Alternation for Termination

William R. Harris®, Akash Lal?, Aditya V. Nori?, and Sriram K. Rajamani?

' University of Wisconsin; Madison, WI, USA
2 Microsoft Research India; Bangalore, India

Abstract. Proving termination of sequential programs is an important problem,
both for establishing the total correctness of systems and as a component of prov-
ing more general termination and liveness properties. We present a new algo-
rithm, TREX, that determines if a sequential program terminates on all inputs.
The key characteristic of TREX is that it alternates between refining an over-
approximation and an under-approximation of each loop in a sequential program.
In order to prove termination, TREX maintains an over-approximation of the set
of states that can be reached at the head of the loop. In order to prove non-
termination, it maintains of an under-approximation of the set of paths through
the body of the loop. The over-approximation and under-approximation are used
to refine each other iteratively, and help TREX to arrive quickly at a proof of
either termination or non-termination.

TREX refines the approximations in alternation by composing three different pro-
gram analyses: (1) local termination provers that can quickly handle intricate
loops, but not whole programs, (2) non-termination provers that analyze one cy-
cle through a loop, but not all paths, and (3) global safety provers that can check
safety properties of large programs, but cannot check liveness properties. This
structure allows TREX to be instantiated using any of the pre-existing techniques
for proving termination or non-termination of individual loops.

We evaluated TREX by applying it to prove termination or find bugs for a set of
real-world programs and termination analysis benchmarks. Our results demon-
strate that alternation allows TREX to prove termination or produce certified ter-
mination bugs more effectively than previous techniques.

1 Introduction

Proving termination of sequential programs is an important problem, both for es-
tablishing total correctness of systems and as a component for proving other liveness
properties [12]. However, proving termination efficiently for general programs remains
an open problem. For an illustration of the problem, consider the example program
shown in Fig. 1, and in particular the loop L2 on lines 8—16. This loop terminates on
all inputs, but for an analysis to prove this, it must derive two important facts: (1) the
loop has an invariant d > 0 and (2) under this invariant, the two paths through the loop
cannot execute together infinitely often. Existing analyses can discover one or the other
of the above facts, but not both.

Some analyses construct a proof of termination in the form of a lexicographic linear
ranking function (LLRF) [4]. These analyses can prove termination of L2 by construct-
ing a valid LLRF if they are given d > 0 as a loop invariant. However, LLRF-based

void f(int d) {

1

2 int %, y, k, z = 1;

3

4 Ll:

5 while (z < k) { z =2 * z; }

6 . 1 void main () {
7 L2: 2 if (*) |
8 while (x > 0 && y > 0) { 3 f£(1);
9 if (%) { 4 } else {
10 Pl X = x — d; 5 £(2);
11 y o= % 6 }

12 z =z - 1; 7 }

13 } else {

14 y =y — d;

16 }

Fig. 1. Example illustrating the effect of alternation.

tools have been designed to analyze only loops with affine assignments and conditions,
and are unable to handle pointers, or perform inter-procedural, whole program analysis
(which is required to establish the desired invariant).

Techniques that construct a transition invariant (TI) as proofs, such as TERMINA-
TOR [10], can handle arbitrary programs with procedures and pointers, but are ham-
pered by the way they construct a proof of termination. To illustrate this, consider how
TERMINATOR analyzes loop L2. TERMINATOR first attempts to prove termination of
L2 by analyzing it in isolation from the rest of the program. However, TERMINATOR
fails, as it is not aware of the additional fact that whenever the loop is reached, the
invariant d > 0 holds. It thus generates a potential counterexample that may demon-
strate that the loop does not always terminate. A counterexample to termination is a
“lasso”, which consists of a “stem” sequence of statements that executes once followed
by a “cycle” sequence of statements that may then be executed infinitely often. For the

example, TERMINATOR may generate a lasso with the stem “d := 1; z := 17
that leads to L2, followed by the cycle “assume (x > 0); assume(y > 0);
x :=x — d; y := *; z := z — 1”thatexecutes infinitely often. If TERMI-
NATOR ignores the stem, it cannot prove that the cycle will not execute infinitely often.
Thus, it uses the state of the program after executing the stem, “d = 1, z = 1”,to
construct a new cycle “assume (d = 1); assume (z = 1); assume (x >
0); assume(y > 0); x (= x — d; y := x; z := z — 1”7 whose be-

haviors under-approximate those of the original cycle. In the under-approximation, the
conditions d = 1 and z = 1 are assumed to hold at the beginning of every iteration of
the loop (see Section 3.4 of [10] for a discussion).

In this way, TERMINATOR constructs an under-approximation of the counterexam-
ple cycle in the hope that it can at least find a proof of termination for the under-
approximation. With the added assumptions at the head of the cycle, it can find multiple
proofs that the under-approximation eventually terminates. One such proof establishes
that the expression z—1 is both bounded from below by 0 and must decrease through ev-
ery iteration of the cycle. TERMINATOR then attempts to validate z — 1 as a proof of ter-
mination of the entire loop by determining if there are any paths over which z — 1 is not
bounded and decreasing. There are, as the value of z is not bounded over the executions

of the loop. Thus TERMINATOR will find another counterexample to z — 1 as a proof
of termination. For instance, it may find a trace that executes loop L1 once, reaches
L2 with state d = 1,z = 2, and executes the same cycle as the previous counterex-
ample. Similarly to how TERMINATOR handled the last counterexample, it constructs
an under-approximate cycle “assume (d = 1); assume(z = 2); assume (x
> 0); assume(y > 0); x := x —d; y := *; z := z — 1;”and at-
tempts to prove its termination. Similar to the last counterexample, it determines that
z — 2 is bounded from below by 0 and decreases each time through the loop. Again, this
fact does not hold for all paths through the loop, so TERMINATOR will iterate again on
another counterexample. In this way, TERMINATOR will converge on a proof of termi-
nation slowly, if at all.

To address these shortcomings in existing techniques, we propose TREX, a novel
approach to proving termination of whole programs. TREX addresses the shortcom-
ings of LLRF-based techniques and TERMINATOR with an algorithm that alternates
between refining an over and under-approximation of the program. TREX analyzes
loops in the program one at a time. For each loop L, it simultaneously maintains an
over-approximation as a loop invariant for L (which is a superset of the states that can
be reached at the loop-head) and an under-approximation as a subset of all the paths
through L.

TREX first applies a loop termination prover to try to prove that no set of paths in
the under-approximation can execute together infinitely often. If the loop termination
prover can prove this, then it produces a certificate of the proof. TREX then checks if the
certificate is a valid proof that no set of paths in the entire loop may execute infinitely
often. If so, then the certificate demonstrates that the loop terminates on all inputs.
If not, then TREX adds to the under-approximation paths that invalidate the certificate.
TREX then reanalyzes the program using the new, expanded under-approximation. This
technique is similar to those employed in TERMINATOR.

If TREX fails to prove that paths in the under-approximation do not execute in-
finitely often, then it applies a non-termination prover to find a sufficient condition for
non-termination. This sufficient condition is a precondition under which the loop will
not terminate. TREX then queries a safety prover to search for a program input that
reaches the loop and satisfies this precondition. If the safety prover finds such an input,
then the input is a true counterexample to termination. If the safety prover determines
that the loop precondition is unreachable, then the negation of the precondition is an
invariant for the loop. TREX conjoins this predicate to its existing invariant and rean-
alyzes the program using the new, strengthened over-approximation. This technique is
novel to TREX.

In this way, TREX composes three analyzes for three distinct problems: (1) efficient
local termination provers that can analyze a loop represented as a finite sets of paths,
(2) non-termination provers that analyze a single trace, and (3) safety provers that prove
global safety properties of programs. This composition allows each analysis to improve
the performance of the other. The composition allows TREX to apply a loop termination
prover that produces a lexicographic linear ranking functions (LLRF) as a certificate
of termination. Using LLRFs as certificates, as opposed to TIs, improves the perfor-
mance of the safety prover in validating certificates. The non-termination prover allows

LLRF-based loop termination provers to reason about loops that cannot be proved ter-
minating when analyzed in isolation. Finally, the safety prover directs the search of the
non-termination prover in finding counterexamples to termination. Using this approach,
TREX is able to prove termination or non-termination of programs that are outside the
reach of existing techniques, including the example in Fig. 1. §2 gives an informal dis-
cussion as to how TREX handles this example.

The contributions of this paper are as follows:

1. We present TREX, a novel algorithm for proving termination of whole pro-
grams. TREX simultaneously maintains over and under-approximations of a loop
to quickly find proofs of termination or non-termination. This allows it to com-
pose several program analyses that until now were disparate: termination provers
for multi-path loops, non-termination provers for cycles, and global safety provers.

2. We present an empirical evaluation of TREX. We evaluated TREX by applying it
to a set of systems drivers and benchmarks for termination analysis, along with
versions both that we injected with faults. The results of our evaluation demon-
strate that TREX’s use of alternation allows it to quickly prove that programs either
always terminate or produce verified counterexamples to their termination.

The rest of this paper is organized as follows. In §2, we illustrate by example how
TREX proves termination or non-termination for an example program. In §3, we review
known results on which TREX builds. In §4, we give a formal presentation of the TREX
algorithm. In §5, we present an empirical evaluation of TREX. In §6 we discuss related
work, and in §7 we conclude.

2 Overview

We now informally present the TREX algorithm. We first describe the core algorithm
for deciding if a single loop in a single-procedure program terminates under all program
inputs, and then illustrate the algorithm using a set of examples. If the program contains
nested loops, function calls, and pointers, the algorithm can be extended. We present
such extensions in §4.2.

To analyze a loop L, TREX maintains two key pieces of information: (¢) a loop
invariant O of L, and (4¢) U, which is a subset of the set of all paths that can execute
in the body of loop L. Note that paths in U can be obtained by concatenating arbitrar-
ily many paths through L. The overapproximation O is initialized to a weak invariant
such as true, and U is initialized to an empty set of paths. TREX analyzes each loop
iteratively. In each iteration, it first attempts to find a certificate that proves that no set
of paths in U can execute together infinitely often, assuming the loop invariant O.

First, suppose that TREX cannot find a proof certificate. Then TREX finds a path
7 that is a concatenation of paths in U such that no proof of termination of 7 exists. It
then uses a non-termination prover [14] to derive a loop precondition ¢ such that if the
program reaches L in a state 0 € ¢, then it will then execute 7 infinitely often. TREX
calls a safety prover to determine if some initial program state o; can reach such a o
along an execution trace. If so, then the trace, combined with 7, is a witness that the
loop does not always terminate. If a safety prover determines that no such states o and

o exist, then TREX strengthens the over-approximation of O with the knowledge that
¢ can never hold at the head of the loop L.

Now, suppose that TREX does find a proof certificate for the under-approximation.
TREX then checks to see if the certificate is valid for all paths in L. If the certificate is
not valid, then TREX finds a path 7 over the body of L that invalidates the certificate,
and expands U to include 7. TREX then performs another refinement step using the
strengthened over-approximation or expanded under-approximation. In this way, the
under-approximation U is used to find potentially non-terminating cycles, and if such
cycles are unreachable, this information is used to refine the over-approximation O.
Dually, if the certificate for U is not a valid certificate for all the paths through L with
the over-approximation O, this information is used to expand U. We now illustrate the
advantages of this approach using a set of examples.

Alternation Between Over and Under-approximations. Because TREX simultaneously
maintains over and under-approximations of a loop, it can often quickly find proofs that
the loop terminates, even when the proofs rely on program behavior that is not local to
the loop. For example, consider loop L2 from Fig. 1. Recall from §1 that existing termi-
nation provers may have difficulty proving termination of L2. A technique that relies on
a fixed over-approximation may not be able to discover automatically the needed loop
invariant d > 0, but a technique that relies solely on under-approximations may strug-
gle to find a proof of termination for the loop, as it is misled by information gathered
along a trace leading to the loop.

TREX handles this example by alternating between over and under-approximations.
It first tries to prove termination of the loop with an over-approximation that the loop
can be reached in any state, and is unable to find such a proof. TREX thus generates
a potential counterexample to termination in the form of a cycle through the loop:
assume (x > 0 && y > 0); y := y — d. It then applies a non-termination
prover to this cycle to find a sufficient condition ¢ such that if execution reaches the loop
in a state that satisfies ¢, then the subsequent execution will not terminate. The non-
termination prover determines that such a sufficient condition is the predicate d < 0.
TREX then queries a safety prover to decide if the condition d < 0 at L2 is reachable,
but the safety prover determines that d < 0 is in fact unreachable. Thus TREX refines
the over-approximation of the loop to record that all states reachable at line 4 are in
=(d < 0) = d > 0. TREX then applies a loop termination prover to the loop un-
der this stronger over-approximation. Such a technique quickly proves that L2 always
terminates.

Using LLRFs As Certificates for Termination Proofs. Existing techniques for proving
termination of programs produce a transition invariant (TI) as a certificate of proof of
termination, while existing termination provers for loops produce lexicographic linear
ranking functions (LLRF). TREX is parametrized to use either TIs or LLRFs as cer-
tificates in proving termination of whole programs. This implies that it can construct a
set of LLRFs that serves as a proof of termination for a whole program. While TIs are
more expressive than LLRF’s in that they can be used to encode proofs of termination
for more loops than LLRFs, LLRFs can often be constructed faster, and the loss of ex-
pressiveness typically does not matter in practice. We find that in practice, using LLRFs

as certificates instead of TIs results in an acceptable loss of expressiveness while allow-
ing significant gains in performance, both in finding the certificate and in validating
candidate certificates.

To gain an intuition for the advantage of using LLRFs, consider again in Fig. 1
the loop L2. Recall that L2 is problematic for an analysis that constructs a TI using
under-approximations. However, suppose that an analysis based on constructing TIs
was given d > 0 as a loop invariant. The analysis could then analyze the loop in isola-
tion and would eventually find a TI that proves termination. However, the best known
approach to TI synthesis constructs proofs one at a time for single paths through po-
tentially multiple iterations of the loop. For each path, the analysis then attempts to
validate the constructed proof using an expensive safety check. However, if an LLRF-
based analysis is given the loop invariant d > 0, and both the paths “x := x - d; vy
:= %x; z = z — 17, and“y := y - d”through the loop, it can prove termina-
tion of the loop by solving a single linear constraint system. Furthermore, the validation
of resulting LLRF is considerably simpler.

| int d = 1; Proving Non-termination. Finally, TREX can
: int x; find non-terminating executions efficiently. For
4 if(x) d :=d - 1; the program in Fig. 2, suppose that the function
: if (%) foo(); foo has p paths through its body. There are thus
7 J/k such conditionals O(2Fp*) different lassos in the program that end
; //without decrements of d. wjth the cycle at lines 13—15. Of these, only the
10 if(x) foo(); lassos with stems that include the decrements to d
! () di=d - 15 at lines 4 and 11 lead to non-termination. The cur-
13 while (x > 0) | rent best known technique for finding termination
14 ¥ 1= x = dj bugs, TNT [14], searches the program for lassos

15 }
Fig. 2. Example to illustrate detect-
ing non-termination.

in an arbitrary manner. Thus TNT may only find
such a bug by enumerating the entire space of las-
SOS.

TREX can provide TNT with a goal-directed search strategy for finding termination
bugs. For the program in Fig. 2, TREX first analyzes the loop at lines 13-15, and is
unable to prove termination of the loop. It next attempts to find an execution for which
the loop does not terminate. However, instead of applying TNT to one of the lassos in
the program to verify it as a complete witness to non-termination, TREX applies TNT
to the sole path through the loop to derive a sufficient condition for non-termination.
For the example, TNT determines that if the loop is reached in a state that satisfies
d < 0, then execution of the loop will not terminate. TREX then queries a safety prover
to determine if a state that satisfies d < 0 is reachable at the head of the loop. Suppose
that the function foo does not modify d. Modular safety checkers such as SMASH [11]
can use knowledge about the target set of states d < 0 to build a safety summary for
foo which states that d is not modified by foo. TREX uses such a prover to quickly
find a path that reaches the loop head in a state that satisfies d < 0. It is the path that
decrements d at lines 4 and 11.

3 Preliminaries

TREX builds on existing work on proving termination and non-termination. We recall
some preliminaries and definitions from previous work.

3.1 Termination Certificates

TREX is parametrized by the certificates that it uses to prove termination of individual
loops. A certificate typically defines a measure p that is bounded below by zero, (i.e.
1 > 0) and decreases on every iteration of the loop. Previous work shows how to find
such measures automatically using lexicographic linear ranking functions and transition
invariants. The exact details of these certificates are not important for an understanding
of TREX, but for the sake of completeness, their definitions are given in Appendix A.

3.2 Proving Non-Termination

Recent work [14] addresses a dual problem to proving termination, that of proving non-
termination of a given path through a program. Let a pair of paths (Tsiem, Teycle) be @
lasso. The problem of proving non-termination is to determine if it is possible for Tgzep,
to execute once followed by infinite consecutive executions of 7¢yce. [14] establishes
that (Tstem , Teyele) 18 nON-terminating if and only if there exists a recurrent set of states
defined as follows:

Defn. 1 For a lasso (Tstem, Teycle), @ Tecurrent set ¢ is a set of states such that (i) ¢
is reachable from the beginning of the program over Tsiem; and (ii) For every state
o € @, there is a state ¢’ € such that o’ can be reached from o by executing Teycie.

In this work, we introduce the notion of a partial recurrent set, which is a relaxation of
a recurrent set.

Defn. 2 A set of states @ is a partial recurrent set for a sequence of statements T if it
satisfies clause (ii) of Defn. 1, with T in place of Tcycie-

One can reduce the problem of finding a recurrent set for a given lasso to solving
a non-linear constraint system [14]. This is the approach implemented by TNT. The
TNT technique relies on a constraint template to guide the constraint solving, and gives
a heuristic for iteratively refining the template until a recurrent set is found. In practice,
if a recurrent set exists, then it typically can be found with a relatively small template.
TNT can be easily extended to find a partial recurrent set as well.

4 Algorithm

We now formally present the TREX algorithm, given in Fig. 3. We first describe
TREX for single-procedure programs without pointers, function calls, or nested loops.
We describe in §4.2 an enhancement of TREX that deals with pointers, function calls,
and nested loops. TREX attempts to prove termination or non-termination of each loop

TREX (P)

Input: Program P

Returns: Termination if P terminates on all inputs,
NonTermination(Tstem, Teyere) if P may execute Tsiem
once, and then execute 7.y infinitely many times.

for each loop L in the program do
O :=true // Initialize over-approximation.
U :={ } // Initialize under-approximation.

result := GetCertificate(O,U)
if (result = Termination(C)) then
result’ := Check Validity(C, O, L)

1:

2

3

4:

5: loop
6.

7

8:

9: if (result’ = Valid) then

10: break // Analyze next program loop.
11: else if (result’ = Invalid(7)) then

12: U=UU{r}

13: continue

14: end if

15: else if (result = Cycle(7¢ycie)) then

16: @ = PRS(Teyete)

17: if Reachable(p) then

18: Tstem = SafetyTrace(p)

19: return NonTermination(7stem, Teycle)
20: else

21: 0:=0\¢p

22: continue

23: end if

24: end if

25: end loop

26: end for

Fig. 3. The TREX algorithm

in isolation. When TREX analyzes each loop L, it maintains an over-approximation O,
which is a superset of the set of states reachable at the loop head of L, and an under-
approximation U, which is a subset of the paths through the loop body. At lines 2 and
3, O is initialized to true (denoting all states), and U is initialized to the empty set
of program paths. We use Lo to denote the loop L with each path prefixed with an
assumption that O holds, and similarly for Up.

The core of the TREX algorithm iterates through the loop in lines 5-25 of Fig. 3.
Inside this loop, TREX refines the over-approximation O to smaller sets of states, adds
more paths to the under-approximation U, and tries to prove either termination or non-
termination of the loop L. At line 6, TREX calls GetCertificate to find a certificate of
proof for the under-approximation U'.

First, suppose that the call GetCertificate(O,U) returns Termination(C). In
this case, GetCertificate has found a proof C' that no set of paths in U execute together
infinitely often under invariant O. In this case, TREX checks if C' is a valid certifi-
cate for the entire loop Lo by calling the function Check Validity in line 8. The call
Check Validity(C, O, L) returns Valid if the certificate C is a valid proof of termina-
tion for the loop Lo. In this case, TREX determines that L terminates, and analyzes the
next loop. Otherwise, Check Validity returns Invalid(7), where 7 € L1 \ U is a path
such that C' does not prove that a cycle of 7 will not execute infinitely often. In this
case, TREX adds the path 7 to the under-approximation U and continues to iterate.

Now suppose that GetCertificate does not find a certificate for Uy and returns
Cycle(Teyele). Here, Teyere € UT is a trace formed by concatenating some sequence
of paths through U. At line 16, TREX calls PRS, which computes for 7.y a partial
recurrent set . If 0; € ¢, then executing 7.y, from o results in a state op € .
Thus if ¢ is reachable from a program input o, then program P will not terminate
on 7. On line 17, TREX calls a safety prover to determine if such a oy exists. If so,
then the safety prover produces a trace 7s..,, along with an initial state that reaches ¢.
TREX then presents the 1ass0 (Tstem , Teycle) @S a true counterexample to termination.
Otherwise, suppose the safety prover determines that ¢ is unreachable. In that case,
TREX refines the over-approximation O by removing from O the set of states . It then
continues to iterate.

4.1 Sub-procedures Called by TREX

The TREX algorithm as presented in Fig. 3
depends on four procedures: Reachable,
//x is an input variable CheckValidity, GetCertificate, and PRS.

1

j e Definitions of Reachable and PR.S are standard.
: ot main 2; { o Reachable answers a safety query for a program,
6 Lf (%) foo(); and thus can be implemented using any static
;) else foo(); analysis tool or model checker that provides
9 } either a proof of safety or counterexample trace.
" void foo() | Our implementation answers such queries by
1 x——; using the SMASH algorithm [11]. PRS constructs
1 } a partial recurrent set for an execution trace. The

implementation of such a procedure used by our
implementation of TREX is described in [14].

Procedures GetCertificate, and
CheckValidity can be instantiated to com-
pute and validate any certificate of a termination proof, such as TIs or LLRFs. The
work in [9] gives instantiations of these procedures for TIs. If the procedures are
instantiated to use TIs, then the resulting version of TREX is similar to TERMINATOR,
modulo the fact that TREX uses counterexamples to refine an over-approximation of
each loop, while TERMINATOR does not attempt to maintain an over-approximation.
Furthermore, TREX can be instantiated to use LLRFs to reason about programs, given
suitable definitions of GetCertificate and Check Validity. In Appendix B.2, we give
novel implementations of such functions.

Fig. 4. Example illustrating inter-
procedural analysis.

4.2 Handling nested loops, function calls and pointers

For TREX to reason about nested loops, function calls, and pointers, it is necessary
that its sub-procedures reason about these features. The procedures Reachable and
Check Validity depend primarily on a safety prover. In the context of safety, handling
nested loops and function calls is a well-studied problem, and our safety checker sup-
ports such features. However, the procedures GetCertificate and PRS must be ex-
tended from their standard definitions to handle such features. Both procedures take
as input a finite set of paths. The current state-of-the-art techniques for implementing
GetCertificate and PRS can only reason about paths defined over a fixed set of vari-
ables and linear updates to those variables. They cannot reason about program state-
ments that manipulate pointers, because pointer dereferences introduce non-linear be-
havior. Thus to apply such techniques, an analysis must first rewrite program paths that
perform pointer manipulations to a semantically equivalent form expressed purely in
terms of linear updates.

TREX rewrites program paths to satisfy this condition by following a strategy used
in symbolic-execution tools, and also by TERMINATOR, which is to concretize the val-
ues of pointers. Note that all paths added to U are produced by Check Validity, which
takes as input an entire program, as opposed to a single loop. Thus if Check Validity
determines that a certificate is not valid for an entire loop L, then it produces a counter-
example in the form of a lasso (Tstem, Tcycle), where 7¢yce 1 a path through the loop
and Tgten, 1S a path up to the loop. In the absence of pointer dereferences, function
calls, or nested 1oops, 7y 1s directly added to U. In the presence of pointer derefer-
ences, TREX rewrites the cycle before adding it to U as follows: for an instruction »p
= xg + 5 where p and g point to scalar variables x and y respectively during the
execution of Tsem, TREX replaces the instruction with x = y + 5. This amounts to
under-approximating the behavior of paths through a loop by assuming that the aliasing
conditions of T4, hold in every iteration of the loop.

TREX reasons about function calls and nested loops by in-lining instructions along
the path 7.y, before adding the path to U. For example, suppose that we apply
TREX to the program in Fig. 4. In the course of analysis, TREX expands an under-
approximation of the loop in lines 5-8 by adding a path through the loop, which goes
through the function foo. To find a certificate for a new proof of termination that in-
cludes this path, TREX applies GetCertificate to this path, which only looks at the
instructions in the path: assume (x > 0); x = x — 1. GetCertificate produces
an LLRF x. TREX then applies Check Validity, which uses an interprocedural safety
analysis to verify that x is indeed a ranking function for the entire loop, i.e., in all
executions of the program, the value of x decreases on every iteration of the loop.

4.3 Limitations of TREX

If TREX terminates, then it produces a proof of termination or a valid counterexample
that witnesses non-termination. However, TREX may not terminate for the following
reasons: (¢) the underlying safety prover or non-termination prover may not terminate;
or (i7) the main loop in Fig. 3 lines 5-25 may not terminate. The main loop may not ter-
minate because finding the termination proof or non-termination witness may require

TREX to reason about program features beyond what are supported by the loop ter-
mination and non-termination provers used by TREX. Such program features include
non-linear arithmetic or manipulating recursive data-structures. Proving termination in
the latter case is addressed in [3]. It would be interesting to instantiate TREX with the
prover presented in [3], provided that a corresponding non-termination prover could be
derived.

S Experiments

We empirically evaluated TREX over a set of experiments designed to determine if:

— TREX can prove termination and find bugs for programs explicitly designed to be
difficult to analyze for termination. To this end, we applied TREX to several hand-
crafted benchmarks.

— TREX can prove termination and find bugs for real-world programs. To this end,
we applied TREX to several drivers for the Windows Vista operating system.

To evaluate TREX, we implemented the algorithm described in §4, instantiated with
the LLRF-based termination prover described in Appendix B.2 and the non-termination
prover described in §3.2. We also compared TREX with the current state of the art in
proving termination. The only other termination prover that we are aware of that can
analyze arbitrary C programs is TERMINATOR. We did not have access to the implemen-
tation of TERMINATOR discussed in [10], so we reimplemented it using the description
provided in that work. We refer to this implementation as R-TERMINATOR. To allow
for a fair comparison, the implementations of both TREX and R-TERMINATOR use the
same safety prover, SMASH [11]. All experiments were performed on a machine with
an AMD Athlon 2.2 GHz processor and 2GB RAM.

5.1 Micro-benchmarks

We first evaluated if TREX could find difficult termination
bugs in small program snippets. To do so, we first applied R-
TERMINATOR and TREX to the loop shown in Fig. 5, based on
the program in Fig. 1. R-TERMINATOR did not find the bug in this

loop: as described in §1, it successively tries as proofs of termi-

while (x> 00 nation ranking functions ¢; — z for different constants ¢;. TREX

x = x - d; found this bug within 5 seconds, requiring 1 alternation. This ex-

ample thus indicates that for a non-terminating loop with variables

spurious to proving termination, z in Fig. 1, the spurious variables

Fig.5. A non- can cause R-TERMINATOR not to find a proof of termination or
terminating non-termination.

loop. Next, we applied TREX and R-TERMINATOR on snippets of

code extracted from real Windows Vista drivers, the same used

in [2]. The results of the experiments are given in Tab. 1. For

each driver snippet, Tab. 1 reports the number of loops, the number of buggy (non-

terminating) loops, the number of times that TREX called a non-termination prover dur-

ing analysis (#NT), the number of times TREX called a termination prover (#TC), the

int x,d, z;
d=0; z=0;

Name| Num|[Buggy| TREX [R-TERMINATOR| TREX
Loops| Loops [#NT[#TC][Time (s)[#TC[_ Time (s)|speedup

01 3 o of 3 13.8| 4 32.1 2.3
02 3 1 1 2 15.3 5 48.0 3.1
03 1 1 1 0 7.9 1 59 0.7
04 1 o 0 1 3.1 1 12.3 39
05 1 o 0 1 6.4 1 8.8 1.4
06 1 o 0 1 301 2 13.8 4.6
07 2 0 0 2 10.2 2 11.8 1.2
08 2 o of 2 94| 2 11.0 1.2
09 2 1 -l - T/O| - T/O -
10 1 o 0 1 2.5 2 10.3 4.1

Table 1. Results of applying TREX to Windows drivers snippets. The timeout (T/O) limit was set
to 500 seconds.

Name| Num|Buggy TREX R-TERMINATOR
Loops| Loops |# NT|# TCs|Time (s)|# TCs| Time (s)

01 3 0 0 3 22.3 3 19.9
04 1 1 1 0 49 1 54
05 1 1 1 0 7.1 1 9.1
06 1 1 1 1 9.7 2 12.1
07 2 0 0 2 7.6 2 9.8
08 2 1 1 1 8.1 1 7.4
10 1 1 1 0 9.8 0 44

Table 2. Results of experiments over driver snippets modified to contain termination bugs.

time taken by TREX, and similarly for R-TERMINATOR. In general, TREX was signif-
icantly faster than R-TERMINATOR. In most cases, the speedup was caused directly by
the fact that TREX uses LLRF’s as termination certificates, whereas R-TERMINATOR
uses TI’s. By using LLRF’s, TREX needs to construct fewer certificates during analysis,
and thus needs to query a safety prover fewer times in order to validate certificates.

For these programs, TREX called its non-termination prover at most once. In each
case, the call verified that the loop is indeed non-terminating. Program “02” high-
lights the advantage of applying a non-termination prover in this way. When analyzing
program “02,” R-TERMINATOR constructed and failed to validate multiple candidate
termination certificates obtained by under-approximating the behavior of cycles. R-
TERMINATOR eventually could not construct a new candidate and reported a possible
termination bug. When applied to program “02,” TREX failed to find a proof of termina-
tion, but then immediately alternated to apply a non-termination prover, which quickly
found a verified termination bug. Finally, note that program “09” has a complicated
loop about which neither TREX nor R-TERMINATOR can find a proof, and thus time
out.

The original driver snippets contain relatively few termination bugs. Thus to fur-
ther measure TREX’s ability to find bugs, we modified each driver snippet that had no
termination bug as follows. We introduced variables “incq, incs, ...”, and code that non-
deterministically initializes them to 0 or 1. We then replaced increment or decrement
statements of the form “x = x & 17, with “x = x =+ inc,,”, where a different “n” is used
for each increment statement. The results are given in Table 2. Note that our modifi-
cation did not always introduce a termination bug, as in some cases, the increment or
decrement was irrelevant to the termination argument for the loop.

In general, TREX and R-TERMINATOR analyze these loops in similar amounts of
time. In cases where TREX completed in less time than R-TERMINATOR, it was typ-
ically because R-TERMINATOR produced and then failed to validate more candidate
termination certificates. In such cases, R-TERMINATOR would typically choose as a
ranking function a variable “x”, where a statement such as “x = x - 1”” had been mod-
ified to “x = x - inc” and “inc” was initialized to 1 on some but not all paths through
the loop. R-TERMINATOR would only discover later in its analysis, after an expensive
safety query, that “x” need not always decrease. In contrast, TREX did not choose “x”
as a ranking function in this case because it never considers the concrete values of the
“inc” variables while trying to find a ranking function. We believe that the difference in
performance between TREX and R-TERMINATOR would increase for when applied to
larger programs containing bugs as described above. This is because it typically takes
less time to answer a non-termination query than it does safety query, as the former is a

local property of a loop while the latter is a global property of a program.

int x1,x2, Xnj;

int d1,d2, ..., dn; n] TREX[#NT[#TC|Num.
dl =d2 = ... =dn = 1; Time (s) Alts.
while(xl > 0 && x2 > 0 1 9.9 1 1 2
&& ... && xn > 0) { 2 11.9 21 2 4
1f (%) x1 = x1 - di;
else if(x) x2 = x2 - d2; 3 27.7 3 3 6
4 974, 4| 4 8
else xn = xn - dn; 5 396.6 5 5 10
}
(a) (b)

Fig. 6. (a) A family of loops requiring significant alternation to analyze. (b) TREX results.

A Micro-benchmark Forcing Alternation We evaluated the performance of TREX
when analyzing loops for which multiple alternations are required to find a proof of
termination or a bug. Consider the class of loops defined in Fig. 6. Each value of n
defines a loop. To prove such a loop terminating, TREX must perform 2n alternations
between searching for an LLRF to prove the loop terminating and searching for a PRS
to prove the loop non-terminating. The results of applying TREX to the loops defined
by n € [1,5] are given in Fig. 6(b). TREX found a proof of termination in each case.
The results indicate that alternation between the LLRF search and PRS search scales
quite well for up to 6 alternations, but that performance begins to degrade rapidly when
the analysis requires more than 8 alternations. In practice, this is not an issue, as most
loops require less than 3 alternations to analyze.

We also applied R-TERMINATOR to these programs, but R-TERMINATOR timed
out in each case. In its analysis, R-TERMINATOR under-approximates cycles in or-
der to produce the z; as candidates for proofs of termination. However, when R-
TERMINATOR applies a safety prover to validate these candidates, the safety prover
does not terminate. This is because the safety prover, based on predicate abstraction,
uses a weakest precondition operator to find predicates relevant to its analysis. In the

safety queries made by R-TERMINATOR, these predicates are not sufficient: the safety
prover needs an additional predicate d; > 0 to establish that some z; decreases each
time through the loop. In contrast, TREX uses a non-termination prover to find that
d; < 0, and thus establishes that d; > 0 as a loop invariant. Thus when TREX makes a
subsequent call to the safety prover, the call terminates.

We evaluated TREX’s ability to find bugs for such a loop. For the loop defined by
n = b, we injected a fault that initialized d3 = 0. For this loop, TREX found the
resulting termination bug using 5 alternations in 22.2 seconds.

Name |LOC|#Loops|TREX Time (s)|R-TERMINATOR Time (s)
Driver-1{0.8K 2 80 85
Driver-2|2.3K 4 1128 2400
Driver-3|3.0K 10 54 120
Driver-4|5.3K 17 945 T/O
Driver-5|6.0K 24 24 T/0
Driver-6|6.5K 16 68 62

Table 3. Results of experiments over Windows Drivers. Time out was set to 1 hour.

5.2 Windows Drivers

We applied TREX to complete Windows Drivers to evaluate its ability to analyze pro-
grams of moderate size that manipulate pointers and contain multiple procedures. The
drivers were chosen randomly from the Microsoft’s Static Driver Verifier regression
suite. We could not directly compare TREX to R-TERMINATOR over the drivers used
in [10], as these were not available. The results of the evaluation are given in Table 3.
The drivers used are well-tested, and thus we did not find any bugs in them. However,
the results show that TREX is faster than R-TERMINATOR in most cases. Similar to the
micro-benchmarks presented in §5.1, this is because R-TERMINATOR produced many
more termination certificates, resulting in more safety queries.

6 Related Work

TREX brings together threads of work in proving termination that were disparate up
to now. Our work shares the most in common with TERMINATOR [10]. TERMINATOR
iteratively reasons about under-approximations of a program to construct a proof of ter-
mination. TREX simultaneously refines under and over-approximations of a program.
TREX relies on an analysis that proves termination of loops represented as a set of
guarded linear transformations of program variables. Many existing techniques prove
termination of such loops by constructing linear ranking functions [2,4-7, 17]. Such
techniques are efficient, but can only be applied to a restricted class of loops and cannot
reason about the contexts in which loops execute. In this work, we show how all such
techniques can be brought be bear in analyzing general programs, provided they can be
extended to generate counterexample traces on failure. In Appendix B.2, we describe
how to do this by extending a simplification of the technique of [4]. The technique of

[4] additionally uses constraint solving to find efficiently a loop invariant that is used
to prove termination. For simplicity, we do not consider how to extend a technique
that generates invariants, though in principle the same extension should apply to such a
technique.

TREX also relies on techniques that prove that a given lasso does not terminate
[14]. TREX applies such a technique to simultaneously search for counterexamples to
termination and to guide the search for a proof of termination. TREX can also be used
as a search strategy for finding non-termination bugs. The search strategy proposed in
[14] simply enumerates potential cycles using symbolic execution. [8] gives a method
for deriving a sufficient precondition for a loop to terminate. However, this approach
does not lend well to refinement if the computed precondition is not met. TREX applies
[14] iteratively to derive a sufficient precondition for termination that is guaranteed to
be a true precondition of a loop.

Multiple safety provers [1, 11, 13] demonstrate that alternating between over and
under approximations is more effective for proving safety properties than an analysis
based exclusively on one or the other. For these provers, an over-approximation of the
program is an abstraction of its transition relation, and the under-approximation is a
set of tests through the program. The abstraction directs test generation, while the tests
guide which parts of the abstraction are refined. TREX demonstrates that the insight of
maintaining over and under approximations can be applied to prove termination prop-
erties of programs as well. However, for TREX, the over-approximation maintained is
an invariant for a loop under analysis, and the under-approximation is a set of con-
crete paths through the loop. The invariant directs what new paths through the loop are
considered, and the concrete paths guide the refinement of the loop invariant.

7 Conclusion

Safety provers that simultaneously refine under and over-approximations of a program
can often prove safety properties of programs effectively. In this work, we have shown
that the same refinement scheme can be applied to prove termination properties of pro-
grams. We derived an analysis based on this principle, implemented it, and applied it
to a set of termination analysis benchmarks and real-world systems code. Our results
demonstrate that alternation between approximations significantly improves the effec-
tiveness and performance of termination analysis.

References

1. Nels E. Beckman, Aditya V. Nori, Sriram K. Rajamani, and Robert J. Simmons. Proofs from
tests. In ISSTA, pages 3—14, 2008.

2. Josh Berdine, Aziem Chawdhary, Byron Cook, Dino Distefano, and Peter O’Hearn. Variance
analyses from invariance analyses. SIGPLAN Not., 42(1):211-224, 2007.

3. Josh Berdine, Byron Cook, Dino Distefano, and Peter W. O’Hearn. Automatic termination
proofs for programs with shape-shifting heaps. In CAV, pages 386—400, 2006.

4. Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking with reachability. In
CAV, 2005.

5. Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. The polyranking principle. In /CALP,
pages 1349-1361, 2005.

6. Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination analysis of integer linear
loops. In CONCUR, pages 488-502, 2005.

7. Aziem Chawdhary, Byron Cook, Sumit Gulwani, Mooly Sagiv, and Hongseok Yang. Rank-
ing abstractions. In ESOP '08, pages 148-162, 2008.

8. Byron Cook, Sumit Gulwani, Tal Lev-Ami, Andrey Rybalchenko, and Mooly Sagiv. Proving
conditional termination. In CAV, pages 328-340, 2008.

9. Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstraction refinement for termi-
nation. In SAS, pages 87-101, 2005.

10. Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for systems
code. In PLDI, pages 415-426, 2006.

11. Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep Tetali. Compositional
may-must program analysis: Unleashing the power of alternation. In POPL, 2010.

12. Alexey Gotsman, Byron Cook, Matthew Parkinson, and Viktor Vafeiadis. Proving that non-
blocking algorithms don’t block. In POPL, pages 16-28, 2009.

13. Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan, Aditya V. Nori, and Sriram K.
Rajamani. SYNERGY: a new algorithm for property checking. In FSE, pages 117-127,
2006.

14. Ashutosh Gupta, Thomas A. Henzinger, Rupak Majumdar, Andrey Rybalchenko, and Ru-
Gang Xu. Proving non-termination. In POPL, pages 147-158, 2008.

15. Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of linear
ranking functions. In VM CAI, pages 465-486, 2004.

16. Andreas Podelski and Andrey Rybalchenko. Transition invariants. In LICS, pages 3241,
2004.

17. Ashish Tiwari. Termination of linear programs. In CAV, pages 70-82, 2004.

A Termination Certificates

The choice of certificate can greatly affect the expressiveness and performance of the
resulting termination prover. Here, we give a basic background on certificates defined
in previous work, along with current state of the art techniques for their synthesis.

Linear Ranking Functions In general, a ranking function f is a function from a do-
main D with relation < to another domain D’ that is well-founded with respect to a
relation <’, where f is monotone with respect to < and <’. The existence of such a
function f is a sufficient proof that D itself is well-founded. In the case where D rep-
resents the state space of a program and < represents its transition relation, a ranking
function is thus a proof that the program terminates on all inputs. For exactly every
program that terminates on all inputs, there is a ranking function, so the problem of
constructing a ranking function for a program is undecidable in general. However, there
has been much work on techniques for efficiently generating ranking functions of re-
stricted classes. One such class is that of linear ranking functions.

Defn. 3 For a loop L with cutpoint ~y (such as the head of L), a linear ranking function
r is a linear expression over the program variables such that:

— r has a constant lower bound, assumed without loss of generality to be 0, every
time that execution enters the body of L from .
— Between any two successive visits to v over the body of L, the value of r decreases.

The existence of such an expression r is proof that the body of L cannot be executed
infinitely often without execution leaving L.

1 while (x >= 0

2 && y >= 0) {
3 if (%) |

4 X—=;

5 } else {

6 Y==i

Fig.7. A loop with a linear ranking function.

Ex. 1 Consider the loop in Figure 7 with the loop head serving as the cutpoint. The
guard x > 0 Ay > 0 implies that x + y is bounded from below by 0 whenever it enters
the loop. Additionally, it can be shown that every path once through the loop from the
cutpoint back to itself decreases the expression x + y. Thus x + y is a linear ranking
function for the loop.

Linear ranking functions are a particularly interesting and useful class of ranking
functions. Given a loop represented as a set of guarded linear updates of the program
state, a variety of techniques exist for finding a linear ranking function for the loop.
Such techniques are based on linear constraint solving, and thus are very efficient in
practice [15].

Lexicographic Linear Ranking Functions Linear ranking functions typically can be
found quickly when they exist, but there are many terminating loops that do not have
linear ranking functions. Loop L2 in Fig. 1 with the precondition d > 0 is such a loop.
However, linear ranking functions can be generalized to lexicographic linear ranking
functions, which can prove termination for a much more general class of loops, includ-
ing the loop L2.

Defn. 4 For a loop L with cutpoint -y, a lexicogrpahic linear ranking function (LLRF)
is an ordered tuple (r1,72,...,7r,) of linear expressions over the program variables
such that for each path p through the loop, there exists some r; such that:

— r; has a constant lower bound for executions of p.
— 1; decreases over every execution of p.
— For j < i, expression r; is non-increasing over the execution of p.

Observe that for £ > 14, it need not be the case that r, is decreasing or even non-
increasing over an execution of p. The existence of an LLRF is proof that L cannot
execute infinitely often without execution exiting L.

Ex. 2 Consider loop L2 in Fig. 1. Although y may not strictly decrease over each path
through the loop, P1 can only cause it to increase a finite number of times, as P1 has x
as a ranking function. Thus L has lexicographic linear ranking function (x,y).

LLREFs are useful proof objects, as they are strictly more powerful than linear rank-
ing functions, yet can be found almost as quickly using techniques based on linear
constraint-solving. In considering the two proof objects, we primarily focus on lexico-
graphic linear ranking functions and treat linear ranking functions as a special case.

Transition Invariants Transition invariants [16] are equivalent in expressive power to
general ranking functions.

Defn. 5 Suppose that a loop has transition relation T, with transitive closure of denoted
as 7. A transition invariant of the loop is a binary relation R over pre and post states
such that 7+ C R. If R can be expressed as a finite union of well-founded relations,
then R is disjunctively well-founded.

A loop terminates if and only if there exists a disjunctively well-founded transi-
tion invariant for a loop [16]. [9] gives a technique to find a disjunctively well-founded
transition invariant for a program by maintaining a disjunctively well-founded relation,
iteratively adding well-founded disjuncts until the relation over-approximates the pro-
gram or cannot be expanded further (in which case, termination is not proven). While
general, this technique is often not as efficient as techniques that synthesize linear rank-
ing functions in cases where both can be applied. Intuitively, this is due to the fact that
the technique does not immediately construct a proof of termination. Rather, it con-
structs a candidate proof, and then uses a potentially expensive safety check that must
reason about the transitive closure of the transition relation of the loop to validate the
candidate.

B Instantiations of TREX

In this section, we describe two instantiations of TREX, one using transition invariants,
and the other using LLRFs.

B.1 TREX Instantiated with Transition Invariants

To instantiate TREX with transition invariants, we instantiate the function
GetCertificate(O, L) to a procedure that finds a transition-invariant based proof of
termination for each individual path through Lo using a technique based on linear
constraint solving. CheckValidity(C, O, L) checks if the binary relation C' is an over-
approximation of Lo, and thus a transition invariant. Methods for performing both tasks
are described in [9].

B.2 Instantiating TREX with LLRFs

We now describe an instantiation of TREX using LLRFs as certificates for proofs of
termination. Recall that compared to TIs, LLRFs are limited in terms of expressiveness,
but can often by synthesized faster. Our experience instantiating TREX with LLRFs
indicates that the loss in expressiveness typically is not an issue in practice. We now
give definitions of the TREX functions that define its instantiation for LLRFs. We first
give an intuitive argument that when an LLRF exists for a given loop, TREX will find
it in less time than it would take to find a TI for the same loop.

Motivation for using LLRFs Recall the role of termination proof certificates in the
TREX algorithm. At each iteration, TREX first calls GetCertificate on an under-
approximation U of a loop L. Assuming GetCertificate finds a certificate C' that no
set of paths in U executes infinitely often, then TREX calls Check Validity to determine
if C'is a proof of termination for L. TREX achieves optimal performance with regard
to these functions if it is instantiated to manipulate a proof certificate such that (1) the
number of candidate certificates required to be synthesized is minimized and (2) the
complexity of validating each certificate is minimized.

The following argument gives an intuition that during the analysis of a given loop,
TREX instantiated with LLRF will need to generate no more proof certificates than
TREX instantiated with TI, and will likely need to generate fewer. Suppose that an
underapproximation U of a loop L is represented as a set of paths {pi1,pa,...,Pn}-
To construct a candidate TI for U, the TI synthesizer described in [9] first constructs a
well-founded binary relation for each path p;. This relation that shows that p; cannot
execute infinitely often on its own. The synthesizer then combines the relations to form
a proof that any path in the set (p” | p3 | ... | p;7) C Paths(U) cannot execute infinitely
often. Observe that the resulting TI may not prove that all interleavings of paths in U
do not execute infinitely often.

However, given a set of paths U, an LLRF synthesizer as described in [5] considers
at once all possible combinations of all paths through U. As a result, an LLRF is a
proof that no subset of paths in the set (p; | p2 | ... | pn)T can execute infinitely often
together. Thus with each synthesis, an LLRF synthesizer proves termination for more
paths through L than a TI synthesizer.

The second factor in determining usefulness of an LLRF instantiation compared to a
TI instantiation is the complexity of validating an LLRF compared to that of validating
a TIL. First, consider the process of validating a binary relation R as a TI for a loop L.
Let 7 be the transition relation of the body of loop L. Then the task of validating R
is equivalent to deciding if 77 C R, a binary reachability problem [9]. TERMINATOR
casts this as a safety problem by performing the code transformation in Fig. 8 and
verifying that the assertion already holds. Note that the each time through the loop,
the state of the program relevant to the candidate TI is non-deterministically copied to
prime-state variables. This non-determinism can greatly increase the complexity of the
resulting safety query.

In contrast to a TI, an LLRF makes an assertion about how program expressions are
affected by one step through the body of a loop. Thus a safety query that validates a can-
didate LLRF need only validate an instrumentation of one step through the body. The

while (cond) {
if (nondet ()) {

assert (rl < rl’
|| r2 < r2’

while (cond) {

|
body; = v_0' = v_0;
} v_1" = v_1;
v_m’ = v_m;
}
body;

}

Fig. 8. Program transformation to validate a TI.

while (cond) {
assert (rl < rl’
[l (rl <= rl’ && r2 < r2)

[...);

while (cond) {
body s v_0" = v_0;
¥i v_1' v_1;
}
v_m’ = v_m;
body;

}

Fig. 9. Program transformation to validate an LLRF.

exact instrumentation is given in Fig. 9. While similar to the program transformation of
Fig. 8, there is a syntactically small but crucial difference: the state of all variables in
the candidate LLRF are deterministically copied to the primed state on each iteration
through the loop. This difference can have a significant impact on the performance of
a safety prover when validating the LLRF. Note that checking for the validity of the
assertion in Fig. 9 is an implementation of Check Validity.

Implementation of an Instantiation to LLRFs Appendix B.2 discusses the advan-
tages of instantiating TREX to compute certificates in the form of LLRFs. Furthermore,
Appendix B.2 gives an implementation of Check Validity for LLRFs. All that remains
to instantiate TREX to use LLRFs as its termination proof certificate is an implemen-
tation of GetCertificate for LLRFs. We now present such a procedure GetLLRF' in
Fig. 10.

Recall that TREX requires two properties of GetLLRF for it to act as an implemen-
tation of GetCertificate. First, if GetLLRF presents a candidate termination proof,
then the candidate must be in the form of an LLRF. Second, if GetLLRF cannot com-
pute a proof of termination, then it must present a potential counterexample to termi-
nation in the form of a single trace that may execute through the loop infinitely often.
There are known techniques that synthesize LLRFs for loops [4]. However, previous
work does not describe how to extract a potential counterexample in the case that ter-
mination cannot be proved. We present such an LLRF synthesizer GetLLRF in Fig. 10.

At a high level, GetLLRF determines for each path p € L what sets of other paths
in L must not execute infinitely often in order for p not to execute infinitely often. If
these dependencies among paths imply that no path can execute infinitely often, then
GetLLRF constructs an LLRF from the dependency relation. Otherwise, GetLLRF
uses the dependency relation to find a counterexample.

The definition of GetLLRF is given in Fig. 10. GetLLRF assumes that the input
loop L is represented as a finite set of paths, each represented as a guarded linear trans-
formation over program variables. For each path p; € L, the loop over lines 3 - 19
determines what paths must not execute infinitely often if p; is not to execute infinitely
often. GetLLRF encodes the dependency in a propositional formula 1 geps. Ydeps 1S
defined over a set of propositional variables, with one variable for every path through
the loop. For path p, the truth of variable v, is interpreted as “path p must execute only
a finite number of times.” For example, the formula ((vp, V vp,) A vp,) = vy, has the
intuitive meaning “path p3 executes a finite number of times if one of the paths p; or ps
execute a finite number of times and path p4 executes a finite number of times.”

For path p;, the formula 4., is constructed as follows. GetLLRF first applies a
function RankFinder to p;, which produces a system of inequalities whose solutions
correspond to ranking functions of p; [15]. If the system is unsatisfiable, then GetLLRF
immediately returns p; as a counterexample to termination. If the system is satisfiable,
then for each path p;, GetLLRF applies NonIncFinder(p;), which computes a system
of constraints whose solutions are all non-increasing expressions over the execution
of p; [15]. GetLLRF then attempts to solve the conjunction of RankFinder(p;) and
NonlIncFinder(p;) to find an expression that is bounded and decreasing over p; and
non-increasing over all other paths through L, and thus a ranking function for p;.

GetLLRF(L)

Inputs: A loop L represented as a set of paths.

Returns: Termination(C') where C' is an LLRF
or NonTermination (o) where o is a set of paths
that may execute infinitely often

1: let L ={p1,p2,...,pn}
2: YPpre i=true
3: for each p; € P do

4: tPgeps :=true

5: C(i) := RankFinder(p;)

6: if Unsatisfiable(C(i)) then

7: return(NonTermination(p;))
8: endif

9: for each p; € Paths such that j # i do
10: C(j) := NonIncFinder(p;)

11: end for

12:if Unsatisfiable(A\]_, C(j)) then

13: 2 := GetCompleteUnsatCores(C, 1)
14: for each Q € (2 do

15: Yaeps = Vdeps N (quQ Vq)

16: end for

17: endif

18: Ypre 1= Ypre A (Ydeps = Up;)

19: end for

20: 9 = wpre = /\?:1 Up,;
21: if Is Valid(6) then
22: llrf := ConstructLLRF (Ypre)

23: return(Termination(lirf))

24: else

25 for each o € GetSatAssignment(—O) do
26: P= Ua(vp)zFalsep

27: if GetLLRF (P') = NonTermination(7) then
28: return(NonTermination(7))
29: end if

30: end for

31: let lirf :== ConsLLRFFromSubCases(L)
32: return(Termination(lirf))

33: end if

Fig.10. The GetLLRF algorithm

Let C(i) denote the set of all constraints requiring an expressions to be bounded
and decreasing over p;, and let C(j) for j # i be the set of constraints containing the
expression to be non-increasing over p;. Consider the significance of an unsatisfiable
core of this conjunction. Each constraint in an unsatisfiable core is contributed by some
C(k). However, if it can be proved that path p; cannot execute infinitely often, then
pj. cannot cause p; to execute infinitely often. In this case, the constraints in p; can
be safely ignored. Formally, let an unsatisfiable path core for path p; be a set of paths
Q@ € L\ {p;} such that: (1) A\ ;.o C(p;) is unsatisfiable, and (2) for any R C @,
we have that A\, p ¢,y C(p;) is satisfiable. A complete set of unsatisfiable path cores
for path p; is a set {2 of unsatisfiable path cores such that for every unsatisfiable path
core) of p;, it is the case that () contains some element of (2. If at least one path in
each member of a complete set is proved terminating, then p; itself terminates.

Such a complete set of unsatisfiable path cores is returned by the procedure
GetCompleteUnsatCores. This procedure works by enumerating subsets of P \ {p; }
from smaller sets to bigger sets. For each subset (), it invokes the constraint solver on
the constraints corresponding to () to check for satisfiability. In the worst case, this
method takes exponential time in n, but in practice n (the number of paths through the
loop) is small, so this is not a bottleneck. Lines 14-16 construct the dependency formula
Y deps from £2, the set of unsatisfiable cores. Line 20 conjoins the dependency formulas
for each of the paths p; € L to get a formula vy, and 1, is used to generate for-
mula © in line 22. O is valid if and only if the dependency relationships for termination
among paths imply that each path executes a finite number of times. If @ is valid, then
the loop terminates, and an LLRF can be constructed from the dependency relationship.
Given that the synthesis of LLRFs has been addressed in previous work, we omit the
details for this discussion.

Now suppose that © is invalid. For a satisfying assignment to —©, if
{vg1,vf2,...,vp,} is the set of all variables assigned to false, then the set of paths
{pr1,ps2;--.,psr} may execute together infinitely often. Recall that TREX requires
that a counterexample to termination produced by GetLLRF be in the form of a sin-
gle trace. However, if the input loop had a single path through its body that acted as a
counterexample, then it would have been found at line 6. Thus for every unsatisfying as-
signment, GetLLRF constructs a loop whose set of paths are all concatenations of pairs
of pathsin {pf1,pye,...,psr}. GetLLRF then recurses on the resulting set of paths. If
the recursive call finds a singleton counterexample trace, then the algorithm returns this
trace as a counterexample. If every recursive call determines that its loop terminates,
then the original loop in fact terminates. In this case, the algorithm constructs an LLRF.
Again, we omit the details of this construction.

