
© 2011 Microsoft Corporation. All rights reserved.

Detecting Energy Patterns
in Software Development

November 16, 2011
Technical Report

MSR-TR-2011-106

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Microsoft Research. Technical Report. MSR-TR-2011-106

© 2011 Microsoft Corporation. All rights reserved. Page 2

Detecting Energy Patterns in Software Development

Ashish Gupta

1, Thomas Zimmermann

2, Christian Bird

2, Nachiappan Nagappan

2, Thirumalesh Bhat

2, Syed Emran

2

1

 Indian Institute of Technology
Kanpur, India

ashgupta@cse.iitk.ac.in

2

 Microsoft Corporation
Redmond, WA, USA

{tzimmer, cbird, nachin, thirub, semran}@microsoft.com

Abstract—With the advent of increased computing on mobile
devices such as phones and tablets, it has become crucial to pay
attention to the energy consumption of mobile applications.
The software engineering field is now faced with a whole new
spectrum of energy-related challenges, ranging from power
budgeting to testing and debugging the energy consumption.
To the best of our knowledge there has been little work on the
analysis of energy patterns. In this paper, we present our work
for the Windows Phone platform. We first describe the data
that is collected for testing (power traces and execution logs).
We then present several approaches for describing power con-
sumption and detecting anomalous energy patterns and poten-
tial energy defects. Finally, we describe prediction models to
estimate the overall energy consumption based on usage of
individual modules. This allows assessing the individual impact
of modules on the overall energy consumption and supports
overall energy planning.

Keywords—power, energy, testing, power traces, power spikes,
anomalies, prediction

I. INTRODUCTION

I have researched all the many ways to save battery
life. I have apps that kill other apps. I turn off Wi-Fi
and 4G and Bluetooth until I need them.

—Scott Adams [1] (Creator of Dilbert)

For several decades, power consumption has been a sec-
ondary concern (if a concern at all) in software engineering.1
Most software has been developed for desktop computers,
which have a continuous power supply. While industries like
satellite sciences and healthcare have been traditionally more
power-aware, the general software engineering community
did not have to research power consumption. This is about to
change—or depending on the viewpoint has changed now.
With mobile phones and tablets gaining wide usage in eve-
ryday life, new challenges are brought to the software engi-
neering community. There are many stakeholders that now
care about power: end-users like Scott Adams [1] realize that
certain applications can reduce battery life dramatically and
consider energy consumption as an important quality attrib-
ute. As a consequence building energy-efficient applications
will become important for developers. There are many ways

1 Throughout the rest of this paper we use the term energy
and power interchangeably.

that a developer can influence the power consumption of a
mobile app, for example, the decision to use TCP vs. UDP,
or keeping sockets and connections open longer than needed.
Another example is making a lot of requests to a server in-
stead of batching up requests so that they utilize wireless (a
high energy component) effectively. Ultimately power con-
sumption comes down to how the hardware components are
used, but these are driven by software design decisions.

Other communities such as Graphics, Human Computer
Interaction, Networking and Systems have already started to
work on research related to energy consumption (see Section
III). With this paper, we present to the best of our knowledge
the first study from a software engineering perspective on
energy awareness problems.

We introduce a methodology for collecting and analyzing
power data on mobile devices running Windows Phone 7.
Our methodology focusses on three parts: (1) describe and
quantify power consumption, (2) detect anomalies in power
consumption, and (3) predict power consumption. Anomalies
identified by our approach have been confirmed as true de-
fects by developers who used the anomalies to perform root-
cause-analysis to detect defects in phone software. More
specifically the questions that we answer are:

 What modules consume the most power?2
 Does co-occurrence of specific modules increase or

decrease energy consumption?
 What are the characteristic energy shape patterns of

certain modules?
 What are anomalies in the power traces?
 Can we predict overall power consumption?
These results also hold value the major stakeholders in

mobile devices. The OS platform developers and application
developers specifically need to be aware of individual energy
consumption patterns and can use overall prediction models
to determine the energy usage within in a particular scenario
to decide on the need for energy optimizations or rethink the
design aspects of the scenario. End-users need to be aware of
the energy consumption levels to plan better for the battery
life under different load conditions. These are two simple
situations where knowing about energy patterns is of value.
In the remainder of the paper we discuss in detail the under-

2 We use the term modules (or components) for executable
files and shared libraries.

Microsoft Research. Technical Report. MSR-TR-2011-106

© 2011 Microsoft Corporation. All rights reserved. Page 3

lying analysis and methodology. One goal of this paper is to
also expose the need of more software engineering research
on energy awareness, utilization, and optimization.

This paper is organized as follows. We discuss in Section
II the relevance of this work to software engineering, in Sec-
tion III the related work and in Section IV the collection and
alignment of power traces and execution logs. In Section V
we present the descriptive data analysis and Section VI the
predictive data analysis. In Section VII we close the paper
with conclusions and consequences.

II. RELEVANCE TO SOFTWARE ENGINEERING

With this section we wish to emphasize why software
engineering researchers and practitioners should care about
energy, as the importance might not be immediately clear.
The events of the last few two years have significantly
changed the face of personal computing and we present two
different observations:

 Energy awareness is relevant now
 Energy awareness is relevant for the software engi-

neering community

A. Energy awareness is relevant now

The main reason for the increased importance of energy
analysis is because of the advent of smart phones and tablets.
With the explosion of smartphones (for example, Windows
Phone, Android, iPhone, and Blackberry), Nielsen Media
Research expects more smartphones in the U.S. market than
feature phones in 2011 [2]. The market analysis company
IDC estimates the media tablet market in 2010 at nearly 17
million units and forecasts 44.6 million will ship in 2011,
with the U.S. representing nearly 40% of the total. In 2012,
IDC forecasts worldwide shipments of 70.8 million units [3].
According to IDC, smartphone started outselling PCs in the
fourth quarter of 2010 with 100.9 million shipped devices vs.
92.1 million and there will be more mobile Internet users
than wire line users in the U.S. by 2015 [4].

With the growth of tablets and smartphones the problems
related to energy consumption are increasing. Both end-users
and developers are sensitive to the energy consumed by indi-
vidual components of the phone (such as Wi-Fi, 3G) as well
as applications downloaded and running on the phone. While
there is little formal research, several technology blogs ana-
lyze ways to improve battery consumption. A more reliable
source, Computer World magazine discusses “More tips for
boosting Android battery life” where they present ten simple
options to increase battery life, including turning off Wi-Fi,
turning off Bluetooth, dimming the background, and running
an energy monitoring app [4].

B. Energy awareness is relevant for the software
engineering community

The rapid growth of the market for mobile devices brings
an urgent need for understanding various aspects of energy
consumption. For example, the Networking community has
started investigating the impact of energy consumption on

bandwidth and wireless aspects [5,6,7] the CHI community
has papers and tracks specifically focused on mobile compu-
ting devices and tablets (for example [8]). Given these recent
developments it is imperative for the software engineering
community to work on the energy aspects of mobile devices.

From a more specific context, there are broad reaching
implications (which our paper does not address) for several
research communities in software engineering. We hope our
paper serves as an introduction for the software engineering
community to get excited in energy awareness. A few of the
high level areas, which are by no means complete in terms of
areas or technical depth:

Requirements Engineering. In addition to the design of
the functionality of the system, one of the goals of require-
ments documents is on avoiding defects but currently a focus
on energy is often missing. Going forward most software and
systems will need to be designed with energy in mind. This
leads to several open questions for the requirements engi-
neering community, for example: How do engineers deter-
mine energy limits in the requirements phase? Is there a
power budget requirements engineers can work with?

Programming Languages and Software Development.
The aspect of energy aware computing is still very new. For
example, a fundamental question to which we have no prop-
er answer yet is the relationship between energy consump-
tion and coding patterns. We know that there is a positive
relationship between energy consumption and utilization of
the CPU: the more CPU is utilized, the more energy is con-
sumed. Similarly we know that complex code (like coupled
objects, or depth of inheritance) consumes more CPU cycles
compared to simple sequential code. But we don’t exactly
know the relationship between the type of coding and energy
consumption. For example, is the relationship between code
with high complexity and energy consumption linear, quad-
ratic, or exponential? Furthermore, there can be coding pat-
terns that consume more power than others. While some of
these patterns are known, many more need to be identified.
Going forward design for energy awareness is an important
topic and compiler optimizations for energy awareness will
be an emerging need in future years. These are just a few
small examples to highlight a rather fundamental question.

Testing and Analysis. Simply put: how do we test for
energy? We have an extensive body of knowledge on testing,
test prioritization etc. but we need to start designing new
methods for testing applications, features, and components
for energy-awareness, both to determine the amount of ener-
gy they consume and to ensure they are not consuming more
than their allotted energy from a power budget. Testing will
also evolve into connecting devices into applications to mon-
itor power spikes, outliers etc. The work in this paper is a
first step into this direction in order to test energy consump-
tion and determine outliers in terms of energy consumption.

Microsoft Research. Technical Report. MSR-TR-2011-106

© 2011 Microsoft Corporation. All rights reserved. Page 4

The above areas are merely meant as examples to high-
light the potential of research into energy awareness from the
software engineering community. Other related areas related
to software engineering and energy awareness are for exam-
ple, human computer interaction (HCI), e.g., how to collect
data from mobiles devices in a controlled setting or for user
hosted beta testing programs; and security, e.g., how to pre-
vent malware applications that target mobile devices with the
goal of depleting the energy stored in batteries (for example
[6]).

III. RELATED WORK

To the best of our knowledge there has been no research
in the software engineering community on energy analysis,
energy awareness, and energy debugging. However there has
been some work in the Networking and Systems communi-
ties, which we highlight below. Though most of these studies
have no implications for software engineering, they involve
monitoring the energy consumption in real world situations
which is related to our energy measurement work for identi-
fying anomalies and predicting energy consumption.

Balasubramanian et al. [9] measured energy consumption
of three mobile networking technologies: 3G, GSM, and Wi-
Fi. They observed that 3G and GSM have a high tail energy
consumption and developed a protocol to reduce the energy
consumption of common mobile applications by modeling
the network activity for each technology.

Kim et al [5] discussed the fact that the limited battery-
lifetime in mobile devices is worsened by the presence of
mobile malware targeting the depletion of the battery. They
presented a framework with a power monitor for collection
power samples and building a power consumption history
and a data analyzer that generates a power signature from the
constructed history. Their results on a HP iPAQ show a 99%
true-positive rate in classifying mobile malware.
Pathak et al. [7] observed that capturing power consumption
data based on utilization of a hardware component is insuf-
ficient due to power behavior not always directly related to
smartphone component utilization (because low level power
optimizations in device drivers are missed). The authors
presented a power modeling scheme to accurately measure
power consumption based on utilization and non-utilization
on the Android and Windows Mobile platforms. Similarly
Ge et al. [10] designed a framework called PowerPack to
measure and isolate the power consumption in disks,
memory, multi-core, and multiprocessor based nodes. Pow-
erScope [11] is another energy profiling tool and combines
hardware instrumentation with kernel software support to
measure the system activity. For the measurements in this
paper, we used the actual power consumption rather than
relying on models based on utilization of components.

The closest in spirit to our work, is the work by Shye et
al. [12] who developed and deployed with real users. They
observed that the Screen and CPU are the two largest power
consuming components. They also built a regression model
to predict total energy consumed and identified patterns in

user behavior to drive optimizations. The biggest advantage
of our study over Shye et al. [12] is the level of granularity.
The observation that Screen and CPU consume most power
is at a very coarse level of granularity and not of much use to
developers and users. Similarly, without any fine-grained
level of information, the regression models do not help in
optimizing usage patterns in an operational way. Instead of
Hardware component level (CPU, screen), our work is on
module level, which is more actionable for developers.

While not directly related to energy awareness on mobile
devices, energy optimization is an increasing important topic
in datacenter operations in the systems and networking re-
search community. Recently the First Conference on Energy-
Efficient Computing and Networking focused on these as-
pects. For example, Schröder et al. [14] presented a vision
minimizing the energy costs, using geographical specific
characteristics of servers and data centers and a potential
savings of up to 40% using distributed load management.
Das et al. [15] from IBM Research discussed the importance
of utility functions in controlling the energy of datacenters.
They also discussed energy savings using experimental data
from a real data center collected by room air-conditioning.
These research topics are still an emerging area of systems
and networking research and are aligned with the advance-
ment of energy awareness form a software engineering
viewpoint in coming years.

IV. DATA COLLECTION

We use two sources of data for the power analysis in this
paper (see Figure 1). We first collect logs of the executable
files and shared libraries, hereafter referred to as modules,
which are active at certain points in time (Section IV.B).
Next we collect traces of power consumption over time (Sec-
tion IV.C and IV.D). Finally we align and combine both
sources into the data that we will use throughout this paper
(Section IV.E).

A. Overview

When a mobile device is tested for power usage, a recent
build is loaded onto the phone. Based on the operations that
are being tested a number of tests are run repeatedly on the
phone for a 12 hour period. The record of power usage from
measured by a power meter is called a power trace.

As mobile devices optimize for power consumption,
power traces show periods of inactivity (low power use),

Figure 1. Overview of our approach. We use two data sources: power
traces and execution logs. The data is then aligned and combined and we

extract power spikes from, which are stored in database and serve as input
for the analysis throughout this paper.

Microsoft Research. Technical Report. MSR-TR-2011-106

© 2011 Microsoft Corporation. All rights reserved. Page 5

punctuated by brief periods of high activity (high power use).
We term each of these high power intervals a power spike or
just spike. Note that within a spike, there may also be fluctu-
ations in power consumption. The duration of spikes ranges
from one tenth of a second to several seconds. In order to
isolate individual power spikes in a power trace, we use the
periods of inactivity as shown in Figure 2. In some cases a
manual approach may also be used depending on the nature
of the test cases, for example, when there are not enough idle
periods in the data. For the analyses presented in this paper,
we used so-called idle tests, which on purpose leave enough
idle time between test activities.

After identifying spikes and aligning power traces with
execution logs, we have the following information available
for each spike (example is depicted in Figure 3):

 Spike ID, a unique identifier for the spike
 Start time and end time (hours : minutes : seconds)
 Duration (seconds)
 Floor power (milliwatt)
 Average power (milliwatt)
 Peak power (milliwatt)
 Total energy consumed (milliwatt hours)
 Active modules

This data allow us to perform a number of analyses on
energy use as discussed in Section IV and V. To facilitate
access, we store the spike information in a database.

In addition to the above information, each spike is linked
to the power trace where it originated from. For power traces
we record in the database:

 Build ID, which allows to find the associated state
of the source code

 Model of the mobile device that was used to collect
the trace.

Note that for the analysis presented in this paper we do
not aggregate spikes across different mobiles devices models
because they may have slightly different power utilization
characteristics due to varying specifications (such as display
type, processor speed, existence of specific sensors).

B. Collecting execution data

The first source of data comprises information regarding
what code is being executed on the mobile device at a specif-
ic period of time. Unfortunately, measuring code execution
at fine granularity (recording method calls, statement execu-
tion, etc.) is highly intrusive and introduces an overhead in
terms of storage and CPU utilization that creates a non-trivial
level power usage on the device itself. Simply writing the
record of execution to flash uses significantly more power
than would actually occur during normal use by a consumer.
Thus, we use a more coarse grained level of data. At each
context switch and whenever a thread is started or dies, we
record the time for the active thread. The modules active at a
point in time are indicative of the type of operation occurring
on the mobile device. For instance, there may be active
modules for Wi-Fi operations or HTML rendering. We call
the sequence of context switches with the accompanying
time and lists of active modules, the execution log.

C. Measuring energy consumption

In addition, we measure the actual energy consumed by
the mobile device during operation. We use a special power
meter that connects to the battery contacts of the mobile de-
vice in place of the battery itself and measures power draw at
a rate of 5,000 samples per second. The power meter reports
power draw and time of each sample to a standard desktop
machine via USB. While this sampling rate may seem low
by modern standards, mobile devices context do switch less
often than normal computers (one reason is minimizing
power use) and only have one active user level application
running. Thus, we actually record a large number of power
samples (on the order of thousands) for each context switch.

D. Controlling for the many sources of energy consumption

There are three main components that are directly linked
to power consumption on mobile devices: the CPU, the cel-
lular chipset, and the graphics processing unit (GPU). For the
analysis in this paper, we focus on CPU activity and control
for activity on the chipset and GPU as discussed below.

While there are many other components such as modem,
speakers, and GPS that consume power on mobile devices,
they are typically controlled by code that is executed on the
CPU and thus show up on our execution logs. For instance,
driver code may transmit or receive information via wireless
modem. Code executed on the CPU may update the display,

Figure 2. Examples of a power trace (usually taken from of a 12 hour test

session on a mobile device) and a power spike. Spikes are isolated based on
longer periods of inactivity in the power trace. Each such spike is then

normalized in time to range from 0 to 1.

Figure 3. A spike from a trace log and the associated data that is computed
and stored in a database for further analysis.

Microsoft Research. Technical Report. MSR-TR-2011-106

© 2011 Microsoft Corporation. All rights reserved. Page 6

activate the GPS sensor, or play music on the speakers.
While each of these operations leads to power usage, they
are ultimately dictated by the code loaded and executing on
the CPU. This allows us to analyze the relation between op-
erations and power usage strictly by examining modules that
are active in our execution logs.

There are two sources of power usage, which are largely
independent of the CPU:

 The cellular chipset, which is responsible for main-
taining contact with cellular towers as well as mak-
ing and receiving calls, runs on its own firmware.
We do not monitor its execution because it is not a
general purpose CPU and is proprietary.

 In addition mobile devices have graphics processing
units (GPUs) that provide hardware acceleration ca-
pabilities. We currently do not monitor the code exe-
cuting on this chip due to data gathering limitations.

Because we measure the aggregated power usage on the
device, these cellular chipset and GPU may introduce a small
amount of noise to our analysis of power usage by the CPU.
We mitigate these problems in three ways.

First, we do not make or receive any phone calls while
recording power usage and code execution for our analysis.
While the cellular chipset contacts the nearest towers every
few seconds, this operation is consistent both in the power
draw and timing. Furthermore the location of the phone is
static during testing, so that the distance to cell towers and
thus the power used to make contact, remains constant. This
allows us to remove the power spikes that occur as a result of
the cellular “heartbeat”.

Second, although we do not record the code executing on
the GPU, the content of the phone display is almost always
indicative of the operations being performed (and the code
executing on the CPU). Therefore we expect that power us-
age resulting from GPU activity does not introduce any bias
to our analysis.

Third, we collect the power traces from 12 hours sessions
with different mobile device usage scenarios, each executed
a large number of times. Therefore we expect that the large
number of samples will hide any noise introduced by other
sources of power use on the mobile device.

E. Aligning execution log and power sample

Before we combine power traces and execution logs to
extract spikes, we need to ensure that the time for the power
usage (recorded via the power meter on a desktop machine)
is in sync with the time for the executed code (recorded on
the mobile device).

We use a process that we term temporal alignment to
sync both data sources. The process consists of two steps:

1. First, we identify the spikes corresponding to the cel-
lular antenna contacting cell towers by locating a set
of spikes that (a) occur at regular intervals, (b) last
the same amount of time, and (c) have the same
power usage.

2. After removing these spikes, we align based on the
time intervals between spikes in the power trace and
between context switches in the execution log.

As a concrete example, if there is one period of 3 minutes
with no context switches or code execution in the execution
log and one period of 3 minutes of low power usage in the
power trace, then these corresponding points in time can be
used as anchors to align the rest of the two data sources.

While our approach for alignment is automated, a manual
approach may also be used depending on the context of the
data collection and the regularity of the data itself.

V. DESCRIPTIVE ANALYSIS

The first part of energy analytics is of descriptive nature:
for one or more given power traces, engineers want to under-
stand the energy consumed by different modules and if there
are any patterns (anomalies) that they should pay special
attention to. They typically ask questions such as:

 What modules consume the most power?
 Does co-occurrence of specific modules increase or

decrease energy consumption?
 What are the characteristic energy shape patterns of

certain modules?
 What are anomalies in the traces?

To answer these questions, we implemented a tool based
on supervised learning techniques (for example, regression
models, decision trees) and unsupervised learning techniques
(frequent pattern mining, clustering). All our analysis is done
in an automatic fashion and requires little involvement and
statistical knowledge on the user side.

A. What modules consume the most power?

Because in the data, energy consumption is only linked to
a set of modules and not individual modules, it is not trivial
to identify the energy consumption of a single module. One
of the reasons is that besides the granularity limitations (as
discussed in the previous section), spikes often have tail-end
energy which cannot be attributed to any single module in
the spike. To isolate the energy consumption for different
modules we use therefore two supervised techniques: regres-
sion analysis and decision trees. For this analysis, we used
the following input data:

Spike ID Adrion.dll Allen.dll Bachman.dll Backus.exe …… Zweben.exe Avg. Power (mW)
123338 1 0 0 1 1 254.76
123563 0 0 1 0 1 680.23
123789 0 1 1 0 0 110.56

Each observation has a unique spike identifier, followed by
flags to indicate the presence of modules in the spike (0 for
absence, 1 for present), and the average power consumption.
For legal reasons, we anonymized module names throughout
the paper with the last names of laureates of ACM Turing
Awards as well as ACM SIGSOFT Distinguished Service
Awards, Outstanding Research Awards, and Influential Edu-
cator Awards.

Microsoft Research. Technical Report. MSR-TR-2011-106

© 2011 Microsoft Corporation. All rights reserved. Page 7

Regression analysis. With linear regression [13] we
model the relationship between the average energy consump-
tion y of a spike and the presence of individual modules as
denoted by the dummy variables xm (which take values 0 or
1) for module m. ݕ = ଴ߚ + ଵݔଵߚ + ଶݔଶߚ + ⋯+ ெݔெߚ

Informally, if a module m is present (xm=1), it contributes βM
to the estimated energy consumption.

Figure 4 shows an example of a regression model. The
model has an intercept ߚ଴ of 297mW, which is an estimate of
the energy consumption when no modules are present in a
spike. (Note that this number does not correspond to the en-
ergy consumption in idle state.) The remaining coefficients
show that the modules Lampson.dll (estimate 608mW) and
Mills.dll (estimate 421mW) are associated with high energy
consumption in spikes. The modules that are associated with
power spikes with a low average energy consumption have
negative coefficients, for example Sommerville.dll (–292mW)
and Johnson.dll (–329 mW). In Figure 4, we only included
modules for which the coefficients are different from 0 at a
significance level of 0.001 (t-test).

The estimates in Figure 4 allow engineers to better un-
derstand which modules are likely correlated with high or
low power consumption. It is important to understand that
the coefficients are estimates and do not necessarily corre-
spond to the actual power consumption. We unfortunately do
not have the actual energy contribution of the modules and
could not assess the correctness of the coefficients. However,
we did validate the coefficients for several traces with the
engineers who confirmed the correctness of rankings based
on their previous experience.

Decision trees. In addition we use decision trees [14] to
model the influence of modules on average energy consump-
tion. In our case, the inner nodes indicate the presence of
certain modules (yes/no). Each node holds the average ener-
gy consumption for several spikes (as described by the path
to the root note). For example in Figure 5, node  lists an
average energy consumption of 85.9 mW for the 795 power
spikes for which Mills.dll is absent and Leveson.dll is present.

The decision trees help developers to better understand
how power consumption and modules are related in one or
more traces. Figure 5 shows a decision tree that describes
843 spikes within a trace. The average energy consumption
for all spikes is 112.1mW as indicated in the root node  of
the tree. On the first level the spikes are split based on the
presence of module Mills.dll: for the 814 spikes that do not
contain Mills.dll, the average energy consumption is 92.5mW
; however, for the 29 spikes that contain Mills.dll the aver-
age increases by six times to 664.6mW . On the second
level, the absence of Leveson.dll increases energy consump-
tion by a factor of four (compare nodes  and ), and on
the third level the presence of Hamming.dll increases energy
consumption by a factor of three (nodes  and ).

We informally validated the decision trees with engineers
who confirmed their usefulness for understanding trace data.

A limitation of our current data (not the approach) is that
we only have information about the presence of modules (0
or 1), but not the actual usage (numerical). Both regression
and decision trees do support numerical input data and we
are currently exploring other lightweight tracing techniques
for collecting more fine-grained data without altering power
usage.

Factor Estimate ߚ௜
(Intercept) 297.053
Lampson.dll 608.625
Mills.dll 421.397
Weyuker.dll 264.602
Valiant.dll 252.904
Hamming.dll 192.448
Adrion.dll 118.889
Rabin.dll –33.156
Feigenbaum.dll –42.860
Ritchie.dll –88.667
Holzmann.dll –137.778
Harel.dll –139.671
Leveson.dll –183.723
Sommerville.dll –292.122
Johnson.dll –329.861

Figure 4. Example of a regression model for the relationship between
average energy consumption and the presence of individual modules.

Modules with high values of β୧ increase the average energy consumption
substantially. Only statistically significant coefficents are included.

Figure 5. Example of a decision tree learned from energy consumption
data. On the first level the spikes are split based on the presence of

module Mills.dll—spikes that contain Mills.dll  consume on average
six times the power than spikes that do not contain the module .

Microsoft Research. Technical Report. MSR-TR-2011-106

© 2011 Microsoft Corporation. All rights reserved. Page 8

B. Does co-occurrence influence energy consumption?

To identify pairs of modules that significantly increase
energy consumption in combination but not individually, we
use frequent pattern mining [14] and statistical significance
testing [13]. First we split spikes into two groups based on
the average energy consumption:

 High. This group contains the 10% of spikes with
the highest average power consumption.

 Medium/Low: This group contains the remaining
90% of spikes.

We then count for each pair p of modules the frequency
in the High group and the Medium/Low group. The result is
a contingency table:

 Does
contain p

Does not
contain p

High A C 10%
Medium/Low B D 90%

For each pair p=(m1, m2) we compute the likelihood that
spikes which contain p are part of the High group

P(High | contains p) = A/(A+B)

We then use Fisher Exact value tests [13] to compare with
the likelihoods for the complement (does not contain p) and
the individual modules m1 and m2:

 P(High | does not contain p) = C/(C+D)
 P(High | contains m1)
 P(High | contains m2)

In several power traces, we found pairs of modules that
increased power when used in combination but not individu-
ally. Fortunately, not all traces have “power-hungry” pairs of
modules. This analysis helps developers to focus on combi-
nations of modules and not just individual modules. In future
work, we plan to extend our approach to look arbitrary sets
of modules and not just pairs.

C. What are the characteristic energy shape patterns?

Power traces consist of hundreds, often thousands of
spikes, which all can have very similar shapes. By clustering
spikes based on their shapes, we can identify characteristic
shape patterns and reduce the number of spikes that need to
be investigated by developers for a power trace. Rather than
looking at all spikes, developers instead can focus on a small
number of clusters (typically 10-20), each corresponding to a
characteristic shape pattern with a list of associated spikes.
Developers can also rollup the meta-information for each
spike (such as length, modules, etc.) to the cluster level.

Developers can choose different input data for clustering.
They can cluster all spikes in a power trace or only subsets,
for example all spikes related to a module. Figure 6 shows a
small example with 11 spikes for module Sommerville.dll.
While the human eye can easily spot two clusters, detecting
the clusters in an automated fashion is slightly more compli-
cated. We need a distance function to compare spikes and a
clustering technique:

 Distance function. To compute the distance between
two spikes, we use the Kullback-Leibler divergence
[15]. To reduce the computational cost of comparing
spikes, we divide each spike into 100 buckets, calcu-
late the average energy consumption for each buck-
et, and compute Kullback-Leibler across these 100
buckets for each pair of spikes. The result of this
step is a distance matrix D, where a cell value dxy
corresponds to the distance between spike x and y.

 Clustering. For clustering spikes we use the Ward
hierarchical clustering method [16]. Initially, each
spike is assigned to its own cluster; for an example
see the spikes k814 to k17278 for module Sommer-
ville.dll in Figure 7. Then iteratively at each stage the

Figure 6. Example with 11 spikes for module Sommerville.dll.

Figure 7. Dendrogram of the hierarchical clustering of the 11 spikes for
module Sommerville.dll. Initially each spike is assigned to its own cluster
and then iteratively at each stage the two most similar clusters are joined.

Microsoft Research. Technical Report. MSR-TR-2011-106

© 2011 Microsoft Corporation. All rights reserved. Page 9

two most similar clusters are joined until there is just
a single cluster. For example k1887 and kk17118 are
joined first and later combined with the cluster of
k4091 and k8438. The result of hierarchical cluster-
ing is a tree-diagram of clusters (called dendrogram)
that indicates the join order. The tree can then be cut
into a certain number of clusters; in Figure 7 we cut
the tree in two clusters as indicated by the red boxes.

To assess the quality of the clustering approach we built
a gold set by manually clustering 588 spikes using a card sort
[17] based on similarity of the shapes. The first four authors
sorted 147 spikes each, resulting in four separate clusterings.
Then clusteres were discussed and the four authors agreed on
one clustering for all 588 cards. The resulting nine clusters of
the manual card sort are displayed in Figure 8. Next we
automatically clustered the 588 spikes with Ward and
Kullback-Leibler and compared the two clusterings with the
Meiler variation of information (VI) index. The values of the
VI index range from 0 for identical clusterings to 2 logଶ ݇
for completely different clusterings where k is the number of
clusters; in our case k=9, thus the best value for VI is 0 and
the worst value is 6.34. The VI index for the automated
clustering and the manual clustering is 1.44. While not
perfect, our current clustering technique still has a high
agreement with the gold set of roughly 75%.

In order to inspect the cluster differences we counted for
each pair of a manual cluster Mi and an automated cluster Aj,
the number of spikes that Mi and Aj share. The results are
shown in Figure 9 and allow us drawing conclusions about
the overlap between clusters. Most of the cluster pairs do not
have any spikes in common as indicated by the many zeros,
which is a good result. However, the automated clustering is

not perfect: for example, M5 is split across two automated
clusters A6 (with 98 spikes) and A7 (with 103 spikes). Also,
the automated clustering does not distinguish between M6 to
M9 as shown by the non-zero values with clusters A1 to A5
(dark gray area). In the card sort we considered the number
and position of the peaks after the first initial peak as
important; however, our current distance measure does not
consider such properties. We can make a similar observation
for M1 and M2 (light gray area), which differ in the numbers
of peaks, but are combined into cluster A8 by the clustering.
In our future work, we will evaluate other distance measures
and clustering algorithms to improve the good performance
of Ward clustering with Kullback-Leibler.

Rather than treating spikes as a simple time series, we
can describe them with feature-vectors and include features
such as number and position of peaks in the spikes. Another
example is dynamic time warping [18], an algorithm fre-
quently used in speech recognition for measuring the similar-
ity between two sequences which may vary in time or speed.

M1

M2 M3

M4

M5 M6

M7

M8 M9

Figure 8. The nine clusters M1 – M9 of a manual card sort of 588 spikes. For each cluster we show one characteris spike.

 M1 M2 M3 M4 M5 M6 M7 M8 M9 All
A1 0 0 0 0 0 4 19 20 0 43
A2 0 0 0 0 0 16 3 10 5 34
A3 0 0 0 0 0 50 2 2 0 54
A4 0 0 0 0 0 67 4 8 0 79
A5 0 0 0 0 0 2 0 14 5 21
A6 0 0 0 0 98 0 0 0 0 98
A7 0 0 19 9 103 0 0 0 0 131
A8 59 24 4 0 0 0 0 0 0 87
A9 0 1 34 6 0 0 0 0 0 41
All 59 25 57 15 201 139 28 54 10 588

Figure 9. Comparison between the automated clustering and the manual
card sort. Overall the agreement is fairly high.

Microsoft Research. Technical Report. MSR-TR-2011-106

© 2011 Microsoft Corporation. All rights reserved. Page 10

Alternatives for clustering are for example K-means and
model-based approaches [14].

D. What are anomalies in the traces?

Currently developers are faced with the strenuous work
of going through the power logs and reporting any incon-
sistency manually. One way to automatically identify anom-
alies in power traces is to look for extreme coefficients in the
regression models or for extreme splits. Another way is to
use the clustering of spikes. The underlying assumption is
that spikes with similar shapes also share similar behavior.
There are several types of anomalies based on clustering
approaches (see Figure 10):

 Small clusters. Clusters that have only few spikes are
candidate for anomalies. Here the cluster and all its
spikes are treated as anomalies. In contrast, large
clusters are likely not to be anomalous, because of
the wisdom of the masses.

 Spikes that do not fit. Individual spikes that do not fit
any cluster well are also candidates for anomalies.

 Heterogeneous clusters. Within a (large) cluster we
check for the homogeneity of the spikes. Recall that
we for clustering we use the shape of spikes, which
means that within a cluster the shapes are expected
to be similar. To find anomalies within clusters, we
therefore compare additional meta-information such
as modules, average and peak power consumption,
and duration of each spike. For example, if all spikes
except for one spike contain the module Williams.dll
(within a cluster), we consider the spike that does not
contain Williams.dll to be anomalous.

We confirmed the identified anomalies with developers
and were able to find bugs associated with modules Mills.dll,
Ritchie.dll, Holzmann.dll, and Wirth.dll. The reason for the bug
was a communication client (Wirth.dll), which was waking up
every 30 minutes, but was not closing the network socket
(Mills.dll) properly. The anomaly showed up as several spikes
that were either running longer (several minutes) than other
spikes within their clusters or as spikes that did not fit any
cluster. Several anomalous spikes are displayed in Figure 11.

VI. PREDICTIVE ANALYSIS

Mobile applications are often developed within a power
budget, that is, on average the application is only allowed to
consume a certain amount of energy. Models that estimate
power usage prior to development help developers in plan-
ning and allow them to stay within a power budget.

To test the hypothesis that power consumption can be
predicted with modules used by an app, we built and tested
prediction models for five different datasets:

 T1, T2, T3, and T4 are power traces (with 843, 912,
828, and 634 spikes respectively) and

 T1234, which is the combined dataset of T1–T4
(with 3215 spikes)

Each dataset contains a list of spikes with associated
modules (input variables) and the average power consump-
tion for each spike (output variable). For the predictions, we
used linear regression models and focused on the ranking
problem, i.e., predict the spikes that consume most power on
average based on the modules used.

To assess the models we used a standard evaluation tech-
nique for prediction experiments called data splitting [19]:
for each dataset, we randomly selected two thirds as training
and one third as testing set and repeated this step 50 times.
As evaluation criterion, we selected Spearman rank correla-
tion, which is a commonly-used robust correlation technique
because it can be applied even when the association between
elements is non-linear [13]. Positive correlations result in a
value of 1 and negative correlations in -1. For no correlation
between the elements, the value is 0. In particular, a high
positive value for Spearman means that two rankings are
similar (or identical for a value of 1).

The prediction results are displayed in Figure 12 as box
plots, which show the smallest value, lower quartile, median,
upper quartile, and largest value of the Spearman correlation.
The results show that our models reliably identify high-

Figure 10. Three types of anomalies that can be identfied via clustering.

Figure 11. Some of the anomalous spikes identified by our approach.

Microsoft Research. Technical Report. MSR-TR-2011-106

© 2011 Microsoft Corporation. All rights reserved. Page 11

power consuming spikes. The lowest correlation for all 250
runs is 0.6416. The median Spearman correlation in the ex-
periments ranges from 0.7495 (T1) to 0.8596 (T1234), which
is considered to be a strong correlation [20]. It is noteworthy
that the Spearman correlations are the highest for the T1234
dataset, which is the composition of T1–T4. This suggests
that traces from different applications can lead to better pre-
dictive performance. In summary, the presence of modules
can produce a good ranking of power-consuming spikes, as
demonstrated by very high correlation values between the
predicted and observed values. Such predictions can help
developers to optimize the power budget.

VII. CONCLUSIONS AND CONSEQUENCES

With the increasing popularity of mobile devices such as
smartphones and tablets, energy awareness has become an
important issue that all software engineers should care about.
In this paper, we have presented a data analysis on Windows
Phone 7 usage data. We addressed several questions related
to identifying modules with most power-consumption, find-
ing characteristic energy shape patterns, detecting anomalies,
and predicting power consumption based on module usage.

Understanding which of modules consume more energy
is useful information to both application and platform devel-
opers and helps them to drive better design, test efforts and
influence new user scenarios. These results also enable users
to understand how to conserve battery power energy; for
example there are several public discussions on how to con-
serve energy for the phone by using various combination of
Hardware components [4]). While this paper does not name
specific modules/applications for legal reasons, the described
methodology could be applied by end-users to understand
how to improve battery life by using certain combination of
components and applications.

Another important goal of this paper is to call the atten-
tion of the software engineering community for working on

problems related to energy awareness from several different
perspectives such as requirements engineering, program-
ming languages, as well as testing and analysis. We plan to
work with researchers in the testing community to leverage
our techniques for optimizing testing for energy awareness.
We have merely scratched the surface of this area and plan
to expand our research in this area spanning user testing and
reliability. Finally, we hope that many others in the software
engineering community will follow us to work on problems
related to energy awareness.

Acknowledgements: Thanks to the Microsoft Windows
Phone team for their help in understanding the data. Ashish
Gupta performed this work during a summer internship at
Microsoft Research.

REFERENCES

[1] Adams, S. Uncommunication Devices.
http://dilbert.com/blog/entry/uncommunication_devic
es. 2011.

[2] Entner, R. Smartphones to Overtake Feature Phones
in U.S. by 2011.
http://blog.nielsen.com/nielsenwire/consumer/smartph
ones-to-overtake-feature-phones-in-u-s-by-2011/.
2010.

[3] IDC. IDC - Press Release.
http://www.idc.com/about/viewpressrelease.jsp?contai
nerId=prUS22660011. 2011.

[4] Raphael, J. Android battery life: 10 ways to make your
phone last longer.
http://blogs.computerworld.com/16965/improve_andr
oid_battery_life. 2010.

[5] Kim, H., Smith, J., and Shin, K.G. Detecting Energy-
Greedy Anomalies and Mobile Malware Variants. In
MobiSys '08: Proceedings of the 6th International
Conference on Mobile Systems, Applications, and
Services (2008), 239-252.

[6] Cheng, J., Wong, S., Yang, H., and Lu, S. Smartsiren:
Virus detection and alert for Smartphones. In MobiSys
'07: Proceedings of the 5th International Conference
on Mobile Systems, Applications, and Services (2007),
258-271.

[7] Pathak, A., Hu, Y.C., Zhang, M., Bahl, P., and Wang,
Y.-M. Fine-Grained Power Modeling for Smartphones
Using System Call Tracing. In EuroSys '11:
Proceedings of the Sixth European Conference on
Computer Systems European Conference on
Computer Systems (2011), 153-168.

[8] Iqbal, S.T., Horvitz, E., Ju, Y.-C., and Mathews, E.
Hang on a sec! Effects of Proactive Mediation of
Phone Conversations while Driving. In CHI '11: ACM
CHI Conference on Human Factors in Computing
Systems (2011), 463-472.

 T1 T2 T3 T4 T1234
Min 0.6416 0.7388 0.7814 0.7856 0.8273

Median 0.7495 0.7968 0.8356 0.8352 0.8596
Max 0.8251 0.8535 0.8762 0.8691 0.8835

Figure 12. The Spearman correlation values for the prediction experiments.
The median Spearman correlation in the experiments ranges from 0.7495 to

0.8596, which is considered to be a strong correlation

Microsoft Research. Technical Report. MSR-TR-2011-106

© 2011 Microsoft Corporation. All rights reserved. Page 12

[9] Balasubramanian, N., Balasubramanian, A., and
Venkataramani, A. Energy Consumption in Mobile
Phones: A Measurement Study and Implications for
Network Applications. In Internet Measurement
Conference (2009), 280-293.

[10] Ge, R., Feng, X., Song, S., Chang, H.-C., Li, D., and
Cameron, K.W. PowerPack: Energy Profiling and
Analysis of High-Performance Systems and
Applications. IEEE Transactions on Parallel and
Distributed Systems, 21, 5 (2010), 658-671.

[11] Flinn, J. and Satyanarayanan, M. PowerScope: A Tool
for Profiling the Energy Usage of Mobile
Applications. In WMCSA '99: Workshop on Mobile
Computing systems and Applications (1999), 2-10.

[12] Shye, A., Scholbrock, B., and Memik, G. Into the
Wild: Studying Real User Activity Patterns to Guide
Power Optimizations for Mobile Architectures. In
MICRO '09: 42st Annual IEEE/ACM International
Symposium on Microarchitecture (2009), 168-178.

[13] Waserman, L. All of Statistics: A Concise Course in
Statistical Inference. Springer, 2010.

[14] Han, J., Kamber, M., and Pei, J. Data Mining:
Concepts and Techniques. Morgan Kaufmann, 2011.

[15] Kullback, S. and Leibler, R.A. On Information and

Sufficiency. Annals of Mathematical Statistics, 22, 1
(1951), 79–86.

[16] Hastie, T., Tibshirani, R., and Friedman, J. The
Elements of Statistical Learning. Springer, 2009.

[17] Wright, G. and Ayton, P. Eliciting and modelling
expert knowledge. Decision Support Systems, 3, 1
(March 1987), 13-26.

[18] Myers, C.S. and Rabiner, L.R. A comparative study of
several dynamic time-warping algorithms for
connected word recognition. The Bell System
Technical Journal, 60, 7 (September 1981), 1389-
1409.

[19] Munson, J. and Khoshgoftaar, T. The Detection of
Fault-Prone Programs. IEEE Transactions on
Software Engineering, 18 (1992), 423-433.

[20] Cohen, J. Statistical power analysis for the behavioral
sciences. Routledge Academic, 1988.

