
Dynamically Checking Ownership
Policies in Concurrent C/C++ Programs

Jean-Philippe Martin
Microsoft Research

jpmartin@microsoft.com

Michael Hicks ∗

University of Maryland, College Park
mwh@cs.umd.edu

Manuel Costa
Microsoft Research

manuelc@microsoft.com

Periklis Akritidis
University of Cambridge

pa280@cl.cam.ac.uk

Miguel Castro
Microsoft Research

mcastro@microsoft.com

Abstract
Concurrent programming errors arise when threads share data in-
correctly. Programmers often avoid these errors by using synchro-
nization to enforce a simple ownership policy: data is either owned
exclusively by a thread that can read or write the data, or it is read
owned by a set of threads that can read but not write the data. Un-
fortunately, incorrect synchronization often fails to enforce these
policies and memory errors in languages like C and C++ can vio-
late these policies even when synchronization is correct.

In this paper, we present a dynamic analysis for checking own-
ership policies in concurrent C and C++ programs despite mem-
ory errors. The analysis can be used to find errors in commodity
multi-threaded programs and to prevent attacks that exploit these
errors. We require programmers to write ownership assertions that
describe the sharing policies used by different parts of the program.
These policies may change over time, as may the policies’ means
of enforcement, whether it be locks, barriers, thread joins, etc. Our
compiler inserts checks in the program that signal an error if these
policies are violated at runtime. We evaluated our tool on several
benchmark programs. The run-time overhead was reasonable: be-
tween 0 and 49% with an average of 26%. We also found the tool
easy to use: the total number of ownership assertions is small, and
the asserted specification and implementation can be debugged to-
gether by running the instrumented program and addressing the er-
rors that arise. Our approach enjoys a pleasing modular soundness
property: if a thread executes a sequence of statements on variables
it owns, the statements are serializable within a valid execution,
and thus their effects can be reasoned about in isolation from other
threads in the program.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Testing and Debugging—Testing tools; F.3.2 [Logics and

∗Work performed while this author was visiting Microsoft Research, Cam-
bridge, and the University of Cambridge Computer Laboratory.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’10, January 17–23, 2009, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-479-9/10/01. . . $10.00

Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs—Specification Techniques

General Terms Reliability, Security, Theory, Verification.

Keywords Concurrency, Debugging, Dynamic analysis, Security,
Testing, Tools

1. Introduction
Concurrent programming errors arise when the executions of two
or more threads interfere while operating on the same data. Pro-
grammers avoid these problems by using synchronization mecha-
nisms to enforce a simple policy: a thread may access a piece of
data so long as it owns it. A single thread can own memory exclu-
sively, meaning the thread may read and write the data, or many
threads can own the data collectively, meaning that all may read
it, but none may write it. Unfortunately, incorrect synchronization
often fails to enforce these ownership policies and memory errors
in languages like C and C++ can violate these policies even when
synchronization is correct.

This paper develops a dynamic analysis for checking that mem-
ory ownership policies are properly enforced in multi-threaded C
and C++ programs despite memory errors. The analysis can be
used to find unwanted interference during concurrent executions
and to prevent attacks that exploit these errors. To use our analy-
sis, a programmer adds assertions to indicate the current ownership
policy for a piece of data. For example, suppose the program uses a
shared queue that contains jobs to be processed by worker threads.
We might annotate the worker thread code with assertions as

1 struct job ∗j = dequeue(q);
2 ownEx(j, sizeof(*j));
3 /∗ ... process job, accessing ∗j freely ... ∗/
4 relEx(j, sizeof(*j));
5 enqueue(q,j);

After extracting the job from the queue, on line 2 the current thread
asserts that it owns j’s data exclusively—no other thread should
access j’s data at this point. After processing the job, the thread
releases ownership (line 4) and places the job back in the queue.
Another thread may now dequeue the job and take ownership of it
for further processing.

Ownership assertions constitute a specification. It is up to the
programmer to implement this specification. For example, to im-
plement the specification above, the programmer must ensure that
the queue does not have more than one pointer to the same job and

dequeue must use synchronization to ensure that only one thread
can extract a particular job. Our dynamic analysis checks that the
programmer implements the ownership specification. In particular,
given a program containing ownership assertions, our run-time sys-
tem tracks the ownership state of each memory location, and our
compiler instruments reads and writes to check whether they re-
spect the target data’s ownership state. For the example above, the
ownEx assertion would change the ownership state of j’s data to
grant exclusive ownership to thread t. Thus, the inserted checks
would signal an ownership violation if another thread attempted to
access j’s data, e.g., as the result of an error in the queue implemen-
tation or a memory error anywhere in the program. We also insert
checks to ensure that ownership assertions are themselves legal,
e.g., it is a violation for one thread to claim exclusive ownership of
a location already owned by another thread.

We formalize the semantics of ownership checking on multi-
threaded program traces (Section 3), and prove that ownership
assertions can be used to establish serializability: if a thread t
successfully acquires ownership of some set of memory locations
L, then we can prove that subsequent operations on L will appear as
if they executed serially, without interleaving by (valid) operations
of other threads, until ownership is released. Our serializability
property is modular in the sense that it holds regardless of what
other threads do: a properly annotated block will either exhibit
a serial execution or the program will fail due to an ownership
violation by another thread.

Previous work proposes tools to check that code properly uses
synchronization to implement atomic blocks or lower-level data
sharing patterns. SharC [2] and its successor Shoal [3] specify shar-
ing policies by annotating types in C/C++ programs, using dynamic
casts to change policies. These policies are checked using a combi-
nation of static and dynamic analysis. They provide weaker guar-
antees than our analysis because they fail to detect policy violations
due to memory errors. Additionally, they tie ownership policies to
specific synchronization constructs and impose restrictions on dy-
namic policy changes that can be cumbersome. Our annotations
are conceptually simpler and more expressive. The number of an-
notations required by our analysis and its performance overhead
are comparable to those in Shoal. There are also atomicity check-
ing tools such as Velodrome [11] and Atomizer [9] for type safe
languages like Java. They provide strong guarantees but can slow
down execution by several factors.

We have implemented our analysis as a compiler and run-time
system for multi-threaded C and C++ programs (Section 4), extend-
ing our work on preventing memory errors [1]. We evaluated our
tool on seven benchmark programs, totaling more than 265 KLOC
(Section 5). Our experiments reveal four benefits of our system:

Expressiveness. We found that ownership assertions were ex-
pressive enough to capture sharing patterns used in practice. No-
tably, our benchmarks often employed dynamic changes in owner-
ship, such as the ownership transfer between threads via the shared
queue in our example.

Ease of use. Annotating programs was never burdensome; in the
worst case, the added assertions and small program changes were
6% of the program size, and they were easy to come by. In total,
we annotated or changed roughly 500 lines in all benchmarks, con-
stituting less than 0.2% of the total program sizes. By default, data
is exclusively owned by the thread that allocated it, so executing a
program without assertions quickly reveals sharing patterns that we
can convert into reasonable specifications.

Low overhead. The overhead of our dynamic analysis is reason-
able: programs are slower by 26%, and use 10% more memory, on
average, compared to the original versions. We achieve low over-
heads by using efficient datastructures to perform ownership check-

not accessible

owned

by thread T
allocate by T

not owned

read-owned by

set of threads S

free by T

relRd by T, S={T}

ownRd by T

ownEx by T

relEx by T
relRd by T’ in S

or ownRd by T’

How to import this into latex:

1) print to PDF

2) change the latex code to specify the bounding

box (no, “print selection” does not work right).

To find the good values:

2.a) in Visio, select “View > Size window”

2.b) select the rectangle around the figure. You’ll

get (x,y) for the lower-left corner and width, height.

2.c) latex needs lower-left (x,y) and top-right (x,y)

read or write by T read by T’ in S

Figure 1. Core ownership states.

ing, by avoiding atomic operations in most ownership checks, and
by eliminating redundant ownership checks at compile-time. We
prove that these optimizations preserve our serializability result.

Utility. In testing our benchmark programs, we found several er-
rors, both memory errors and concurrency errors. Our overhead is
low enough for some programs that we could imagine deploying
these programs with ownership checking enabled, towards improv-
ing both software security and our ability to diagnose concurrency
errors in the field.

2. Dynamic Ownership Checking
This section overviews our dynamic ownership analysis. We de-
scribe basic ownership policies, some extensions to shorten speci-
fications and improve performance, and target applications.

Basic ownership policies. Memory ownership policies place
each byte of memory into one of four states, which determine
the legal operations on that memory, as depicted in Figure 1: in-
accessible; owned exclusively by a single thread permitted to read
and write it; read-owned by possibly several threads permitted to
read it; and not owned by any thread. Memory begins as inacces-
sible, and then is exclusively owned by the thread that allocates
it. Exclusive ownership is explicitly released by the relEx asser-
tion, which places memory in the unowned state. From this state,
a thread could either claim exclusive ownership again via ownEx,
or could claim read-ownership via ownRd. From the read-owned
state, other threads may assert read-ownership of the same data.
Read ownership is released through relRd; when all read-owners
have released ownership, the memory returns to the unowned state.
Accesses to unowned memory are illegal.

Figure 2 shows ownership-annotated code for a FIFO queue
based on similar code in the pfscan benchmark. Ignoring the
ownership assertions for the moment, we can see the basic code
implements a standard thread-shared queue. The Q structure stores
queued pointers in a fixed-size array accessible from its buf field,
and synchronizes access to the array using a lock stored in the mtx
field. The current and maximum size of the queue are stored in
the occupied and size fields, respectively, and nextin records the
next free slot in buf. When enqueuing an item, the enqueue code
first checks whether the queue is full (line 23); if so, it waits on
condition variable q→ less to be signaled by dequeue when an item
is removed. The code then stores the item (line 29), performs some
bookkeeping (lines 31–32), and on the last line signals condition
variable q→more to awaken any threads waiting in dequeue for
items to become available.

The ownership assertions together specify the high-level policy
that only one thread at a time may access the queue. For example, at
line 22 the assertion ownEx(q,DATA SZ) specifies that at this point,
the current thread should have exclusive ownership over the first
four fields of the q structure. Line 28 similarly asserts the current
thread exclusively owns q→ buf. The programmer enforces this
policy by using q→mtx to mediate access to this data: as long as
all accesses take place with q→mtx held, only one thread will ever
access the data at a time. Notice that ownership is released prior

1 typedef struct Q {
2 int size, occupied, nextin;
3 void ∗∗ buf;
4 #define DATA SZ offsetof(Q,mtx)
5 Mutex mtx;
6 ConditionVariable less, more;
7 #define SYNC SZ sizeof(Q)−DATA SZ
8 } Q;
9

10 Q∗ queueInit(size t n) {
11 Q∗ ret = malloc(sizeof(Q));
12 ret→ buf = malloc(n∗sizeof(void∗));
13 initQheader(ret, n);
14 relEx(ret, DATA SZ);
15 makeRO(&ret→mtx, SYNC SZ);
16 relEx(ret→buf, n*sizeof(void*));
17 return ret;
18 }
19
20 void enqueue(Q ∗q, void ∗item) {
21 lock(&q→mtx);
22 ownEx(q, DATA SZ);
23 while (q→ occupied ≥ q→ size) {
24 relEx(q, DATA SZ);
25 condwait(&q→ less, &q→mtx);
26 ownEx(q, DATA SZ);
27 }
28 ownEx(&q→buf[q→nextin], sizeof(void*));
29 q→ buf[q→ nextin] = item;
30 relEx(&q→buf[q→nextin], sizeof(void*));
31 q→ nextin = (q→ nextin+1) % q→ size;
32 q→ occupied++;
33 relEx(q, DATA SZ);
34 unlock(&q→mtx);
35 signal(&q→more);
36 }
37
38 Q ∗q;
39 main() {
40 q = queueInit(20);
41 makeRO(&q, sizeof(q)); ...
42 }

Figure 2. Code sample.

to releasing the lock via calls to condwait (line 24), and unlock
(line 33), and acquired just after acquiring the lock (line 22) or
reacquiring it via condwait (line 26). The objects put in the queue
are protected using ownership assertions in client code—as shown
in the Introduction, the client releases ownership before enqueuing
a job, and asserts ownership when dequeuing one.

Checking correct enforcement. We would like to check whether
a program properly enforces its declared ownership policy. In other
words, is it true that under all possible executions, when some
thread t is executing lines 23, 29, 31, or 32, no thread but t will
access q’s first four fields or its q→ buf array? The dynamic na-
ture of ownership policies and C’s lack of memory safety would
make it difficult to write a static checker that is sound (no missed
errors), precise (few false alarms), and scalable (works to large pro-
grams). Therefore, we choose to check proper ownership policy
enforcement during program execution. Doing so allows our tool
to be precise and scalable, though potentially missing some latent
errors. In our approach, we associate shadow state with the pro-
gram’s run-time memory, and implement ownership assertions to
change that state according to Figure 1. We compile the program
to insert checks to verify that reads, writes, and ownership transi-
tions are legal according to the target memory’s ownership state, as
shown in the figure.

1 Q∗ queueInit(size t n) {
2 Q∗ ret = malloc(sizeof(Q));
3 Cluster cluster = allocCluster();
4 ret→ buf = malloc(n∗sizeof(void∗));
5 initQheader(ret,n);
6 giveToCluster(ret, DATA SZ, cluster);
7 makeRO(&ret→mtx, SYNC SZ);
8 giveToCluster(ret→buf, n*sizeof(void*),cluster);
9 return ret;

10 }
11
12 #define lockCluster(mtx,ptr) lock(mtx);ownClusterEx(ptr)
13 #define unlockCluster(mtx,ptr) relClusterEx(ptr);unlock(mtx)
14 #define condwaitCluster(cond,mtx,ptr) \
15 relClusterEx(ptr); condwait(cond,mtx); ownClusterEx(ptr)
16
17 void enqueue(Q ∗q, void ∗item) {
18 lockCluster(&q→mtx,q);
19 while (q→ occupied ≥ q→ size) {
20 condwaitCluster(&q→less, &q→mtx, q);
21 } ...
22 unlockCluster(&q→mtx,q); ...
23 }

Figure 3. Cluster code fragment.

Even though the FIFO code snippet reveals no bug, our dynamic
checker can reveal problems in other parts of the code that would
violate the intended policy. For example, some other thread might
access ∗q without first grabbing the queue mutex q→mtx. More
perniciously, an out-of-bounds access anywhere in the code might
cause some other thread to overwrite q or what it points to. In both
cases, our inserted checks would signal violations of the declared
policy; we halt execution at the point of violation, making it easy
to find the source of the problem.

As hinted by these examples, and proved in the next section, it
turns out that the core of the enqueue function enjoys the following
pleasingly modular property: either the execution of lines 26–33
will be serializable—in that their effects will be just as if they
were executed serially, despite interleaving with other threads—
or there will be an ownership violation, e.g., because some other
thread illegally modified the q data structure. A key contribution
of our paper is to show how to provide this property regardless of
what other threads do. As we detail in Section 4, we implement
several mechanisms to prevent threads from bypassing our checks,
corrupting heap management, or corrupting the shadow state.

A nice feature of our system is that ownership assertions are
easy to add or debug by simply running the code and addressing
the resulting violations. For example, we might have thought that
enqueue should acquire the entire queue structure exclusively, and
not just its first four fields. But on running the code under such a
policy, we would discover an ownership violation when a second
thread tried to synchronize on the q→mtx field and/or the condi-
tion variables. Hence we annotate queueInit to assert these fields are
read-only for all threads by adding makeRO(&ret→mtx,SYNC SZ)
on line 15. This notational shorthand allows each thread to avoid
explicitly acquiring read-only ownership of the mutex each time
it goes to synchronize on it. We would likewise discover that the
global variable q needs to be read-only, e.g., to access mtx, and so
assert it is read-only on line 41. Finally, we would find that some
data in the mutex structure pointed to by q→mtx may be read/writ-
ten by several threads at once, using operations like compare-and-
swap to implement the lock’s semantics. Therefore we place this
data in a special unchecked state (not shown in Figure 1), permitting
any thread to read or write it. This state is also useful for program
variables subject to benign races, e.g., performance counters.

1 void HandleSession(int socket) {
2 int uid = Authenticate(socket);
3 UserInfo∗ uinfo = &userTable[uid]
4 ProcessRequests(uinfo, socket);
5 }
6
7 ProcessRequests(UserInfo∗ uinfo, int socket) {
8 // loop processing requests
9 while (true) switch (command) {

10 ...
11 case buy: ...
12 case deleteAccount:
13 // allow uinfo to be reused
14 memset(uinfo, 0, sizeof(UserInfo));
15 return;
16 ...
17 }
18 }

Figure 4. An exploitable concurrency error.

Clusters. A single ownership assertion like ownEx applies to a
contiguous chunk of memory. As a result, several assertions would
be needed to take/release ownership of entire linked data structures,
which is tedious to the programmer and adds run-time overhead.
To alleviate these concerns, we extend our system with the abstrac-
tion of a cluster of memory chunks. Threads can dynamically al-
locate clusters and assign chunks of memory they exclusively own
to a cluster using the assertion giveToCluster. Having done this, a
thread can release or own the entire cluster at once using asser-
tions relClusterEx and ownClusterEx, respectively. Each call takes a
pointer as its argument and changes the state of the cluster of the
pointed-to memory. A memory location can be in at most one clus-
ter at any one time. (The full state graph, which includes clusters
and unchecked states, is shown later in Figure 9.)

Figure 3 shows what some of the queue code would look like us-
ing clusters and macros. The queueInit function allocates a cluster
for the queue (line 3), then assigns the queue’s relevant memory to
that cluster (lines 6, 8). The macros (lines 12–14) simplify annotat-
ing locks; similar macros can be written for other synchronization
primitives. With clusters and macros, the enqueue function is again
very simple—it now has three total assertions that are comingled
with the three synchronization calls (lines 18, 20, 22), and does not
need separate assertions to take ownership of buf since it belongs
to the cluster. Although the example does not show it, it is possible
to take read-ownership of clusters.

Our experience is that code does not require many ownership as-
sertions. Figure 2 is atypical in this respect: we chose it specifically
because it shows many assertion types. The worst-case benchmark
has fewer than 4% of annotation lines, and on average we annotate
only 0.1% of the lines.

Applications. We envisage several applications for our dynamic
ownership analysis. The most obvious is finding concurrency
and memory errors during development and testing. Our analy-
sis can also be used during production to diagnose errors in the
field [13] and to improve security. Since our dynamic analysis
ensures control-flow integrity and detects sequential buffer over-
flows and underflows [1], it prevents the most common attacks that
exploit low level defects in C and C++ programs. Our analysis
can also prevent some exploits of concurrency errors. For exam-
ple, consider the code in Figure 4, which illustrates a hypothetical
session-based commerce server. Each session is handled by a dif-
ferent thread but the programmer assumed incorrectly that each
user has at most one active session. Suppose a user A somehow
starts two sessions, each pointing to the same slot in userTable, and
one of the sessions deletes the account. If a new user B reuses

Domains
u, t ∈ Tid x ∈ Var v ∈ Value e ∈ Expr
σ ∈ Heap = Var → Value

Operations
a ∈ Operation ::= rd(t, x, v) | wr(t, x, v)

| sync(t, op, x, v1...vn) | b
b ∈ OwnOper ::= ...
α ∈ Trace ::= · | a, α

Semantics
(Read) σ −→rd(t,x,v) σ where σ(x) = v

(Write) σ −→wr(t,x,v) σ[x 7→ v]

(Sync) σ −→sync(t,op,x,v1...vn) δop,x,t(σ, v1...vn)
where φop,x,t(σ, v1...vn)

(Monitor) σ −→b σ

[TSTEP]
a ` ei −→ e′i σ −→a σ′ tid(a) = i

σ; e1||...ei...||en −→a σ′; e1||...e′i...||en

Figure 5. Semantics of Multithreaded Programs

that slot in the userTable, user A could use its second session to
buy goods using B’s account. Our tool forces the programmer to
make all assumptions about sharing explicit. In the example, the
programmer would have to assert that uinfo is owned exclusively
to allow reads and writes during request processing. Therefore, our
tool would prevent user A from exploiting this error by signalling
a policy violation when the user starts the second session.

3. Formalism
This section presents a formalism to describe our dynamic owner-
ship checking analysis. The presentation proceeds in three steps.
First, we define a semantics of multi-threaded traces, where a trace
is a sequence of basic operations (e.g., reads, writes, and synchro-
nization operations) performed by any number of threads, and char-
acterizes their effect on memory.

Second, we define ownership checking as a judgment on traces,
referring to this judgment as trace validation. In our implementa-
tion, we perform ownership checking at run-time, essentially co-
mingling trace validation with the operational semantics. Formal-
izing these two separately simplifies the theoretical development.
We prove that in valid traces, sequences of operations by a single
thread on locations owned by that thread can be serialized.

Finally, we present an alternative relaxed semantics in which
ownership checks are made first-class operations that appear in
traces, allowing them to be implemented more efficiently, and po-
tentially optimized away. In the basic semantics, trace validation
views a read (or other operation) as occurring atomically along with
the necessary ownership check. Making the ownership check a sep-
arate operation avoids forcing the check and the operation to be per-
formed atomically. We prove that when separating the check from
all but the operations for acquiring ownership, the system is sound
and complete with respect to the basic semantics, so that once again
validity implies serializability. We also prove that many ownership
checks can be removed without compromising trace validity.

3.1 Multithreaded program traces
The semantics of multithreaded programs is shown in Figure 5. It
defines legal operations a on memory σ. We make no distinction
between global and local (per-thread) memory, nor do we consider

allocating/deallocating memory. Memory is indexed by variables x,
which can be viewed as memory addresses. An operation is either
a read or write of a value v by a thread t from/to a variable x, a
synchronization operation op by a thread t that may read or write
variable x, or an ownership-related operation b, the details of which
we consider in the next subsection.

The semantics defines two judgments. The judgment σ −→a

σ′ defines the effect of operation a on a memory σ. Reads and
writes on variables have the obvious semantics. The semantics of
synchronization operations is parametrized by a predicate φ and a
function δ, indexed by the operation’s details. In particular, thread
t may perform synchronization operation op involving variable
x so long as the heap satisfies the predicate φop,x,t; as a result
the heap is transformed according to the function δop,x,t. If the
operation requires additional parameters, they are passed to the
function/predicate as needed. As an example, we could model a
semaphore x with operations seminit, wait and signal, defining δ
and φ as follows:

φseminit,x,t ≡ λ(σ, n). true
δseminit,x,t ≡ λ(σ, n). σ[x 7→ n]
φwait,x,t ≡ λσ. σ(x) > 0
δwait,x,t ≡ λσ. σ[x 7→ σ(x)− 1]
φsignal,x,t ≡ λσ. true
δsignal,x,t ≡ λσ. σ[x 7→ σ(x) + 1]

As one can use semaphores to implement mutual exclusion locks,
reader/writer locks, barriers, and other synchronization operations,
it should be evident that using δ and φ to model synchronization
operations is suitably expressive for our purposes.

The second judgment σ; e1||...ei...||en −→a σ′; e1||...e′i...||en

defines the execution of a multi-threaded program where a (non-
deterministically chosen) thread ei takes a step, potentially modi-
fying the heap. We do not define individual thread transitions, but
write a ` e −→ e′ to indicate that e transitions to e′, according
to the action a.

A trace α is a list of actions ai, and is termed an execution if it
arises from the semantics.

Definition 1 (Execution). A trace α = a, a′, ..., a′′ is an execution
iff there exists some σ, σ′, ..., σ′′ such that σ −→a σ′ −→a′

... −→a′′
σ′′.

3.2 Basic trace validation
The formalism defines basic operations b for owning memory ex-
clusively or for reading-only. Additionally modeling clusters and
permanent read-only states would be straightforward.

Ownership checking is specified as a judgment on traces,
ω, ρ `0 α ; ω′, ρ′, which we call trace validation, shown
in Figure 6. (As mentioned earlier, in practice we interleave own-
ership checking with actual execution.) Here, ω and ω′ are write-
ownership maps (or, simply write maps) from variables x to the
thread that owns them for writing. ρ and ρ′ are read-ownership
maps (or, simply read maps) from variables to sets of threads that
are allowed to read the variable. If no thread exclusively owns a
variable x, we have ω(x) = ⊥. Only variables owned by > may
be used in synchronization operations. Ownership by>models the
unchecked state described in the previous section, needed because
synchronization operations often fail to obey proper ownership.
Ownership by > is invariant throughout a program execution. We
write ωS

⊥ for a write map that maps all variables to unowned except
those in S, which are used for synchronization; we write ω⊥ when
the precise definition of S is unimportant. We use ρ∅ to indicate the
empty read map, which maps all variables to the empty-set ∅.

In the judgment, ω and ρ represent the maps prior to validat-
ing trace α, and ω′ and ρ′ indicate the state of the maps at the
conclusion of validation. Rule [C-Trace] appeals to the judgment

[C-OWNEX]
ω(x) = ⊥ ρ(x) = ∅

ω, ρ `0 ownEx(t, x) ; ω[x 7→ t], ρ[x 7→ {t}]

[C-OWNRD]
ω(x) = ⊥

ω, ρ `0 ownRd(t, x) ; ω, ρ[x 7→ ρ(x) ∪ {t}]

[C-RELEX]
ω(x) = t

ω, ρ `0 relEx(t, x) ; ω[x 7→ ⊥], ρ[x 7→ ∅]

[C-RELRD]
t ∈ ρ(x)

ω, ρ `0 relRd(t, x) ; ω, ρ[x 7→ (ρ(x) \ {t})]

[C-READ]
t ∈ ρ(x)

ω, ρ `0 rd(t, x, v) ; ω, ρ

[C-WRITE]
ω(x) = t

ω, ρ `0 wr(t, x, v) ; ω, ρ

[C-SYNC]
ω(x) = >

ω, ρ `0 sync(t, op, x, v1...vn) ; ω, ρ

[C-TRACE]
ω, ρ `0 a ; ω′, ρ′ ω′, ρ′ `0 α ; ω′′, ρ′′

ω, ρ `0 a, α ; ω′′, ρ′′

where

b ∈ OwnOper ::= ownEx(t, x) | ownRd(t, x)
| relEx(t, x) | relRd(t, x)

ω ∈ ExclOwnership = Var → (Tid ∪ {>,⊥})
ρ ∈ ReadOwnership = Var → 2Tid

ωS
⊥ = λx.if x ∈ S then > else ⊥
ρ∅ = λx.∅

Figure 6. Basic trace validation

ω, ρ `0 a ; ω′, ρ′ to validate an individual action a, where
the maps resulting from validating a are then used to validate the
remainder of the trace α. The rules for validating operations are
straightforward, following the transition diagram in Figure 1. No-
tice that rule [C-OwnEx] checks/modifies both maps ω and ρ, since
exclusive ownership grants both read and write access. One might
expect ρ(x) = {t} as an additional premise of [C-RelEx], and
ω(x) = ⊥ as a premise of [C-RelRd], symmetrical to the mod-
ifications to the maps made by [C-OwnEx] and [C-OwnRd], re-
spectively. Without these checks, a legal trace may perform an
ownEx(t, x) followed by relRd(t, x), so that x may only be ac-
cessed for writing from then on. While perhaps odd, removing the
checks simplifies the development of relaxed checking in the next
subsection, and poses no problems for soundness.

Serializability. The main property we prove is serializability. In
particular, by using ownership specifications in a particular way, a
programmer can ensure that, for valid traces, a sequence of thread
operations will always execute in a manner that is equivalent to
one in which the operations occur in sequence. More precisely, a
code sequence will be serializable if it adheres to a discipline of
two-phase ownership, in which all ownEx (and ownRd) operations
strictly precede relEx (and relRd) operations, with reads/writes on
owned data interleaved among them. For example, the code snippet

in the introduction trivially follows this discipline, as there is a
single ownEx followed by some reads/writes and finally a single
relEx. Lines 26–33 in Figure 2 exhibit two-phase ownership as well,
this time starting with two ownEx operations, with reads/writes
interleaved between the two final relEx operations.

We prove serializability using the method of reduction due to
Lipton [16]. Reduction is a means of reasoning that two execu-
tions α and α′ are equivalent, where α′ differs from α in having
commuted two different threads’ events. That two events may be
commuted is justified by the fact that one is either a left mover or a
right mover, defined as follows for our setting.

Definition 2 (Right mover). Operation o is a right mover iff for all
α, a, b, α′, ω, ω′, ρ, ρ′, if α, a, b, α′ is an execution with ω, ρ `0

α, a, b, α′ ; ω′, ρ′, op(a) = o and tid(a) 6= tid(b), then
α, b, a, α′ is also a valid execution with ω, ρ `0 α, b, a, α′ ;

ω′, ρ′. I.e., we can move op. a right in the trace, swapping it with b.

Definition 3 (Left mover). A left mover has the same definition as
a right mover (Def. 2), replacing the precondition op(a) = o with
op(b) = o. I.e., we can move b left in the trace, swapping it with a.

Given these definitions, we can prove that various operations are
left movers, right movers, or both.

Lemma 4 (Movers).

1. ownEx and ownRd operations are right movers.
2. relEx and relRd operations are left movers.
3. rd and wr operations are both left and right movers.

The proof of this Lemma is given in the Appendix.
Whether synchronization operations sync(t, op, x, v1...vn) are

movers depends on their semantics. Under a standard multi-
threading semantics, semaphore operations wait and signal are
right- and left-movers, respectively [16]. Because synchronization
operations on variables x require ω(x) = >, and >-ownership of
x must be invariant for an entire trace, commuting synchronization
operations with other operations has no effect on ownership maps,
so wait and signal are right- and left-movers in our setting as well.
Many other synchronization operations are also movers; e.g., lock-
ing a reader/writer lock, or a mutex, is right mover, while releasing
a lock or mutex is a left mover.

With these definitions in mind, we can define the conditions
under which a thread’s actions can be serialized. First, we define
the notion of a sub-trace:

sub(·, t) = ·
sub((a, α′), t) = a, sub(α′, t) where t = tid(a)
sub((a, α′), t) = sub(α′, t) where t 6= tid(a)

With this, we can prove that sub-traces adhering to a certain form
are serializable:1

Lemma 5 (Serializable sequences). Given an execution α such that
ω, ρ `0 α ; ω′, ρ′, if the sub-trace sub(α, t) defines a sequence
of right movers followed by a sequence of left movers, then there
exists an execution α′, sub(α, t), α′′ that is equivalent to α and is
valid such that ω, ρ `0 α′, sub(α, t), α′′ ; ω′, ρ′.

Proof. (Sketch) The equivalent execution can be constructed by re-
peatedly moving t’s right-movers to the right in the trace, swapping
them with operations of other threads, and likewise moving t’s left-
movers to the left in the trace, until they both meet in the middle,
leaving all of t’s events serial.

1 We could allow at most one “non-mover” in between the sequences of
right-movers and left-movers, but non-movers never arise in valid traces.

Definition 6 (Two-phase ownership). A trace α exhibits two-phase
ownership if for all a, a′ such that α ≡ α0, a, α1, a

′, α2 (where
αi could be empty), a = relEx(t, x) or relRd(t, x) for some x
implies a′ 6= ownEx(t, y) or ownRd(t, y) for all y. In other words,
no ownership operations may follow release operations by the
same thread. Any synchronization operations in the trace should
be right movers up until no later than the first release operation,
then followed by left movers.

Theorem 7 (Validity implies serializability). A valid trace α in
which thread t’s events exhibit two-phase ownership implies that
t’s events are serializable.

Proof. This follows easily from Lemma 5, since sub(α, t), in being
valid and adhering to two-phase ownership, is sure to be a series of
right movers followed by left movers.

Our system does not enjoy a strong completeness property. For
example, given an execution trace α devoid of any ownership op-
erations, we might wish to prove that we can rewrite the trace to an
equivalent one exhibiting two-phase ownership if α is serializable
(where we consider all of a given thread’s events as part of single
transaction). But it is easy to see that this is not the case. Consider
the following simple trace (where we have used pseudocode rather
than lower-level events, for clarity):

Thread 1 Thread 2
lock(m);
tmp = x;

y = x;
x = tmp+1;
unlock (m);

This trace is serializable (e.g., Thread 2’s operation can be moved
to the start of the trace), as indeed are all possible interleavings
of these two transactions. But annotating this code with two-phase
ownership would force x to be owned by Thread 1, and therefore
signal an ownership violation when Thread 2 accesses it. Thus there
is a race on x; we conjecture that two-phase ownership is sufficient
to specify serializable transactions that do not contain races.

3.3 Relaxed Validation
If we imagine implementing basic validation with an on-line mon-
itor, then the rules in Figure 6 imply that ownership checks (the
premises of the rules) must be performed atomically with an ac-
tion, e.g., a read or write. Likewise, ownership acquirement and
release operations are assumed to check and update the ownership
maps atomically. A straightforward way to ensure atomicity is to
use locking. For example, prior to performing a read of variable x,
thread t acquires a lock, checks the read ownership map, and then
performs the read of x.

Implementing ownership checking this way could add signif-
icant overhead. While we must still be careful that accesses and
modifications to ownership maps are thread-safe, this subsection
shows that we do not need ownership checks to occur indivisibly
when performed as part of read, write, or release operations. In par-
ticular, we prove that relaxed trace validation—in which ownership
checks are proper operations separate from reads, writes, etc.—is
sound and complete with respect to basic trace validation. Thus we
are able to reduce the overhead of performing ownership checking
without reducing its utility.

Figure 7 depicts the relaxed validation judgment. All of the op-
erations that we had before are unchanged, but we add separate
operations ownWr?(t, x) and ownRd?(t, x) for checking that t
owns x exclusively (for writing), or for reading, respectively. The
relaxed checking semantics permits read, write, sync, and release
operations to be validated unconditionally (according to rules (CX-
Read), (CX-Write), (CX-Sync), (CX-RelEx), and (CX-RelRd)),

[CX-READ]
ω, ρ ` rd(t, x, v) ; ω, ρ

[CX-WRITE]
ω, ρ ` wr(t, x, v) ; ω, ρ

[CX-RELEX]
ω, ρ ` relEx(t, x) ; ω[x 7→ ⊥], ρ[x 7→ (ρ(x) \ {t})]

[CX-RELRD]
ω, ρ ` relRd(t, x) ; ω, ρ[x 7→ (ρ(x) \ {t})]

[CX-SYNC]
ω, ρ `0 sync(t, op, x, v1...vn) ; ω, ρ

[CX-OWNEX]
ω(x) = ⊥ ρ(x) = ∅

ω, ρ ` ownEx(t, x) ; ω[x 7→ t], ρ[x 7→ {t}]

[CX-OWNRD]
ω(x) = ⊥

ω, ρ ` ownRd(t, x) ; ω, ρ[x 7→ ρ(x) ∪ {t}]

[CX-CHECKWR]
ω(x) = o

ω, ρ ` ownWr?(o, x) ; ω, ρ

[CX-CHECKRD]
t ∈ ρ(x)

ω, ρ ` ownRd?(t, x) ; ω, ρ

[CX-TRACE]
ω, ρ ` a ; ω′, ρ′ ω′, ρ′ ` α ; ω′′, ρ′′

ω ` a, α ; ω′′, ρ′′

where

o ∈ Owners ::= t | >
b ∈ OwnOper ::= ... | ownWr?(o, x) | ownRd?(t, x)

Figure 7. Relaxed trace validation

but ownEx and ownRd events are checked as before, and the sep-
arate ownership checks are checked similarly, according to (CX-
CheckWr) and (CX-CheckRd).

In this setting, we are presuming the program has been changed
to emit a separate ownership test prior to each read, write, sync,
and release operation, while ownership operations remain atomic—
checking the conditions for allowing ownership and acquirement of
ownership happen indivisibly. We formalize this assumption below.

Equivalence to basic validation. We can prove that the relaxed
validation is sound and complete with respect to the basic valida-
tion, and as such that validity in the relaxed semantics implies seri-
alizability. To establish this requires a means to relate traces in the
basic and relaxed settings. First we define a way to strip explicit
ownership checks for a relaxed-setting trace, resulting in a trace
that can be subject to basic validation:

[·] = ·
[a, α′] = [α′] where op(a) ∈ {ownWr?, ownRd?}
[a, α′] = a, [α′] otherwise

Conversely, we define a way to add explicit ownership checks to a
trace that lacks them:
〈·〉 = ·
〈a, α′〉 = ownWr?(tid(a), var(a)), a, 〈α′〉

where op(a) ∈ {wr, relEx}
〈a, α′〉 = ownWr?(>, var(a)), a, 〈α′〉 where op(a) = sync
〈a, α′〉 = ownRd?(tid(a), var(a)), a, 〈α′〉

where op(a) ∈ {rd, relRd}
〈a, α′〉 = a, 〈α′〉 otherwise

Finally, we define the well-formedness judgment C `wf α to
formalize the requirement that all read, write, release, and sync
actions in α are preceded by an ownership check. The rules for
this judgment appear in Figure 8. Here, the check map C maps
triples (t, x, p) to either X or ×, with p ∈ {r, w}. We write
C× to denote the map which maps all triples to ×. In the rules,
C(t, x, p) = X implies that thread t has previously checked that it
owns x, either for reading if p is r or exclusively if p is w. Thus rule
[WF-CheckRd] sets C(t, x, r) to X when checking the remainder
of the trace upon seeing action ownRd?(t, x), while rules [WF-
Rd] and [WF-RelRd] each require that t has previously performed
a read check. Though trace well-formedness is superficially similar
to trace validation, we emphasize that it only guarantees that a
thread t precedes accesses to x with an appropriate check; this
check is by no means guaranteed to succeed.

The rules for writes and sync operations are similar to those for
reads (cf. rules [WF-CheckWr], [WF-Sync], [WF-Wr] and [WF-
Rel]). Rules [WF-Own] and [WF-OwnRd] treat their respective
ownership operations similarly to ownership checks since owner-
ship checking is part of the semantics of ownEx and ownRd (cf.
rules [CX-OwnEx] and [CX-OwnRd] in Figure 7). Likewise, oper-
ations relEx(t, x) and relRd(t, x) invalidate any prior checks made
by t for variable x.

Optimized checking. While it is straightforward to see that for
all basic traces α that C× `wf 〈α〉—i.e., that it admits traces in
which all operations by thread t are preceded by a check in t’s sub-
trace—the well-formedness judgment admits even more optimized
traces. For example, in the trace ownEx(t, x), α′, ownWr?(t, x), α′′,
wr(t, x, v), where no event a in α′ or α′′ has tid(a) = t, we can
safely remove the ownWr?(t, x) event from the trace. This is be-
cause ownership is invariant—once a thread t acquires ownership
of some variable x, no other thread can change x’s ownership to
not include (or be) t. This implies that if the ownEx(t, x) event in
the above trace is valid, then the wr(t, x, v) also will be (assum-
ing the intervening traces α, α′ are valid as well). We have both
C× `wf ownEx(t, x), α′, ownWr?(t, x), α′′, wr(t, x, v) and
C× `wf ownEx(t, x), α′, α′′, wr(t, x, v).

The bottom of Figure 8 also defines a compatibility judgment
between a check map C and ownership maps ω and ρ, for purposes
of establishing proper inductive hypotheses in the proofs.

Now we can prove soundness and completeness.

Lemma 8 (Soundness). If ω; ρ ` α where C `wf α and
ω; ρ ` C then ω; ρ `0 [α].

Lemma 9 (Completeness). If ω; ρ `0 α ; ω′; ρ′ then ω; ρ `
〈α〉 ; ω′; ρ′.

The proofs are by straightforward induction on the given deriva-
tions. Note that we cannot prove the more symmetric completeness
result, i.e., ω; ρ `0 [α] ; ω′; ρ′ implies ω; ρ ` α ; ω′; ρ′.
As a counterexample, for trace α ≡ ownRd?(t, x), ownEx(t, x),
rd(t, x, v) we cannot prove ω⊥; ρ∅ ` α but we can prove
ω⊥; ρ∅ `0 [α].

Theorem 10 (Relaxed Validity Implies Serializability). For a
relaxed-semantics trace α in which thread t’s events exhibit two-
phase ownership, ω; ρ ` α and C× `wf α implies t’s events
are serializable.

4. Implementation
This section describes the implementation of our dynamic own-
ership analysis. There is a runtime library with definitions for the
ownership assertions and wrappers for library functions, and a com-
piler that adds memory access checks to the code. The compiler
uses a simple static analysis to elide access checks that can be

[WF-RD]
C(t, x, r) = X

C `wf α

C `wf rd(t, x, v), α

[WF-WR]
C(t, x, w) = X

C `wf α

C `wf wr(t, x, v), α

[WF-REL]
C(t, x, w) = X

C[(t, x, w) 7→ ×][(t, x, r) 7→ ×] `wf α

C `wf relEx(t, x), α

[WF-RELRD]
C(t, x, r) = X C[(t, x, r) 7→ ×] `wf α

C `wf relRd(t, x), α

[WF-CHECKWR]
C[(o, x, w) 7→ X] `wf α

C `wf ownWr?(o, x), α

[WF-CHECKRD]
C[(t, x, r) 7→ X] `wf α

C `wf ownRd?(t, x), α

[WF-SYNC]
C(>, x, w) = X C `wf α

C `wf sync(t, op, v, x), α

[WF-OWN]
C[(t, x, w) 7→ X][(t, x, r) 7→ X] `wf α

C `wf ownEx(t, x), α

[WF-OWNRD]
C[(t, x, r) 7→ X] `wf α

C `wf ownRd(t, x), α

[WF-EMPTY]
C `wf ·

[WF-COMPATIBILITY]
∀t, x, o. C(t, x, r) = X ⇒ t ∈ ρ(x) ∧

C(o, x, w) = X ⇒ o = ω(x)

ω; ρ ` C

where

p ∈ RWop ::= r | w
C ∈ WFmap ::= Owners ×Var × RWop → {×, X}

Figure 8. Well-formed, optimized execution traces

proven not to fail. We used the Phoenix framework [18] to imple-
ment a compiler for C and C++ programs running on 32-bit x86
processors. We start by explaining the access checks and runtime
library and then we describe the static analysis.

4.1 Memory ownership states and data structures
Figure 9 shows the full transition diagram for memory ownership
states in our implementation, expanding the simpler diagram shown
in Figure 1. We record the ownership state of memory using two
data structures: the ownership table and the cluster table.

The ownership table maintains one byte of state for each eight
byte slot in virtual memory. This byte encodes not accessible, not
owned, read-only, unchecked, a thread identifier when the slot is
owned exclusively by a thread, or a cluster identifier if the slot has
been given to a cluster. Thread identifiers are allocated dynamically
when threads start and are freed when they exit. Cluster identifiers
are allocated and freed dynamically from the same space.

The virtual memory for the ownership table is reserved by our
runtime library at program startup time and we install a page fault
handler to allocate physical pages to the table on demand. There-
fore, this table introduces a space overhead of approximately 12.5%

not accessible
owned

by thread T

allocate by T

not owned

cluster read-

owned by

a set of threads

free by T

ownEx

relEx

relClusterRd /

ownClusterRd

How to import this into latex:

1) print to PDF

2) change the latex code to specify the bounding box (no, “print

selection” does not work right).

To find the good values:

2.a) in Visio, select “View > Size window”

2.b) select the rectangle around the figure. You’ll get (x,y) for the

lower-left corner and width, height.

2.c) latex needs lower-left (x,y) and top-right (x,y)

unchecked

read-only

makeRO

makeUnchecked

cluster not-

owned

giveToCluster

takeFromCluster

cluster owned by

thread T

ownClusterEx

relClusterEx

ownClusterRd

relClusterRd

free by T

Figure 9. Memory ownership states.

while supporting up to 250 threads and clusters. The compiler
aligns global and local variables on eight-byte boundaries to en-
sure that different variables can have different ownership states (as
in [1]). The standard memory allocators also align heap allocations
on eight byte boundaries. But if different fields in the same struc-
ture can have different ownership states, the programmer must use
alignment pragmas to ensure they are in different slots.

The cluster table records the ownership state for clusters. It has a
fixed size of 256 entries so that it can be indexed efficiently using a
cluster identifier. Each entry has a 4-byte status word and a bitmap
with 256 bits. The status word is null if the cluster is not owned;
it records a thread identifier if the cluster is owned exclusively by
a thread or records a count of the number of readers (ored with
0x80000000) if the cluster is owned for reading by a set of threads.
The bitmap tracks each thread that owns the cluster for reading.
The cluster table introduces a fixed space overhead of 9KB.

As shown in Figure 9, we support setting individual memory
slots to the read-only state (which allows any thread to read) but
we do not support the read-owned state unless a slot is given to
a cluster. We made this decision to keep the space overhead low
because supporting this state with up to 250 threads for individual
memory slots would increase the space overhead from 12.5% to
400%. As mentioned in Section 2, the unchecked state is used to
label synchronization variables or data with otherwise benign races:
any thread can read or write unchecked memory.

The read-only and unchecked states are sticky: the state of a
memory slot cannot change once it is set to read-only or unchecked,
which implies the memory cannot be freed (which would require
moving it to the not-accessible state). Otherwise, accesses through
dangling references could allow threads to read or write data owned
by other threads, which would violate our modular soundness prop-
erty. Therefore we do not allow stack variables to be in these states
and we delay frees of memory in one of these states until the pro-
gram terminates.

These restrictions may seem overly burdensome but they are
easy to overcome using custom allocators for objects with read-
only or unchecked fields. For example, our implementation will
delay freeing a queue from Figure 2 to the global heap because the
queue has read-only fields that point to synchronization objects.
But nothing prevents the programmer from writing a custom al-
locator that implements free by adding freed queues to a list and
malloc by reusing a queue from the list (or allocating a new one
if the list is empty). Reusing a queue does not violate the owner-
ship policy because it requires re-initializing the fields that are not
read-only (size,occupied,nextin,buf) but it does not require changes

to the read-only fields that point to synchronization variables. Since
we believe this is a common pattern, we provide a generic imple-
mentation in our runtime library. The programmer can create one
of these allocators for an object type by specifying a function to al-
locate objects when the list is empty (like queueInit in our example)
and a function to reuse objects from the list.

4.2 Compiler
The compiler inserts ownership checks before read and write ac-
cesses to memory. These checks consult the memory ownership
and cluster tables to determine whether to allow the access. As we
prove in Section 3.3, a check and the memory access it precedes
do not need to happen indivisibly. This allows us to use efficient
code sequences to implement the checks, which is important be-
cause they are executed frequently. Figure 10 shows an example
code sequence that implements a read check. In this example, the
address of the memory about to be read is in the eax register. The
sequence starts by loading the state of the slot pointed to by eax
from the memory ownership table into al. Then it checks if the run-
ning thread owns the slot exclusively by comparing the state with
the thread’s identifier. The thread identifier is stored in per-thread
memory at thread creation time and is loaded into a stack variable at
the start of each function. The second check determines if the slot
is in the read-only state (encoded as 8). If either of these checks
succeeds, the read is allowed. Otherwise, the sequence calls the

slowPathR AL function to check if the slot was given to a cluster
the thread owns or is in the unchecked state. This “slow path” check
is also efficient: the function expects the ownership state in register
al and it uses pre-computed information that is stored in per-thread
memory to access the bitmap in the cluster table without using other
registers. If the slow path fails, we execute the x86 instruction int 3,
which signals a failure by triggering a breakpoint; otherwise, we al-
low the read. The other code sequences are similar. All are short,
use a single register, and are inserted in an early compilation phase
within Phoenix to expose them to further optimizations.

1 shr eax,3
2 movzx eax,byte ptr [eax+40000000h]
3 cmp al,byte ptr [esp+4Ch]
4 je L1
5 cmp al,8
6 je L1
7 call slowPathR AL
8 L1:

Figure 10. Code sequence that implements ownRd?.

In addition to ownership checks, the compiler inserts code to
update the memory ownership table on function entry to grant ex-
clusive ownership of arguments and local variables to the running
thread. The function epilogues are modified to revert this memory
to the not-accessible state after checking that it is owned exclu-
sively by the running thread. These checks prevent deallocation of
memory that may be in use by other threads. We remove most of
these checks with a simple static analysis (Section 4.4).

We implement control-flow integrity as in [5] to prevent mem-
ory errors from bypassing our checks. We assign a special own-
ership value to the start of functions whose address is taken, and
use a check similar to the one in Figure 10 to ensure that indirect
calls only target these functions. We prevent errors from subverting
other indirect control flow transfers by ensuring that the memory
locations with their targets are always in the not-accessible state;
for example, return addresses are always in the not accessible state.

The compiler also inserts guard objects adjacent to global vari-
ables and those local variables whose address is taken (as in [1]).
These guard objects are always in the not-accessible state. While

guard objects are not strictly necessary, with them we can effi-
ciently detect sequential buffer overflows and underflows, which
are a common exploitable error.

4.3 Runtime library
The runtime library implements the ownership assertions and wrap-
pers for library functions. The ownership assertions are listed next
to the edges in Figure 9 and they can only be called in the states
shown in the figure. The implementation of these functions is
straightforward: they first check that the memory or cluster they
receive as an argument is in the appropriate state and then they
modify the state in the memory or ownership table according to
the figure. As we prove in Section 3.3, the check and modifica-
tion do not need to be atomic except for ownEx, ownClusterEx, and
ownClusterRd.

We implement ownEx by performing a sequence of atomic
cmpxchg instructions on the affected ownership table entries. As
an optimization, our implementation performs cmpxchg on four en-
tries at a time when possible. If any of the cmpxchg instructions
fails to update the table because the state is no longer unowned,
the function triggers a breakpoint. ownClusterEx uses cmpxchg on
the cluster status to set it to the thread identifier. ownClusterRd
uses cmpxchg to increment the count of readers in the cluster sta-
tus and an atomic bit manipulation instruction (btc) to update the
cluster’s bitmap (relClusterRd is implemented in a similar way be-
cause several threads can acquire and release the cluster for reading
concurrently).

We define wrappers for common library functions and system
calls. These wrappers perform ownership checks on the memory
that is accessed by the functions they wrap. For example, the wrap-
per for memcpy checks that the source buffer is readable and that
the destination buffer is writable. The compiler replaces direct and
indirect calls to the original functions with calls to the wrappers.

The wrappers for malloc and free are the most interesting. The
wrapper for malloc sets the ownership table entries for the allocated
memory to the identifier of the calling thread. In addition, it sets
the entry corresponding to the allocator metadata to a special heap
guard state. This state is used to prevent freeing of pointers to
non-heap memory or to the middle of heap allocations. Threads
executing instrumented code cannot read or write memory in the
heap guard state. Therefore, this also prevents sequential buffer
overflows and underflows that cross heap allocation boundaries.

The wrapper for free checks that the slot before the memory
being freed is in the heap guard state and that the memory being
freed is owned exclusively by the calling thread. Frees of memory
blocks that contain slots in the read-only or unchecked states are
delayed until the end of the execution. Attempts to free memory
in other states raise an error. This implementation ensures that
incorrect heap management cannot violate the ownership policies.

To prevent delaying frees from causing unbounded memory
leaks, we enforce the following restriction: after free is called on
memory in the read-only or unchecked state, calls to makeRO or
makeUnchecked signal an error.

4.4 Static Analysis
As discussed in Section 3.3, it is not necessary to insert ownership
checks before every memory access because ownership is invari-
ant: once memory becomes owned by a thread t, no other thread
can revoke that ownership. Similarly, memory in the read-only or
unchecked states can never be made otherwise. As such, if an ac-
cess to location x is preceded by an acquirement or check of the
needed ownership of x, and there is no intervening release, we can
elide the check. We use static analysis to elide these checks.

The basic idea is to use an intraprocedural dataflow analysis to
compute the set of memory locations that must be owned exclu-

sively, or for reading only, by the current thread at a given program
point. Reads or writes to locations that are covered by these known-
exclusive sets, or reads covered by the known-readable sets, do not
require any checks. Ignoring the effects of function calls for the mo-
ment, locations are added to the known-exclusive set (gen) for each
ownEx, ownClusterEx, and write, and they are removed (kill) for
each free, relEx, relClusterEx, and giveToCluster. Gen and kill func-
tions for the known-readable set are similar, and in both cases sets
are intersected at joins in the control-flow graph. We also allow the
programmer to write assertOwnedEx and assertOwnedRd to force
checks on particular memory locations, which add locations to the
known-exclusive and known-readable sets, respectively. These as-
sertions can help reduce the total number of checks by effectively
hoisting checks above complicated control flow that might other-
wise foil the check-elimination analysis.

There are two further complications in the analysis. First, build-
ing the sets above requires memory locations to be unambiguously
identified when adding them to the set, which is complicated by
aliasing and pointer arithmetic. Second, we must account for the
possible effects on the ownership state of intervening function calls.
We handle these issues fairly simply, to avoid an expensive whole-
program analysis.

For the first case we also run a variant of the analysis that
keeps track not of sets of memory locations, but of sets of symbolic
(pointer,length) pairs. The intuition is that if we insert a check for
a write to ∗p, we may be able to elide the check for a second write
through the same pointer. We must however be careful that what
p points to did not change in between the two calls. To ensure
this, the kill function will remove a pair if the location of either
symbol leaves the known-exclusive set or when a write may overlap
with the location holding the symbol itself. We can elide checks
from reads or writes through a pointer+offset as long as the pointer
is in the set and 0≤offset<length. Both offset and length may
be symbolic expressions: we use a simple symbolic evaluation to
determine, for example, that symbolic offset n is less than symbolic
length n + 1, if we know that n + 1 is not an overflow. There is a
similar analysis for eliding read checks.

To avoid the pessimistic assumption that a function could re-
lease ownership of any memory location, we perform a simple
bottom-up interprocedural analysis to summarize the “release-
behavior” of each function, tracking the set of locations that may
be released from exclusive (or freed) and the set of locations that
may be released from read. Thus, when the intraprocedural anal-
ysis encounters a call to a function, it uses the summary to adjust
the known-readable and known-exclusive sets appropriately. We
do not summarize the “acquire-behavior” of functions, though we
could do so to improve precision.

5. Evaluation
We used seven C and C++ programs to evaluate our dynamic own-
ership checking tool. We started by annotating the programs with
ownership policies and assessing the required changes. Then we
ran experiments to measure the time and space overheads intro-
duced by our tool. This section presents our results and discusses
several concurrency and memory errors that we found.

5.1 Programs, annotations, and bugs
We annotated seven multi-threaded programs: pfscan, aget, pbzip2,
stunnel, genome, ctrace, and nullhttpd. We chose the first four pro-
grams to facilitate a comparison with SharC [2]. These four pro-
grams synchronize threads using mutexes, condition variables, and
thread joins. We also chose programs that use different synchro-
nization primitives to demonstrate the generality of our ownership
assertions: genome, taken from the STAMP benchmark suite [4],
uses barriers and ctrace uses semaphores. The nullhttpd Web server

lines changes annotations
aget 1098 6 0.55% 11 1.00%
ctrace 1408 8 0.57% 33 2.34%
genome 9645 56 0.58% 63 0.65%
nullhttpd 3030 3 0.00% 10 0.33%
pbzip2 15188 21 0.14% 81 0.53%
pfscan 1073 22 2.05% 40 3.73%
stunnel 235366 94 0.04% 14 0.01%
total 266808 210 0.08% 252 0.09%

Table 1. Change and annotation counts.

is known to be buggy. We chose nullhttpd to evaluate our tool’s
ability to find bugs.

We annotated the programs using the following methodology.
First, we ran the programs with no annotations using our tool. Since
the default ownership policy prevents sharing, the tool signaled an
error whenever a variable was shared in one of these executions.
Then we inspected the source code to understand how these vari-
ables should be shared and we inserted annotations to enforce the
appropriate ownership policy. We repeated this process with dif-
ferent test inputs until the tool stopped signaling errors. In several
cases, we inserted annotations right next to matching comments
in the code but our analysis showed that some of these comments
were wrong. Concurrent programs are subtle and specifying and
enforcing the right ownership policy without the support of a tool
like ours can be tricky. We found that our incremental methodol-
ogy works well: it allows programmers to debug the program and
ownership policies together.

Table 1 tabulates the total lines of code we changed or annotated
for each program. Since we maintain ownership state for eight-byte
memory slots, a common change was the addition of alignment
pragmas to structure definitions to ensure that different fields are in
different slots. These pragmas are only needed if different fields in
the same structure can have different ownership states.

The annotation count is small compared with the size of the
annotated programs. In the worst case, we changed 6% of the
lines in a benchmark but we changed less than 0.2% of the lines
in total. SharC [2] has lower annotation counts in the first four
benchmarks but it provides weaker guarantees; in particular, it
will fail to catch problems due to memory safety violations. We
obtained versions of aget, pbzip2, and pfscan with both SharC and
Deputy [7] annotations from the authors of SharC. We found that
adding Deputy [7] annotations to achieve spatial memory safety
increases their annotation counts to be greater than ours on average.

We found eight bugs in the benchmark programs using our tool:
three serious races and five buffer underflows. Next, we describe
the benchmarks, the annotations, and the bugs in more detail.

The pfscan program searches for strings in files. The main
thread finds the paths of all files that need to be searched and inserts
them in a queue. Worker threads loop taking a path from the queue
and searching the corresponding file. This queue is very similar
to the one in Figures 2 and 3, and requires similar annotations.
In addition, the main thread uses a shared variable protected by a
mutex to synchronize with the workers on completion. We inserted
ownEx annotations for this variable after the mutex is acquired
and relEx before it is released. The rest of the annotations are for
variables that are initialized by the main thread and are read-only
for the rest of the execution. We inserted makeRO annotations for
these variables right after their initialization.

Aget parallelizes file downloads. The main thread obtains the
size of the file and initializes an array with structures describing
disjoint byte ranges. Then it forks a worker thread to download each
range and waits to join them. We inserted a relEx annotation for the
structure describing the range before each fork and a corresponding

ownEx annotation after each join. We also added a ownEx annota-
tion for the structure at the start of the worker routine and a cor-
responding relEx annotation at the end. These annotations acquire
and release ownership of all the fields in the structure except for the
field with the thread identifier. This field is owned exclusively by
the main thread throughout the execution to allow its use as an ar-
gument to the join. Our tool found a benign race on a variable used
to print a progress bar. We added an annotation makeUnchecked to
make this variable unchecked. Our tool found a buffer underflow in
aget that can cause the program to read a byte before the start of a
string.

Pbzip2 is a parallel implementation of the bzip2 compression
algorithm. A producer thread reads blocks from a file and places
a structure describing each block in a queue. Several consumer
threads take blocks from the queue and compress (or decompress)
them. The consumers put compressed (or decompressed) blocks in
an array that is protected by a mutex. A writer thread scans this
array and writes the blocks to disk. The annotations that we inserted
for the queue and the shared array are similar to those in pfscan.
Additionally, we inserted annotations to mark variables read-only
and to mark a variable with a benign race unchecked.

The stunnel program provides a tunneling service for TCP over
SSL. The main thread accepts connections in a loop and forks
a client thread to manage each connection. Most of the data is
shared read-only between threads or is thread private. We inserted
makeRO annotations to mark this data read-only after initialization
and our default annotations were sufficient for thread private data.
Stunnel uses the OpenSSL library to perform encryption. We also
instrumented this library.

The genome benchmark program takes a large number of DNA
segments and matches them to reconstruct the original source
genome [4]. We modified the original benchmark, written to use
software transactional memory, to use locks instead. The algorithm
runs in several phases with barriers between them. The first phase
uses a hash set to create a set of unique segments from the initial
segment pool. We associate a cluster with the hash set. We insert
a single ownClusterEx before updating the hash set and a matching
relClusterEx after. After the barrier at the end of the first phase,
we insert an ownClusterRd for the cluster because the hash set is
read-only for the rest of the execution. This is another example of
dynamic change in ownership policy. In the second phase of the
algorithm, threads match unique segments using shared arrays and
hash tables. The third phase computes the final sequence. The an-
notations that we inserted in the code for these phases resemble
ones already described.

The ctrace library provides tracing functionality for multi-
threaded programs. The key data structure is a hash table with
per-thread information. The hash table is protected with a read-
write lock implemented using semaphores. We associated a cluster
with the hash table and we inserted annotations in the read-write
lock implementation to take and release exclusive or read own-
ership of the cluster as appropriate. We used the makeUnchecked
annotation to deal with several benign races.

The nullhttpd Web server has a concurrency pattern similar to
the one in stunnel: the main thread accepts connections in a loop
and forks a client thread to handle each connection. There is an
array of per-connection data structures. Client threads receive a
pointer to one of these entries initialized by the main thread and
they mark this entry as not in use when they exit. The main thread
scans this array looking for free entries. Client threads exit when
their connection is closed or is idle for more than a timeout. The
annotations we inserted in this program are similar to those used
in aget except that we marked one of the fields in each connection
data structure unchecked because it has a benign race.

Our tool found three serious concurrency bugs in nullhttpd. The
first is a race on a handle field in the per-connection data structure.
The main thread initializes a thread handle field in this structure
after it creates a thread. A client thread may close an invalid handle
if it accesses this field before it is initialized by the main thread.
The second bug is a race on the per-connection data structure that
can lead to a double free. Before exiting, a client thread frees data
pointed to by its connection data structure and uses memset both
to zero the pointers to the freed data and to signal main that the
data structure is no longer in use. This can cause the main thread to
free the data again if it reuses the data structure before the pointers
are zeroed by the client thread. The last bug is a race on a static
variable used to implement a readdir-like function in the Windows
version of nullhttpd. The tool also found four buffer underflows in
nullhttpd that can cause the program to write data to bytes before
the beginning of a buffer.

We found the bugs described in this section by running the
benchmarks in the next section and simple tests to increase code
coverage. It was not necessary to explore different thread sched-
ules to uncover these bugs. Dynamic ownership analysis can sig-
nificantly increase the set of schedules that uncover a bug. For
example, our analysis uncovers the last bug we described in any
execution where a thread other than main accesses the static vari-
able. Without our analysis, the bug has no adverse effects unless
two threads use the readdir-like function concurrently. We would
likely find more bugs by combining dynamic ownership analysis
with tools like Chess [17] that explore different thread schedules
systematically.

5.2 Performance measurements
We also measured the overhead introduced by our tool. We com-
piled the benchmarks with and without dynamic ownership anal-
ysis. We used the Phoenix [18] compiler with the -O2 (maxi-
mize speed) option in both cases. Phoenix is a production-quality
compiler—for example, it achieves SPEC Int 2000 performance
within 10% of the C/C++ compiler shipped with Microsoft Vi-
sual Studio. Then we ran experiments comparing the elapsed time,
throughput, and memory usage of the two versions. Memory usage
is the peak working set size as reported by the Windows PSAPI
interface. We averaged the elapsed time, throughput, and memory
usage across at least 10 runs of each experiment. The standard de-
viation was below 3% of the computed average in all experiments.
We report the percent increase in average elapsed time and memory
usage and the percent decrease in average throughput.

All the experiments ran on HP xw4600 workstations with an
Intel Core2 Duo CPU at 2.66 GHz and 4GB of RAM, running the
Windows Vista Enterprise SP1 operating system. The workstations
were connected with a Buffalo LSW100 100 Mbps switching hub
for the experiments involving the network.

The experiments used to evaluate the first four programs attempt
to reproduce the experiments described in [2]. To evaluate pfscan,
we searched for the string “HELLO” in three copies of the PDF
files from the proceedings of DSN 2005, 2007 and 2008. We elim-
inated I/O overhead by ensuring that the files fit in the operating
system buffer cache and by warming up the cache before the ex-
periment. We used aget to fetch a compressed file with 182MB
from an idle Microsoft IIS server connected to the hub. The ex-
periment to evaluate pbzip2 compressed a 4MB file. We evaluated
stunnel by encrypting three connections to a simple echo server and
measuring the time to send and receive 10,000 messages. We ran
the genome benchmark with g=16E3, n=16E6, s=32 and t=2 and
we ran the simple benchmark in the ctrace distribution with two
threads that write 500000 messages to a trace file. We measured the
throughput of nullhttpd with the default configuration (which lim-
its the maximum number of simultaneous connections to 50) using

time space
aget 0.0% 0.0%
ctrace 27.0% 6.5%
genome 44.2% 12.5%
nullhttpd 0.0% 10.4%
pbzip2 49.0% 18.6%
pfscan 37.2% 14.0%
stunnel 20.8% 8.7%
average 25.8% 10.4%

Table 2. Overhead in time and space.

the apache benchmark. We increased the number of simultaneous
clients until the throughput stopped increasing. The results reported
were obtained with 30 simultaneous clients fetching a small Web
page 10,000 times.

The middle column of Table 2 shows the percentage increase in
elapsed time due to our dynamic ownership analysis (for nullhttpd
it shows the percentage decrease in thoughput). The average over-
head across all benchmarks is 26%. For memory intensive bench-
marks like pbzip2, the overhead can be as high as 49%, which is
probably too high for our tool to be used during production but low
enough for use during testing.

The overhead is negligible for nullhttpd and aget. To investigate
why, we measured the increase in CPU time due to our instrumenta-
tion in aget and nullhttpd. We used the GetSystemTimes function in
Windows to measure the CPU time. We found that our instrumen-
tation does not measurably increase the CPU time for aget because
most of the CPU time is consumed executing operating system code
that we wrap but do not instrument. Our instrumentation increases
the CPU time for nullhttpd by 24%. We believe that these over-
heads are sufficiently low for our tool to be used during production
to improve security and diagnosability of concurrency errors.

The rightmost column of Table 2 shows the memory overhead
incurred by the various benchmarks. Since we have one byte in
the ownership table for each eight byte memory slot, we would
expect the space overhead introduced by our technique to be around
12.5%. The average space overhead across all the benchmarks is
10%. Values below the expected 12.5% are due to memory that is
touched in libraries that we do not instrument and values above are
due to updating ownership table entries for memory that is allocated
but never touched in the benchmark (the operating system faults
pages on demand for large allocations).

The time overhead of Shoal [3], the new version of SharC that
improves expressiveness, seems to be similar to ours but Anderson
et al. reported lower time overhead for pfscan, pbzip2, and stunnel
using SharC [2]. Both Shoal and SharC provide weaker guarantees
than our dynamic ownership analysis. In particular, they do not
enforce sharing annotations in the presence of memory errors.
Most of our overhead in these benchmarks is due to the checks
to prevent ownership policy violations due to memory errors. Our
static analysis can frequently prove that the target object for an
access is owned without being able to prove that the access is within
bounds. We believe that a more sophisticated static analysis would
be able to close the performance gap. The space overhead of our
technique is lower than SharC’s on average despite the fact that we
support up to 250 threads whereas SharC only supports up to seven
to keep the space overhead low.

6. Related Work
Many static and dynamic analyses have been developed to detect
concurrency-related problems. Static analyses, e.g., for ensuring
race-freedom [19] or atomicity [12], have the advantage that they
cover potentially all program executions, but the disadvantage that

they often have many false alarms or fail to scale. Dynamic analy-
ses such as ours have the opposite properties. The coverage prob-
lem can be mitigated by employing active testing tools, such as Cal-
Fuzzer [15], or employing hybrid static/dynamic analysis [6]. For
brevity, we focus predominantly on dynamic analyses, organized
according to the concurrency problem detected.

Data races are a well-known class of error in which two threads
access the same memory location without using appropriate syn-
chronization, and at least one access is a write. Many dynamic
analyses for detecting races have been developed, from imprecise
lockset-based detectors such as Eraser [21], which work by ensur-
ing that a shared location is always accessed with a particular lock
held, to precise detectors such as Goldilocks [8] and FastTrack [10],
that track some form of happens-before relation. We could imple-
ment a dynamic data race detector with our system by wrapping
every read and write with ownership assertions for reading and ex-
clusive access, respectively. Though useful, the lack of data races is
not sufficient to ensure correctness. Protecting each individual ac-
cess by a lock, for example, trivially makes any program data race-
free, but concurrency errors would remain. Moreover, data races
are not always problematic; programs often exhibit so-called be-
nign races. On the other hand, data race detection tools are easy to
use, requiring no direct input from the programmer.

Atomicity violations are a better indicator of concurrency errors.
Using a tool such as Velodrome [11], Wang et al. [22], or the
Atomizer [9], a programmer may specify whether a method or code
block should execute atomically, and the tool verifies that it does
so. Velodrome is both sound and complete: atomicity violations
occurring within a given execution are precisely flagged; Wang et
al. is similarly very accurate. Atomizer is nearly sound (it admits
some data races), and is incomplete in that some atomic executions
are erroneously flagged; simplistically, this can be explained by
the fact that some serializable executions may have data races.
When used to enforce serializability, our system is sound (see
Theorem 10), but is similarly incomplete. Atomizer is also limited
in that it is lockset-based, whereas our approach is indifferent to
the synchronization strategy used in the program. On the other
hand, atomicity specifications are higher-level than our ownership
assertions, and therefore may be easier to use.

Sharing violations. Our tool is one of several that consider en-
forcement of data-centric sharing policies, which in some cases
may imply properties like atomicity.

Using SharC [2] and its successor Shoal [3], programmers an-
notate standard types with one of five sharing qualifiers. For ex-
ample, the qualifier private designates thread-local data, readonly
indicates shared but read-only data, and locked(m) indicates shared
data accessible only when lock m is held. Programmers can switch
the sharing strategy using a sharing cast to assign data a differ-
ent qualifier. This cast succeeds if the source pointer is unique, a
restriction enforced by reference counting.

Compared to SharC, our specifications are conceptually sim-
pler: to read or write a location, a thread asserts ownership of that
location for reading or writing, respectively—the synchronization
strategy is immaterial. Our simpler specifications also come with
fewer restrictions: SharC and Shoal require some contortions to
satisfy the unique pointer constraint and thus change the sharing
strategy. In contrast, our ownership policies may be changed freely,
as may be the means employed by the program to enforce them. On
the other hand, SharC’s higher-level specifications are more terse,
leading to fewer annotations. SharC uses whole-program analysis
to provide some compile-time guarantees, e.g., that data declared
private is never accessed by multiple threads. As such, it relies on
static analysis for soundness: if the analysis is too conservative and
rejects a correct program, it would have to be modified before it

can be run at all. In contrast, conservative analysis in our system
can only lead to missed optimization opportunities. SharC does not
include the memory-safety checks needed for soundness. In our ex-
perience, these checks add overhead and remove optimization op-
portunities; one of the SharC authors suggested to us that combin-
ing SharC with Deputy to provide similar assurances could bring
overheads closer to 2x. This combination would also increase the
number of annotations to be greater than ours in the benchmarks
we used in common.

Isolator [20] dynamically enforces a programmer-specified
locking discipline, which states that a particular lock must be held
to access particular shared data. Threads that adhere to this disci-
pline are protected from interference by ill-behaved threads; this is
similar to how data owned by a thread in our approach is protected
from interference by other threads. Our approach is more general in
not being tied to lock-based synchronization, though it is possible
that our specifications are more verbose as a result.

Finally, Hammer et al. [14] use a dynamic tool to enforce
atomicity-set serializability, a more inclusive property than tra-
ditional serializability. The idea is that certain data belong to an
atomic set and should be updated atomically by designated units of
work (UoW). As one UoW may invoke other UoWs during process-
ing, it may be spuriously considered non-serializable, even though
the nested UoWs are effectively independent. We conjecture we
could enforce atomic-set serializability by asserting ownership of
the appropriate atomic sets at the outset of a UoW, releasing own-
ership at its conclusion. Hammer at al. have found that atomic sets
and units of work can be inferred effectively from the structure
of class declarations, and we suspect that ownership annotations
could be similarly inferred from class structure; writing ownership
assertions by hand would be more verbose.

All these tools either provide weaker guarantees than ours, have
higher overhead, or both. FastTrack’s slowdown ranged from 0.9x
to 14.8x for the benchmarks they considered; Goldilocks’ was up to
11.4x given integrated VM support. Velodrome’s slowdown is be-
tween 1.1x and 70x, and Atomizer’s up to 48x, with Wang et al. re-
porting similar overhead. SharC’s overhead is no higher than 14%,
whereas Shoal’s was up to 42%; SharC exhibited lower overhead
than our system in three out of the four benchmarks in common. On
the other hand, SharC is unsound in the presence of memory errors,
and deals awkwardly with changes in ownership due to its unique
pointer restriction (though this can be worked around at some ad-
ditional performance cost). Isolator has a low overhead (their worst
case is a microbenchmark with only 20% slowdown) but it is also
unsound in the presence of memory errors and sharing policies can-
not change. Hammer et al.’s tool has a slowdown factor between
1.3x and 45x depending on the benchmark.

7. Conclusions
Concurrency and memory errors are hard to debug and they can be
exploited by attackers. We presented a dynamic analysis tool for
C/C++ programs that can find these errors and prevent attackers
from exploiting them. Programmers declare an ownership policy
by annotating their code with simple assertions and our tool inserts
access checks that detect policy violations at runtime. We proved
a modular serializability property that allows local reasoning about
program correctness: if a thread executes a sequence of statements
on variables it owns, the statements are serializable within a valid
execution. We implemented our analysis carefully to ensure this
property regardless of what other threads do. We also proved that
a check and the access it precedes do not need to be atomic and
that many checks can be removed. This allowed us to implement
efficient access checks and to use static analysis to remove checks.
We evaluated our tool using seven benchmarks. The results show
that annotating the benchmarks with ownership assertions required

adding or changing only 0.2% of the total number of lines and
that the overhead is low. We believe our analysis can be used in
practice to find bugs and prevent attacks; it found eight bugs in our
benchmark programs.

Acknowledgments
We thank Peter Sewell, Matthew Parkinson, and Tim Harris, who
contributed to the development of this work, and Eric Koski-
nen, Avik Chaudhuri, Nikhil Swamy, Iulian Neamtiu, Polyvios
Pratikakis, and Elnatan Reisner who provided useful comments
on earlier drafts. Hicks was supported by Microsoft Research as a
Visiting Researcher, and in part by NSF grants CCF-0541036 and
CNS-0346989.

References
[1] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing

memory error exploits with WIT. In IEEE Symposium on Security and
Privacy, May 2008.

[2] Z. Anderson, D. Gay, R. Ennals, and E. Brewer. SharC: Checking data
sharing strategies for multithreaded C. In PLDI, 2008.

[3] Z. Anderson, D. Gay, and M. Naik. Lightweight annotations for
controlling sharing in concurrent data structures. In PLDI, 2009.

[4] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. Stamp:
Stanford transactional applications for multi-processing. In IISWC,
2008.

[5] M. Castro, M. Costa, J. Martin, M. Peinado, P. Akritidis, A. Donnelly,
P. Barham, and R. Black. Fast byte-granularity software fault isolation.
In SOSP, 2009.

[6] Q. Chen, L. Wang, Z. Yang, and S. D. Stoller. HAVE: Detecting
atomicity violations via integrated dynamic and static analysis. In
FASE, 2009.

[7] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. Necula. Dependent
types for low-level programming. In ESOP, 2007.

[8] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a race and
transaction-aware Java runtime. In PLDI, 2007.

[9] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomic-
ity checker for multithreaded programs. Sci. Comput. Program.,
71(2):89–109, 2008.

[10] C. Flanagan and S. N. Freund. FastTrack: efficient and precise dy-
namic race detection. In PLDI, 2009.

[11] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A sound and
complete dynamic atomicity checker for multithreaded programs. In
PLDI, 2008.

[12] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In
PLDI, 2003.

[13] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging in the (very)
large: Ten years of implementation and experience. In SOSP’09, 2009.

[14] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic detection of
atomic-set-serializability violations. In ICSE, 2008.

[15] P. Joshi, M. Naik, C.-S. Park, and K. Sen. CalFuzzer: An extensible
active testing framework for concurrent programs. In CAV, 2009.

[16] R. J. Lipton. Reduction: a method of proving properties of parallel
programs. Commun. ACM, 18(12):717–721, 1975.

[17] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing heisenbugs in concurrent pro-
grams. In OSDI, 2008.

[18] Phoenix. http://connect.microsoft.com/phoenix.

[19] P. Pratikakis, J. S. Foster, and M. Hicks. Context-sensitive correlation
analysis for detecting races. In PLDI, 2006.

[20] S. Rajamani, G. Ramalingam, V. P. Ranganath, and K. Vaswani. Iso-
lator: dynamically ensuring isolation in comcurrent programs. In AS-
PLOS, 2009.

[21] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: a dynamic data race detector for multithreaded programs. ACM
Trans. Comput. Syst., 15(4):391–411, 1997.

[22] L. Wang and S. D. Stoller. Accurate and efficient runtime detection of
atomicity errors in concurrent programs. In PPoPP, 2006.

A. Proof of Lemma 4
Definition 11 (Ownership map well-formedness). Ownership
maps are well-formed, written ` ω, ρ, iff for all x, t: ω(x) = t
implies ρ(x) ⊆ {t}; and t ∈ ρ(x) implies either ω(x) = ⊥ or
ω(x) = t.

Lemma 12 (Ownership map well-formedness preservation). For
all α, ω, ρ, ω′, ρ′, t, x such that ω, ρ `0 α ; ω′, ρ′ we have
` ω, ρ implies ` ω′, ρ′.

Proof. By induction on validation derivations.

Lemma 4 (Movers, page 6):

Proof. It is sufficient to consider traces a, b, · since lengthier traces
can easily be constructed by adding to the beginning or end of
the two-element trace. Moreover, it is easy to see that for a valid
execution trace, if var(a) 6= var(b), events a and b operate on
disjoint parts of the heap and ownership maps, so they can always
be safely commuted. Thus we must only consider the cases where
var(a) = var(b).

First we consider op(a) ∈ {ownEx, ownRd, rd, wr}, the right
movers. For op(a) = ownEx, we can show that no valid trace
can have var(a) = var(b), so the result follows immediately. For
op(a) = ownRd, the only operations by a thread t′ with var(a) =
var(b) are ownRd, relRd, rd. As ownRd places no constraints on
the heap, nor does it modify it, given σ −→ownRd(t,x) σ −→b σ′

we easily have σ −→b σ′ −→ownRd(t,x) σ′. Validity follows
essentially because reader-oriented operations are independent—a
read or acquirement/release of read ownership by one thread in no
way affects the ownership/non-ownership for reading by another
thread. The arguments for op(a) = wr and op(a) = rd are
similar to the arguments for op(a) = ownEx and op(a) = ownRd,
respectively.

Now we consider op(b) ∈ {relEx, relRd, rd, wr}, the left
movers. For op(b) = relEx, we can show that no valid trace can
have var(a) = var(b). This relies on showing that ω1; ρ1 `0

relEx(t, x) ; ω2, ρ2 implies that ω1(x) = t, which implies
that for any a with tid(a) 6= t, we must have ω0(x) = t in
ω0, ρ0 `0 a ; ω1, ρ1. By Lemma 12, ω0(x) = t im-
plies ρ0(x) ⊆ {t}. For op(b) = relRd, we first establish that
op(a) ∈ {ownRd, relRd, rd}; this again relies on Lemma 12, this
time to get t ∈ ρ0(x) implies ω0(x) = ⊥ or t. Again, validity fol-
lows essentially because these reader-oriented operations operate
essentially independently on the various maps, and the heap is not
modified. The argument for op(b) = rd is similar to op(b) = relRd
and the argument for op(b) = wr is similar to op(b) = relEx.

