an initial state (corresponding to its home page) for an
app, and visits other states by deciding which UI action to perform
(line 8), and performing the click (line 12). This UI action will, in
general, result in a new state (line 13), and the monkey needs to
decide whether this state has been visited before (line 15). Once
a state has been fully explored, it is no longer considered in the
exploration (lines 19-20).

Algorithm 1 Generic monkey tool. PUMA APIs for configurable
steps are highlighted.
1: while not all apps have been explored do
2: pick a new app
3: S ← empty stack
4: push initial page to S
5: while S is not empty do
6: pop an unfinished page si from S
7: go to page si
8: pick next clickable UI element from si // Next-Click
9: if user input is needed (e.g., login/password) then

10: provide user input by emulating keyboard clicks // Text Input
11: effect environmental changes // Modifying Environment
12: perform the click
13: wait for next page sj to load
14: analyze page sj // In-line Analysis
15: flag← sj is equivalent to an explored page // State-Equivalence
16: if not flag then
17: add sj to S
18: update finished clicks for si
19: if all clicks in si are explored then
20: remove si from S
21: flag← monkey has used too many resources // Terminating App
22: if flag or S is empty then
23: terminate this app

In this algorithm, most of the steps are mechanistic, but six steps
involve policy decisions. The first is the decision of whether a
state has been visited before (Line 15): prior work in Table 1 has
observed that it is possible to reduce app exploration time with
analysis-specific definitions of state-equivalence. The second is the
decision of which UI action to perform next (Line 8): prior work in
Table 1 has proposed using out-of-band information to direct explo-
ration more efficiently, rather than randomly selecting UI actions.
The third is a specification of user-input (Line 10): some apps re-
quire some forms of text input (e.g., a Facebook or Google login).
The fourth is a decision (Line 11) of whether to modify the environ-
ment as the app page loads: for example, one prior work [25] mod-
ifies network state to reduce bandwidth, with the aim of analyzing
the robustness of apps to sudden resource availability changes. The
fifth is analysis (Line 14): some prior work has performed in-line
analysis (e.g., ad fraud detection [20]). Finally, the sixth is the deci-
sion of whether to terminate an app (Line 21): prior work in Table 1
3However, as discussed later, the implementation of a monkey can
be significantly complex.

has used fixed timeouts, but other policies are possible (e.g., after
a fixed number of states have been explored). PUMAScript separates
policy from mechanism by modeling these six steps as events, de-
scribed below. When these events occur, user-defined handlers are
executed.
(1) State-Equivalence. This abstraction provides a customizable
way of specifying whether states are classified as equivalent or not.
The inputs to the handler for a state-equivalence event include: the
newly visited state sj , and the set of previously visited states S.
The handler should return true if this new state is equivalent to
some previously visited state in S, and false otherwise.

This capability permits an arbitrary definition of state equiva-
lence. At one extreme, two states si and sj are equivalent only if
their total states are identical. A handler can code this by travers-
ing the UI hierarchies of both states, and comparing UI elements
in the hierarchy pairwise; it can also, in addition, compare program
internal state pairwise.

However, several pieces of work have pointed out that this strict
notion of equivalence may not be necessary in all cases. Often,
there is a trade-off between resource usage and testing coverage.
For example, to detect ad violations, it suffices to treat two states
as equivalent if their UI hierarchies are “similar” in the sense that
they have the same kinds of UI elements. Handlers can take one of
two approaches to define such fuzzier notions of equivalence.

They can implement app-specific notions of similarity. For ex-
ample, if an analysis were only interested in UI properties of spe-
cific types of buttons (like [18]), it might be sufficient to declare
two states to be equivalent if one had at least one instance of each
type of UI element present in the other.

A more generic notion of state equivalence can be obtained by
collecting features derived from states, then defining similarity based
on distance metrics for the feature space. In DECAF [20], we de-
fined a generic feature vector encoding the structure of the UI hier-
archy, then used the cosine-similarity metric4 with a user-specified
similarity threshold, to determine state equivalence. This state equiv-
alence function is built into PUMA, so a PUMAScript handler can sim-
ply invoke this function with the appropriate threshold.

A handler may also define a different set of features, or differ-
ent similarity metrics. The exploration of which features might be
appropriate, and how similarity thresholds affect state traversal is
beyond the scope of this work.
(2) Next-Click. This event permits handlers to customize how to
specify which element to click next. The input to a handler is the
current UI state, together with the set of UI elements that have al-
ready been clicked before. A handler should return a pointer to the
next UI element to click.

Handlers can implement a wide variety of policies with this flex-
ibility. A simple policy may decide to explore UI elements se-
quentially, which may have good coverage, but increase exploration
time. Alternatively, a handler may want to maximize the types of el-
ements clicked; prioritizing UI elements of different types over in-
stances of a type of UI element that has been clicked before. These
two policies are built into PUMA for user convenience.

Handlers can also use out-of-band information to implement di-
rected exploration. Analytics from real users can provide insight
into how real users prioritize UI actions: for example, an expert
user may rarely click a Help button. Insights like these, or even
actual traces from users, can be used to direct exploration to visit
states that are more likely to be visited by real users. Another input
to directed exploration is static analysis: the static analysis may re-
veal that button A can lead to a particular event handler that sends

4http://en.wikipedia.org/wiki/Cosine_similarity
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a HTTP request, which is of interest to the specific analysis task at
hand. The handler can then prioritize the click of button A in every
visited state.
(3) Text Input. The handler of this event provides the text input re-
quired for exploration to proceed. Often, apps require login-based
authentication to some cloud-service before permitting use of the
app. The input to the handler are the UI state and the text box UI
element which requires input. The handler’s output includes the
corresponding text (login, password etc.), using which the monkey
can emulate keyboard actions to generate the text. If the handler
for this event is missing, and exploration encounters a UI element
that requires text input, the monkey stops exploring the app.
(4) Modifying the Environment. This event is triggered just before
the monkey clicks a UI element. The corresponding handler for
this event takes as input the current UI state, and the UI element
to be clicked. Based on this information, the handler may enable
or disable devices, dynamically change network availability using a
network emulator, or change other aspects of the environment in or-
der to stress-test apps. This kind of modification is coarse-grained,
in the sense that it occurs before the entire page is loaded. It is also
possible to perform more fine-grained modifications (e.g., reducing
network bandwidth just before accessing the network) using app-
specific events, described below. If a handler for this event is not
specified, PUMA skips this step.
(5) In-line Analysis. The in-line analysis event is triggered after a
new state has completed loading. The handler for this event takes
as input the current total state; the handler can use the total state in-
formation to perform analysis-specific computations. For example,
an ad fraud detector can analyze the layout of the UI hierarchy to
ensure compliance to ad policies [20]. A PUMAScript may choose to
forgo this step and perform all analyses off-line; PUMA outputs the
explored state transition graph together with the total states for this
purpose.
(6) Terminating App Exploration. Depending on the precise defini-
tion of state equivalence, the number of states in the UI state transi-
tion graph can be practically limitless. A good example of this is an
app that shows news items. Each time the app page that lists news
items is visited, a new news item may be available which may cause
the state to be technically not equivalent to any previously visited
state. To counter such cases, most prior research has established
practical limits on how long to explore an app. PUMA provides a
default timeout handler for the termination decision event, which
terminates an app after its exploration has used up a certain amount
of wall-clock time. A PUMAScript can also define other handlers that
make termination decisions based on the number of states visited,
or CPU, network, or energy resources used.
App-specific Events. In much the same way that monkey-specific
events abstract specific points in the execution of a generic monkey,
an app-specific event abstracts a specific point in app code. Unlike
monkey-specific events, which are predetermined because of the
relative simplicity of a generic monkey, app-specific events must be
user-defined since it is not known a priori what kinds of instrumen-
tation tasks will be needed. In a PUMAScript, an app-specific event is
defined by naming an event and associating the named event with
a codepoint set [16]. A codepoint set is a set of instructions (e.g.,
bytecodes or invocations of arbitrary functions) in the app binary,
usually specified as a regular expression on class names, method
names, or names of specific bytecodes. Thus, a codepoint set de-
fines a set of points in the app binary where the named event may
be said to occur.

Once named events have been described, a PUMAScript can asso-
ciate arbitrary handlers with these named events. These handlers

1 class NetworkProfiler extends PUMAScript {
2 boolean compareState(UIState s1, UIState s2) {
3 return MonkeyInputFactory.stateStructureMatch(s1,

s2, 0.95);
4 }
5 int getNextClick(UIState s) {
6 return MonkeyInputFactory.nextClickSequential(s);
7 }
8 void specifyInstrumentation() {
9 Set<CodePoint> userEvent;

10 CPFinder.setBytecode("invoke.*", "HTTPClient.
execute(HttpUriRequest request)");

11 userEvent = CPFinder.apply();
12 for (CodePoint cp : userEvent) {
13 UserCode code = new UserCode("Logger", "

countRequest", CPARG);
14 Instrumenter.place(code, BEFORE, cp);
15 code = new UserCode("Logger", "countResponse",

CPARG);
16 Instrumenter.place(code, AFTER, cp);
17 }
18 }
19 }
20 class Logger {
21 void countRequest (HttpUriRequest req) {
22 Log(req.getRequestLine().getUri().getLength());
23 }
24 void countResponse (HttpResponse resp) {
25 Log(resp.getEntity().getContentLength());
26 }
27 }

Listing 1: Network usage profiler

have access to app-internal state and can manipulate program state,
can output state information to the output logs, and can also per-
form finer-grained environmental modifications.
A Sample PUMAScript. Listing 1 shows a PUMAScript designed
to count the network usage of apps. A PUMAScript is effectively
a Java extension, where a specific analysis is described by defin-
ing a new class inherited from a PUMAScript base class. This
class (in our example, NetworkProfiler) defines handlers for
monkey-specific events (lines 2-7), and also defines events and as-
sociated handlers for app-specific events. It uses the inbuilt feature-
based similarity detector with a threshold that permits fuzzy state
equivalence (line 3), and uses the default next-click function, which
traverses each UI element in each state sequentially (line 6). It de-
fines one app-specific event, which is triggered whenever execution
invokes the HTTPClient library (lines 10-11), and defines two
handlers, one (line 21) before the occurrence of the event (i.e., the
invocation) and another after (line 24) the occurrence of the event.
These handlers respectively log the size of the network request and
response. The total network usage of an app can be obtained by
post-facto analysis of the log.

3.3 PUMA Design
PUMA incorporates a generic monkey (Alg. (1)), together with

support for events and handlers. One or more PUMAScripts are in-
put to PUMA, together with the apps to be analyzed. The PUMAScript
interpreter instruments each app in a manner designed to trigger
the app-specific events. One way to do this is to instrument apps
to transfer control back to PUMA when the specified code point is
reached. The advantage of this approach is that app-specific han-
dlers can then have access to the explored UI states, but it would
have made it harder for PUMA to expose app-specific internal state.
Instead, PUMA chooses to instrument apps so that app-specific han-
dlers are executed directly within the app context; this way, han-
dlers have access to arbitrary program state information. For ex-
ample, in line 22 of Listing 1, the handler can access the size of the
HTTP request made by the app.



After each app has been instrumented, PUMA executes the algo-
rithm described in Alg. (1), but with explicit events and associ-
ated handlers. The six monkey-specific event handlers are high-
lighted in Alg. (1) and are invoked at relevant points. Because app-
specific event handlers are instrumented within app binaries, they
are implicitly invoked when a specific UI element has been clicked
(line 12).

PUMA can also execute multiple PUMAScripts concurrently. This
capability provides scaling of the analyses, since each app need
only be run once. However, arbitrary concurrent execution is not
possible, and concurrently executed scripts must satisfy two sets of
conditions.

Consider two PUMAScripts A and B. In most cases, these scripts
can be run concurrently only if the handlers for each monkey-specific
event for A are identical to or a strict subset of the handlers for B.
For example, consider the state equivalence handler: if A’s handler
visits a superset of the states visited by A and B, then, it is safe to
concurrently execute A and B. Analogously, the next-click handler
for A must be identical with that of B, and the text input handler
for both must be identical (otherwise, the monkey would not know
which text input to use). However, the analysis handler for the two
scripts can (and will) be different, because this handler does not
alter the sequence of the monkey’s exploration. By a similar rea-
soning, for A and B to be run concurrently, their app-specific event
handlers must be disjoint (they can also be identical, but that is less
interesting since that means the two scripts are performing identi-
cal analyses), and they must either modify the environment in the
same way or not modify the environment at all.

In our evaluation, we demonstrate this concurrent PUMAScript ex-
ecution capability. In future work, we plan to derive static analysis
methods by which the conditions outlined in the previous paragraph
can be tested, so that it may be possible to automate the decision of
whether two PUMAScripts can run concurrently. Finally, this static
analysis can be simplified by providing, as PUMA does, default han-
dlers for various events.

3.4 Implementation of PUMA for Android
We have designed PUMA to be broadly applicable to different mo-

bile computing platforms. The abstractions PUMA uses are generic
and should be extensible to different programming languages. How-
ever, we have chosen to instantiate PUMA for the Android platform
because of its popularity and the volume of active research that has
explored Android app dynamics.

The following paragraphs describe some of the complexity of
implementing PUMA in Android. Much of this complexity arises
because of the lack of a complete native UI automation support in
Android.
Defining a Page State. The UI state of an app, defined as the cur-
rent topmost foreground UI hierarchy, is central to PUMA. The UI
state might represent part of a screen (e.g., a pop-up dialog win-
dow), a single screen, or more than one screen (e.g., a webview
that needs scrolling to finish viewing). Thus, in general, a UI state
may cover sections of an app page that are not currently visible.

In Android, the UI hierarchy for an app’s page can be obtained
from hierarchyviewer [1] or the uiautomator [2] tool. We
chose the latter because it supports many Android devices and has
built-in support for UI event generation and handling, while the for-
mer only works on systems with debugging support (e.g., special
developer phones from google) and needs an additional UI event
generator. However, we had to modify the uiautomator to in-
tercept and access the UI hierarchy programmatically (the default
tool only allows dumping and storing the UI state to external stor-
age). The uiautomator can also report the UI hierarchy for

widgets that are generated dynamically, as long as they support the
AccessibilityService like default Android UI widgets.
Supporting Page Scrolling. Since smartphones have small screens,
it is common for apps to add scrolling support to allow users to
view all the contents in a page. However, uiautomator only re-
turns the part of the UI hierarchy currently visible. To overcome
this limitation, PUMA scrolls down till the end of the screen, ex-
tracts the UI hierarchy in each view piecemeal, and merges these
together to obtain a composite UI hierarchy that represents the UI
state. This turns out to be tricky for pages that can be scrolled
vertically and/or horizontally, since uiautomator does not re-
port the direction of scrollability for each UI widget. For those
that are scrollable, PUMA first checks whether they are horizon-
tally or vertically scrollable (or both). Then, it follows a zig-zag
pattern (scrolls horizontally to the right end, vertically down one
view, then horizontally to the left end) to cover the non-visible
portions of the current page. To merge the scrolled states, PUMA
relies on the AccessibilityEvent listener to intercept the
scrolling response, which contains hints for merging. For exam-
ple, for ListView, this listener reports the start and the end entry
indices in the scrolled view; for ScrollView and WebView, it
reports the co-ordinate offsets with respect to the global coordinate.
Detecting Page Loading Completion. Android does not have a
way to determine when a page has been completely loaded. State
loading can take arbitrary time, especially if its content needs to be
fetched over the network. PUMA uses a heuristic that detects page
loading completion based on WINDOW_CONTENT_CHANGED events
signaled by the OS, since this event is fired whenever there is a con-
tent change or update in the current view. For example, a page that
relies on network data to update its UI widgets will trigger one
such event every time it receives new data that causes the widget
to be rendered. PUMA considers a page to be completely loaded
when there is no content-changed event in a window of time that is
conservatively determined from the inter-arrival times of previous
content-changed events.
Instrumenting Apps. PUMA uses SIF [16] in the backend to in-
strument app binaries. However, other tools that are capable of
instrumenting Android app binaries can also be used.
Environment Modifications by Apps. We observed that when
PUMA runs apps sequentially on one device, it is possible that an app
may change the environment (e.g., some apps turn off WiFi during
their execution), affecting subsequent apps. To deal with this, PUMA
restores the environment (turning on WiFi, enabling GPS, etc.) af-
ter completing each app, and before starting the next one.
Implementation Limitations. Currently, our implementation uses
Android’s uiautomator tool that is based on the underlying
AccessibilityService in the OS. So any UI widgets that
do not support such service cannot be supported by our tool. For
example, some user-defined widgets do not use any existing An-
droid UI support at all, so are inaccessible to PUMA. However, in
our evaluations described later, we find relatively few instances of
apps that use user-defined widgets, likely because of Android’s ex-
tensive support for UI programming.

Finally, PUMA does not support non-deterministic UI events like
random swipes, or other customized user gestures, which are fun-
damental problems for any monkey-based automation tool. In par-
ticular, this limitation rules out analysis of games, which is an im-
portant category of Android apps. To our knowledge, no existing
monkeys have overcome this limitation. It may be possible to over-
come this limitation by passively observing real users and “learn-
ing” user-interface actions, but we have left this to future work.



4. EVALUATION
The primary motivation for PUMA is rapid development of large-

scale dynamic mobile app analyses. In this section, we validate that
PUMA enables this capability: in a space of two weeks, we were able
to develop 7 distinct analyses and execute each of them on a corpus
of 3,600 apps. Beyond demonstrating this, our evaluations provide
novel insights into the Android app ecosystem. Before discussing
these analyses, we discuss our methodology.

4.1 Methodology
Apps. We downloaded 18,962 top free apps5, in 35 categories,
from the Google Play store with an app crawler [4] that implements
the Google Play API. Due to the incompleteness of the Dalvik
to Java translator tool we use for app instrumentation [16], some
apps failed the bytecode translation process, and we removed those
apps. Then based on the app name, we removed foreign-language
apps, since some of our analyses are focused on English language
apps, as we discuss later. We also removed apps in the game, so-
cial, or wallpaper categories, since they either require many non-
deterministic UI actions or do not have sufficient app logic code
(some wallpaper apps have no app code at all). These filtering
steps resulted in a pool of 9,644 apps spread over 23 categories,
from which we randomly selected 3,600 apps for the experiments
below. This choice was dictated by time constraints for our evalua-
tion.
Emulators vs Phones. We initially tried to execute PUMA on em-
ulators running concurrently on a single server. Android emula-
tors were either too slow or unstable, and concurrency was limited
by the performance of graphics cards on the server. Accordingly,
our experiments use 11 phones, each running an instance of PUMA:
5 Galaxy Nexus, 5 HTC One, and 1 Galaxy S3, all running An-
droid 4.3. The corpus of 3,600 apps is partitioned across these
phones, and the PUMA instance on each phone evaluates the apps
in its partition sequentially. PUMA is designed to work on emula-
tors as well, so it may be possible to scale the analyses by running
multiple cloud instances of the emulator when the robustness of the
emulators improves.

4.2 PUMA Scalability and Expressivity
To evaluate PUMA’s expressivity and scalability, we used it to im-

plement seven distinct dynamic analyses. Table 2 lists these analy-
ses. In subsequent subsections, we describe these analyses in more
detail, but first we make a few observations about these analyses
and about PUMA in general.

First, we executed PUMAScripts for three of these analyses con-
currently: UI structure classifier, ad fraud detection, and accessi-
bility violation detection. These three analyses use similar notions
of state equivalence and do not require any instrumentation. We
could also have run the PUMAScripts for network usage profiler and
permission usage profiler concurrently, but did not do so for logis-
tical reasons. These apps use similar notions of state equivalence
and perform complementary kinds of instrumentation; the permis-
sion usage profiler also instruments network calls, but in a way
that does not affect the network usage profiler. We have verified
this through a small-scale test of 100 apps: the combined analy-
ses give the same results as the individual analyses, but use only
the resources required to run one analysis. In future work, we plan
to design an optimizer that automatically determines whether two
PUMAScripts can be run concurrently and performs inter-script opti-
mizations for concurrent analyses.

5The versions of these apps are those available on Oct 3, 2013.

Second, we note that for the majority of our analyses, it suf-
fices to have fuzzier notions of state equivalence. Specifically, these
analyses declare two states to be equivalent if the cosine similarity
between feature vectors derived from each UI structure is above a
specified threshold. In practice, this means that two states whose
pages have different content, but similar UI structure, will be con-
sidered equivalent. This is shown in Table 2, with the value “struc-
tural” in the “State-Equivalence” column. For these analyses, we
are able to run the analysis to completion for each of our 3,600
apps: i.e., the analysis terminates when all applicable UI elements
have been explored. For the single analysis that required an identi-
cal match, we had to limit the exploration of an app to 20 minutes.
This demonstrates the importance of exposing programmable state
equivalence in order to improve the scalability of analyses.

Third, PUMA enables extremely compact descriptions of analy-
ses. Our largest PUMAScript is about 20 lines of code. Some anal-
yses require non-trivial code in user-specified handlers; this is la-
beled “user code” in Table 2. The largest handler is 60 lines long.
So, for most analyses, less than 100 lines is sufficient to explore
fairly complex properties. In contrast, the implementation of DE-
CAF [20] was over 4,300 lines of code, almost 50× higher; almost
70% of this code went towards implementing the monkey function-
ality. Note that, some analyses require post-processing code; we do
not count this in our evaluation of PUMA’s expressivity, since that
code is presumably comparable for when PUMA is used or when a
hand-crafted monkey is used.

Finally, another measure of scalability is the speed of the mon-
key. PUMA’s programmable monkey explored 15 apps per hour per
phone, so in about 22 hours we were able to run our structural sim-
ilarity analysis on the entire corpus of apps. This rate is faster than
the rates reported in prior work [18, 20]. The monkey was also able
to explore about 65 app states per hour per phone for a total of over
100,000 app states across all 7 analyses. As discussed above, PUMA
ran to completion for our structural similarity-based analyses for
every app. However, we do not evaluate coverage, since our explo-
ration techniques are borrowed from prior work [20] and that work
has evaluated the coverage of these techniques.

4.3 Analysis 1: Accessibility Violation Detec-
tion

Best practices in app development include guidelines for app de-
sign, either for differently-abled people or for use in environments
with minimal interaction time requirements (e.g., in-vehicle use).
Beyond these guidelines, it is desirable to have automated tests for
accessibility compliance, as discussed in prior work [18]. From an
app store administrator’s perspective, it is important to be able to
classify apps based on their accessibility support so that users can
be more informed in their app choices. For example, elderly per-
sons who have a choice of several email apps may choose the ones
that are more accessible (e.g., those that have large buttons with
enough space between adjacent buttons.)

In this dynamic analysis, we use PUMA to detect a subset of ac-
cessibility violations studied in prior work [18]. Specifically, we
flag the following violations: if a state contains more than 100
words; if it contains a button smaller than 80mm2; if it contains
two buttons whose centers are less than 15mm apart; and if it con-
tains a scrollable UI widget. We also check if an app requires a
significant number of user interactions to achieve a task by com-
puting the maximum shortest round-trip path between any two UI
states based on the transition graph generated during monkey ex-
ploration.

This prior work includes other accessibility violations: detecting
distracting animations can require a human in the loop, and is not



Properties Studied State-Equivalence App Instrumentation PUMAScript (LOC) User Code (LOC)

Accessibility violation detection UI accessibility violation structural no 11 60
Content-based app search in-app text crawling exact no 14 0
UI structure classifier structural similarity in UI structural no 11 0
Ad fraud detection ad policy violation structural no 11 52
Network usage profiler runtime network usage structural yes 19 8
Permission usage profiler permission usage structural yes 20 5
Stress testing app robustness structural yes 16 5

Table 2: List of analyses implemented with PUMA

user actions
per task

words
count

button
size

button
distance

scrolling

#apps 475 552 1276 1147 2003

1 type 2 types 3 types 4 types 5 types

#apps 752 683 656 421 223

Table 3: Accessibility violation results

suitable for the scale that PUMA targets; and analyzing the text con-
trast ratio requires OS modifications. Our work scales this analysis
to a much larger number of apps (3,600 vs. 12) than the prior work,
demonstrating some of the benefits of PUMA.

Our PUMAScript has 11 lines of code (shown in Listing 2), and is
similar in structure to ad fraud detection. It uses structural match-
ing for state equivalence, and detects these accessibility violations
using an in-line analysis handler AMCChecker.inspect().

Table 3 shows the number of apps falling into different cate-
gories of violations, and the number of apps with more than one
type of violation. We can see that 475 apps have maximum round-
trip paths greater than 10 (the threshold used in [18]), 552 for word
count, 1,276 for button size, 1,147 for button distance and 2,003 for
scrolling. Thus, almost 55% of our apps violate the guideline that
suggests not having a scrollable widget to improve accessibility.
About one third of the violating apps have only one type of viola-
tion and less than one third have two or three types of violations.
Less than one tenth of the apps violate all five properties.

This suggests that most apps in current app stores are not de-
signed with general accessibility or vehicular settings in mind. An
important actionable result from our findings is that our analyses
can be used to automatically tag apps for “accessibility friendli-
ness” or “vehicle unfriendliness”. Such tags can help users find
relevant apps more easily, and may incentivize developers to target
apps towards segments of users with special needs.

4.4 Analysis 2: Content-based App Search
All app stores allow users to search for apps. To answer user

queries, stores index various app metadata: e.g., app name, cate-
gory, developer-provided description, etc. That index does not use
app content—content that an app reveals at runtime to users. Thus,
a search query (e.g., for a specific recipe) can fail if the query does
not match any metadata, even though the query might match the dy-
namic runtime content of some of these apps (e.g., culinary apps).

One solution to the above limitation is to crawl app content by
dynamic analysis and index this content as well. We program PUMA
to achieve this. Our PUMAScript for this analysis contains 14 lines
of code (shown in Listing 3) and specifies a strong notion of state
equivalence: two states are equivalent only if their UI hierarchies
are identical and their contents are identical. Since the content of
a given page can change dynamically, even during exploration, the
exploration may, in theory, never terminate. So, we limit each app
to run for 20 minutes (using PUMA’s terminating app exploration

event handler). Finally, the PUMAScript scrapes the textual content
from the UI hierarchy in each state and uses the in-line analysis
event handler to log this content.

We then post-process this content to build three search indices:
one that uses the app name alone, a second that includes the devel-
oper’s description, and a third that also includes the crawled con-
tent. We use Apache Lucene6, an open-source full-featured text
search engine, for this purpose.

We now demonstrate the efficacy of content-based search for
apps. For this, we use two search-keyword datasets to evaluate
the generated indices: (1) 200 most popular app store queries7 and
(2) a trace of 10 million queries from the Bing search engine. By
re-playing those queries on the three indices, we find (Table 4) that
the index with crawled content yields at least 4% more non-empty
queries than the one which uses app metadata alone. More impor-
tantly, on average, each query returns about 50 more apps (from
our corpus of 3,600) for the app store queries and about 100 more
apps for the Bing queries.

Here are some concrete examples that demonstrate the value of
indexing dynamic app content. For the search query “jewelery
deals”, the metadata-based index returned many “deals” and “jew-
elery” apps, while the content-based index returned as the top re-
sult an app (Best Deals) that was presumably advertising a deal for
a jewelry store8. Some queries (e.g., “xmas” and “bejeweled”) re-
turned no answers from the metadata-based index, but the content-
based index returned several apps that seemed to be relevant on
manual inspection. These examples show that app stores can greatly
improve search relevance by crawling and indexing dynamic app
content, and PUMA provides a simple way to crawl the data.

4.5 Analysis 3: UI Structure Classifier
In this analysis, we program PUMA to cluster apps based on their

UI state transition graphs so that apps within the same cluster have
the same “look and feel”. The clusters can be used as input to clone
detection algorithms [14], reducing the search space for clones: the
intuition here is that the UI structure is the easiest part to clone and
cloned apps might have very similar UI structures to the original
one. Moreover, developers who are interested in improving the UI
design of their own apps can selectively examine a few apps within
the same cluster as theirs and do not need to exhaustively explore
the complete app space.

The PUMAScript for this analysis is only 11 lines (shown in List-
ing 4) and uses structural page similarity to define state equiva-
lence. It simply logs UI states in the in-line analysis event handler.
After the analysis, for each app, we represent its UI state transi-
tion graph by a binary adjacency matrix, then perform Singular

6http://lucene.apache.org/core/
7http://goo.gl/JGyO5P
8In practice, for search to be effective, apps with dynamic content
need to be crawled periodically.

http://lucene.apache.org/core/
http://goo.gl/JGyO5P


Keyword Type Number Search Type Rate of Queries with Statistics of Valid Return
Valid Search Return (≥1) Min Max Mean Median

App Store Name 68% 1 115 17 4
Popular Keywords 200 Name + Desc. 93% 1 1234 156.54 36.50

Name + Desc. + Crawl 97% 1 1473 200.46 46
Bing Trace Name 54.09% 1 311 8.31 3

Search Keywords 9.5 million Name + Desc. 81.68% 1 2201 199.43 66
Name + Desc. + Crawl 85.51% 1 2347 300.37 131

Table 4: Search results
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Figure 2: App clustering for UI structure classification
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Figure 3: Cluster size for rspatial = 3

Value Decomposition9 (SVD) on the matrix, and extract the Singu-
lar Value Vector. SVD techniques have been widely used in many
areas such as general classification, pattern recognition and signal
processing. Since the singular vector has been sorted by the impor-
tance of singular values, we only keep those vector elements (called
primary singular values) which are greater than ten times the first
element. Finally, the Spectral Clustering10 algorithm is employed
to cluster those app vectors, with each entry of the similarity matrix
being defined as follows:

mij =

{
0 , dim(vi) 6= dim(vj) or dij > rspatial
e−dij , otherwise

where vi and vj are the singular vectors of two different apps i and
j, and dij is the Euclidean distance between them. dim() gives
the vector dimension, and we only consider two apps to be in a
same cluster if the cardinality of their primary singular values are
the same. Finally, the radius rspatial is a tunable parameter for
the algorithm: the larger the radius, the further out the algorithm
searches for clusters around a given point (singular vector).

9http://en.wikipedia.org/wiki/Singular_value_decomposition
10http://en.wikipedia.org/wiki/Spectral_clustering

Figure 4: An app clone example (one app per rectangle)

Following the above process, Figure 2 shows the number of clus-
ters and average apps per cluster for different spatial radii. As the
radius increases, each cluster becomes larger and the number of
clusters decreases, as expected. The number of clusters stabilizes
beyond a certain radius and reaches 38 for a radius of 3. The CDF
of cluster size for rspatial = 3 is shown in Figure 3. By manually
checking a small set of apps, we confirm that apps in the same clus-
ter have pages with very similar UI layouts and transition graphs.

Our analysis reveals a few interesting findings. First, there ex-
ists a relatively small number of UI design patterns (i.e., clusters).
Second, the number of apps in each cluster can be quite different
(Figure 3), ranging from one app per cluster to more than 300 apps,
indicating that some UI design patterns are more common than the
others. Third, preliminary evaluations also suggest that most apps
from a developer fall into the same cluster; this is perhaps not sur-
prising given that developers specialize in categories of apps and
likely reuse significant portion of their code across apps. Finally,
manual verification reveals the existence of app clones For exam-
ple, Figure 4 shows two apps from one cluster have nearly the same
UI design with slightly different color and button styles, but devel-
oped by different developers11.

4.6 Analysis 4: Ad Fraud Detection
Recent work [20] has used dynamic analysis to detect various

ad layout frauds for Windows Store apps, by analyzing geome-
try (size, position, etc.) of ads during runtime. Examples of such
frauds include (a) hidden ads: ads hidden behind other UI controls
so the apps appear to be ad-free; (b) intrusive ads: ads placed very
close to or partially behind clickable controls to trigger inadvertent
clicks; (c) too many ads: placing too many ads in a single page; (d)
small ads: ads too small to see. We program PUMA to detect similar
frauds in Android apps.

Our PUMAScript for ad fraud detection catches small, intrusive,
and too many ads per page. We have chosen not to implement
detection of hidden ads on Android, since, unlike Microsoft’s ad
network [5], Google’s ad network does not pay developers for ad
impressions [3], and only pays them by ad clicks, so there is no
incentive for Android developers to hide ads.

Our PUMAScript requires 11 lines (shown in Listing 5) and uses
structural match for state equivalence. It checks for ad frauds within
the in-line analysis handler; this requires about 52 lines of code.

11We emphasize that clone detection requires sophisticated tech-
niques well beyond UI structure matching; designing clone detec-
tion algorithms is beyond the scope of this paper.

 http://en.wikipedia.org/wiki/Singular_value_decomposition
 http://en.wikipedia.org/wiki/Spectral_clustering


violation small many intrusive 1 type 2 types 3 types

#apps 13 7 10 3 3 7

Table 5: Ad fraud results

This handler traverses the UI view tree, searches for the WebView
generated by ads, and checks its size and relationship with other
clickable UI elements. It outputs all the violations found in each
UI state.

Table 5 lists the number of apps that have one or more violations.
About 13 out of our 3,600 apps violate ad policies. Furthermore,
all 13 apps have small ads which can improve user experience by
devoting more screen real estate to the app, but can reduce the visi-
bility of the ad and adversely affect the advertiser. Seven apps show
more than one ad on at least one of their pages, and 10 apps display
ads in a different position than required by ad networks. Finally, if
we examine violations by type, 7 apps exhibit all three violations,
3 apps exhibit one and 3 exhibit two violations.

These numbers appear to be surprisingly small, compared to re-
sults reported in [20]. To understand this, we explored several ex-
planations. First, we found that the Google AdMob API enforces
ad size, number and placement restrictions, so developers cannot
violate these policies. Second, we found that 10 of our 13 viola-
tors use ad providers other than AdMob, like millennialmedia, me-
dialets and LeadBolt. These providers’ API gives developers the
freedom to customize ad sizes, conflicting with AdMob’s policy of
predefined ad size. We also found that, of the apps that did not
exhibit ad fraud, only about half used AdMob and the rest used a
wide variety of ad network providers. Taken together, these find-
ings suggest that the likely reason the incidence of ad fraud is low in
Android is that developers have little incentive to cheat, since Ad-
Mob pays for clicks and not impressions (all the frauds we tested
for are designed to inflate impressions). In contrast, the occurrence
of ad fraud in Windows phones is much higher because (a) 90%
of the apps use the Microsoft ad network, (b) that network’s API
allows developers to customize ads, and (c) the network pays both
for impressions and clicks.

4.7 Analysis 5: Network Usage Profiler
About 62% of the apps in our corpus need to access resources

from the Internet to function. This provides a rough estimate of the
number of cloud-enabled mobile apps in the Android marketplace,
and is an interesting number in its own right. But beyond that, it
is important to quantify the network usage of these apps, given the
prevalence of usage-limited cellular plans, and the energy cost of
network communication [15].

PUMA can be used to approximate the network usage of an app
by dynamically executing the app and measuring the total number
of bytes transferred. Our PUMAScript for this has 19 lines of code
(shown in Listing 1), and demonstrates PUMA’s ability to specify
app instrumentation. This script specifies structural matching for
state equivalence; this can undercount the network usage of the
app, since PUMA would not visit similar states. Thus, our results
present lower bounds for network usage of apps. To count net-
work usage, our PUMAScript specifies a user-defined event that is
triggered whenever the HTTPClient library’s execute func-
tion is invoked (Listing 1). The handler for this event counts the
size of the request and response.

Figure 5 shows the CDF of network usage for 2,218 apps; the x-
axis is in logarithmic scale. The network usage across apps varies
by 6 orders of magnitude from 1K to several hundred MB.

Half the apps use more than 206KB of data, and about 20% use
more than 1MB of data. More surprisingly, 5% apps use more than

10MB data; 100 times more than the lowest 40% of the apps. The
heaviest network users (the tail) are all video streaming apps that
stream news and daily shows. For example, “CNN Student News”
app, which delivers podcasts and videos of the top daily news items
to middle and high school students has a usage over 700MB. We
looked at 508 apps that use more than 1MB data and classified
based on their app categories. The top five are “News and Mag-
azines”, “Sports”, “Library and Demo”, “Media and Video”, and
“Entertainment”. This roughly matches our expectation that these
heavy hitters would be heavy users of multimedia information.

This diversity in network usage suggests that it might be benefi-
cial for app stores to automatically tag apps with their approximate
network usage, perhaps on a logarithmic scale. This kind of infor-
mation can help novice users determine whether they should use an
app when WiFi is unavailable or not, and may incentivize develop-
ers to develop bandwidth-friendly apps.
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Figure 5: Network traffic usage

4.8 Analysis 6: Permission Usage Profiler
Much research has explored the Android security model, and the

use of permissions. In particular, research has tried to understand
the implication of permissions [13], designed better user interfaces
to help users make more informed decisions [28], and proposed
fine-grained permissions [17].

In this analysis, we explore the runtime use of permissions and
relate that to the number of permissions requested by an app. This
is potentially interesting because app developers may request more
permissions than are actually used in the code. Static analysis can
reveal an upper bound on the permissions needed, but provides few
hints on actual permissions usage.

With PUMA, we can implement a permission usage profiler, which
logs every permission usage during app execution. This provides a
lower bound on the set of permission required. We use the per-
mission maps provided by [7]. Our PUMAScript has 20 lines of
code (shown in Listing 6). It uses a structural-match monkey and
specifies a user-level event that is triggered when any API call
that requires permissions is invoked (these API calls are obtained
from [7]). The corresponding instrumentation code simply logs the
permissions used.

Figure 6 shows the CDF of the number of permissions requested
and granted to each of the 3,600 apps as well as those used during
app exploration. We can see that about 80% are granted less than
15 permissions (with a median of 7) but this number can be as
high as 41. Apps at the high end of this distribution include anti-
virus apps, a battery optimization tool, or utilities like “Anti-Theft”
or “AutomateIt”. These apps need many permissions because the
functionalities they provide require them to access various system
resources, sensors and phone private data.
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Figure 6: Permission usage: granted vs used

At runtime, apps generally use fewer permissions than granted;
about 90% of them used no more than 5 permissions, or no more
than half of granted ones. While one expects the number of per-
missions used in runtime is always less than granted, but the sur-
prisingly low runtime permission usage (about half the apps use
less than 30% of their permissions) may suggest that some app de-
velopers might request for more permissions than actually needed,
increasing the security risks.

4.9 Analysis 7: Stress Testing
Mobile apps are subject to highly dynamic environments, includ-

ing varying network availability and quality, and dynamic sensor
availability. Motivated by this, recent work [25] has explored ran-
dom testing of mobile apps at scale using a monkey in order to
understand app robustness to these dynamics.

In this analysis, we demonstrate PUMA can be used to script sim-
ilar tests. In particular, we focus on apps that use HTTP and in-
ject null HTTP responses by instrumenting the app code, with the
goal of understanding whether app developers are careful to check
for such errors. The PUMAScript for this analysis has 16 lines of
code (Listing 7) to specify a structural-match monkey and defines
the same user-defined event as the network usage profiler (List-
ing 1). However, the corresponding event handler replaces the
HTTPClient library invocation with a method that returns a null
response. During the experiment, we record the system log (logcat
in Android) to track exception messages and apps that crash (the
Android system logs these events).

In our experiments, apps either crashed during app exploration,
or did not crash but logged a null exception, or did not crash and did
not log an exception. Out of 2,218 apps, 582 (or 26.2%) crashed,
1,287 (or 58%) continued working without proper exception han-
dling. Only 15.7% apps seemed to be robust to our injected fault.

This is a fairly pessimistic finding, in that a relatively small num-
ber of apps seem robust to a fairly innocuous error condition. Be-
yond that, it appears that developers don’t follow Android develop-
ment guidelines which suggest handling network tasks in a separate
thread than the main UI thread. The fact that 26% of the apps crash
suggests their network handling was performed as part of the main
UI thread, and they did not handle this error condition gracefully.
This analysis suggests a different usage scenario for PUMA: as an
online service that can perform random testing on an uploaded app.

5. CONCLUSION
In this paper, we have described the design and implementation

of PUMA, a programmable UI automation framework for conduct-
ing dynamic analyses of mobile apps at scale. PUMA incorporates
a generic monkey and exposes an event driven programming ab-

straction. Analyses written on top of PUMA can customize app ex-
ploration by writing compact event handlers that separate analysis
logic from exploration logic. We have evaluated PUMA by program-
ming seven qualitatively different analyses that study performance,
security, and correctness properties of mobile apps. These analy-
ses exploit PUMA’s ability to flexibly trade-off coverage for speed,
extract app state through instrumentation, and dynamically mod-
ify the environment. The analysis scripts are highly compact and
reveal interesting findings about the Android app ecosystem.

Much work remains, however, including joint optimization for
PUMAScripts, conducting a user study with PUMA users, porting PUMA
to other mobile platforms, revisiting PUMA abstractions after exper-
imenting with more user tasks, and supporting advanced UI input
events for app exploration.
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APPENDIX
A. MORE PUMASCRIPT PROGRAMS

1 class AMC extends PUMAScript {
2 boolean compareState(UIState s1, UIState s2) {
3 return MonkeyInputFactory.stateStructureMatch(s1,

s2, 0.95);
4 }
5 int getNextClick(UIState s) {
6 return MonkeyInputFactory.nextClickSequential(s);
7 }
8 void onUILoadDone(UIState s) {
9 AMCChecker.inspect(s);

10 }
11 }
12 class AMCChecker {
13 Map<String, Integer> BTN_SIZE_DICT = new Hashtable<

String, Integer>();

14 Map<String, Integer> BTN_DIST_DICT = new Hashtable<
String, Integer>();

15 static {
16 BTN_SIZE_DICT.put("gn", 12301);
17 BTN_SIZE_DICT.put("s3", 11520);
18 BTN_SIZE_DICT.put("htc", 27085);
19 BTN_DIST_DICT.put("gn", 186);
20 BTN_DIST_DICT.put("s3", 180);
21 BTN_DIST_DICT.put("htc", 276);
22 }
23 static void inspect(UIState s) {
24 String dev = s.getDevice();
25 BasicTreeNode root = s.getUiHierarchy();
26 List<Rectangle> allButtons = new ArrayList<

Rectangle>();
27 boolean scrolling_vio = false;
28 Queue<BasicTreeNode> Q = new LinkedList<

BasicTreeNode>();
29 Q.add(root);
30 while (!Q.isEmpty()) {
31 BasicTreeNode btn = Q.poll();
32 if (btn instanceof UiNode) {
33 UiNode uin = (UiNode) btn;
34 String clz = uin.getAttribute("class");
35 boolean enable = uin.getAttribute("enabled");
36 boolean scrolling = uin.getAttribute("

scrollable");
37 if (clz.contains("Button") && enable) {
38 Rectangle bounds = new Rectangle(uin.x, uin

.y, uin.width, uin.height);
39 allButtons.add(bounds);
40 }
41 if (scrolling && !scrolling_vio)
42 scrolling_vio = true;
43 }
44 for (BasicTreeNode child : btn.getChildren())
45 Q.add(child);
46 }
47 int btn_size_vio = 0, btn_dist_vio = 0;
48 for (int i = 0; i < allButtons.size(); i++) {
49 Rectangle b1 = allButtons.get(i);
50 double area = b1.getWidth() * b1.getHeight();
51 if (area < BTN_SIZE_DICT.get(dev))
52 btn_size_vio++;
53 for (int j = i + 1; j < allButtons.size(); j++)

{
54 Rectangle b2 = allButtons.get(j);
55 double d = get_distance(b1, b2);
56 if (d < BTN_DIST_DICT.get(dev))
57 btn_dist_vio++;
58 }
59 }
60 Log(btn_size_vio + "," + btn_dist_vio + "," + (

scrolling_vio ? 1 : 0));
61 }
62 static double get_distance(Rectangle r1, Rectangle

r2) {
63 double x1 = r1.getCenterX();
64 double y1 = r1.getCenterY();
65 double x2 = r2.getCenterX();
66 double y2 = r2.getCenterY();
67 double delta_x = Math.abs(x1 - x2);
68 double delta_y = Math.abs(y1 - y2);
69 return Math.sqrt(delta_x * delta_x + delta_y *

delta_y);
70 }
71 }

Listing 2: Accessibility violation detection

1 class InAppDataCrawler extends PUMAScript {
2 boolean compareState(UIState s1, UIState s2) {
3 return MonkeyInputFactory.stateExactMatch(s1, s2)

;
4 }
5 int getNextClick(UIState s) {
6 return MonkeyInputFactory.nextClickSequential(s);
7 }
8 long getTimeOut() {
9 return 1200000;

10 }



11 void onUILoadDone(UIState s) {
12 s.dumpText();
13 }
14 }

Listing 3: Content-based app search

1 class UIStructureClassifier extends PUMAScript {
2 boolean compareState(UIState s1, UIState s2) {
3 return MonkeyInputFactory.stateStructureMatch(s1,

s2, 0.95);
4 }
5 int getNextClick(UIState s) {
6 return MonkeyInputFactory.nextClickSequential(s);
7 }
8 void onUILoadDone(UIState s) {
9 Log(s.getID());

10 }
11 }

Listing 4: UI structure classifier

1 class DECAF extends PUMAScript {
2 boolean compareState(UIState s1, UIState s2) {
3 return MonkeyInputFactory.stateStructureMatch(s1,

s2, 0.95);
4 }
5 int getNextClick(UIState s) {
6 return MonkeyInputFactory.nextClickSequential(s);
7 }
8 void onUILoadDone(UIState s) {
9 DECAFChecker.inspect(s);

10 }
11 }
12 class DECAFChecker {
13 static void inspect(UIState s) {
14 BasicTreeNode root = s.getUiHierarchy();
15 boolean portrait = (root.width < root.height);
16 List<Rectangle> allAds = new ArrayList<Rectangle

>();
17 List<Rectangle> otherClickables = new ArrayList<

Rectangle>();
18 Queue<BasicTreeNode> Q = new LinkedList<

BasicTreeNode>();
19 Q.add(root);
20 while (!Q.isEmpty()) {
21 BasicTreeNode btn = Q.poll();
22 if (btn instanceof UiNode) {
23 UiNode uin = (UiNode) btn;
24 Rectangle bounds = new Rectangle(uin.x, uin.y

, uin.width, uin.height);
25 String clz = uin.getAttribute("class");
26 boolean enabled = uin.getAttribute("enabled")

;
27 boolean clickable = uin.getAttribute("

clickable");
28 if (clz.contains("WebView") && enabled) {
29 Rectangle tmp = new Rectangle((int) bounds.

getWidth(), (int) bounds.getHeight());
30 if (portrait) {
31 if (PORTRAIT_AD_SIZE_MAX.contains(tmp))
32 allAds.add(bounds);
33 } else {
34 if (LANDSCAPE_AD_SIZE_MAX.contains(tmp))
35 allAds.add(bounds);
36 }
37 }
38 if (!clz.contains("WebView") && enabled &&

clickable)
39 otherClickables.add(bounds);
40 }
41 for (BasicTreeNode child : btn.getChildren())
42 Q.add(child);
43 }
44 int num_ads = allAds.size();
45 int small_ad_cnt = 0;
46 for (int i = 0; i < allAds.size(); i++) {
47 Rectangle bounds = allAds.get(i);
48 Rectangle tmp = new Rectangle((int) bounds.

getWidth(), (int) bounds.getHeight());

49 if ((portrait && PORTRAIT_AD_SIZE_MIN.contains(
tmp)) || (!portrait &&
LANDSCAPE_AD_SIZE_MIN.contains(tmp)))

50 small_ad_cnt++;
51 }
52 int intrusive_ad_cnt = 0;
53 for (int i = 0; i < allAds.size(); i++) {
54 Rectangle ad = allAds.get(i);
55 for (int j = 0; j < otherClickables.size(); j

++) {
56 Rectangle clickable = otherClickables.get(j);
57 if (ad.intersects(clickable))
58 intrusive_ad_cnt++;
59 }
60 }
61 Log(num_ads + "," + small_ad_cnt + "," +

intrusive_ad_cnt);
62 }
63 }

Listing 5: Ad fraud detection

1 class NetworkProfiler extends PUMAScript {
2 boolean compareState(UIState s1, UIState s2) {
3 return MonkeyInputFactory.stateStructureMatch(s1,

s2, 0.95);
4 }
5 int getNextClick(UIState s) {
6 return MonkeyInputFactory.nextClickSequential(s);
7 }
8 void specifyInstrumentation() {
9 Set<CodePoint> userEvent;

10 List<String> allPerms = loadPermMap("perm.map");
11 for (String perm : allPerms) {
12 CPFinder.setPerm(perm);
13 userEvent = CPFinder.apply();
14 for (CodePoint cp : userEvent) {
15 UserCode code = new UserCode("Logger", "log",

CPARG);
16 Instrumenter.place(code, BEFORE, cp);
17 }
18 }
19 }
20 }
21 class Logger {
22 public void log(String perm) {
23 Log(perm);
24 }
25 }

Listing 6: Permission usage profiler

1 class StressTesting extends PUMAScript {
2 boolean compareState(UIState s1, UIState s2) {
3 return MonkeyInputFactory.stateStructureMatch(s1,

s2, 0.95);
4 }
5 int getNextClick(UIState s) {
6 return MonkeyInputFactory.nextClickSequential(s);
7 }
8 void specifyInstrumentation() {
9 CPFinder.setBytecode("invoke.*", "HTTPClient.

execute(HttpUriRequest request)");
10 Set<CodePoint> userEvent = CPFinder.apply();
11 for (CodePoint cp : userEvent) {
12 UserCode code = new UserCode("MyHTTPClient", "

execute", CPARG);
13 Instrumenter.place(code, AT, cp);
14 }
15 }
16 }
17 class MyHTTPClient {
18 HttpResponse execute(HttpUriRequest request) {
19 return null;
20 }
21 }

Listing 7: Stress testing
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