
Challenges in Building a Portal for Sensors World-Wide

Suman Nath
Microsoft Research

sumann@microsoft.com

Jie Liu
Microsoft Research

liuj@microsoft.com

Feng Zhao
Microsoft Research

zhao@microsoft.com

ABSTRACT
SensorMap is a portal web site for real-time real-world
sensor data. SensorMap allows data owners to easily make
their data available on the map. The platform also trans-
parently provides mechanisms to archive and index data, to
process queries, to aggregate and present results on a geo-
centric web interface based on Windows Live Local. In this
position paper, we describe the architecture of SensorMap,
key challenges in building such a portal, and current status
and experience.

1. MOTIVATION
The commoditization of cheap, embedded, sensor-equipped

devices and the accelerated trend towards ubiquitous Inter-
net connectivity presents the new opportunity for creating a
single web portal for a broad spectrum of real-time informa-
tion about the world around us. Example services provided
by such a portal include: a Parking Space Finder service, for
directing drivers to available parking spots near their des-
tination; a Bus Alert service, for notifying a user when to
head to the bus stop; Waiting Time Monitors, for report-
ing on the queuing delays at post offices, food courts, etc.;
a Lost and Found service, for tracking down lost objects;
and a Person Finder service, for locating your colleagues or
monitoring your children playing in the neighborhood. Al-
though each of these services can be built independently, a
common portal is more useful; for example, it would allow
someone to find parking spots near a post office with small
waiting time. To realize this vision, we are building a com-
mon platform where people can share their data about the
world in useful ways.

Geo-centric web services such as Windows Live Local (http:
//local.live.com) and Google Maps (http://maps.google.
com) provide simple API to visualize spatially and geograph-
ically related data over a map interface. The desire to add
useful geographic related information to a map interface has
resulted in a number of domain specific applications. Ex-
amples of such applications overlay housing information1,
crime-rate statistics2, weather3, and so on over maps.

However, these existing solutions, although useful, have
several drawbacks in achieving our vision of publishing and
querying real-time sensor data over maps-based web inter-
faces. First, publishing even a single stream of data as a
useful service is a nontrivial task. Programmers need to

1http://www.housingmaps.com
2http://www.chicagocrime.org/map/
3http://www.wunderground.com

Copyright is held by the author/owner(s).
WSW’06 at SenSys’06, October 31, 2006, Boulder, Colorado, USA.
Copyright 2006 ACM 1-59593-343-3/06/0011 ...$5.00.

Figure 1: SensorMap Architecture.

understand complicated web map API and to manage the
acquisition, archiving, indexing, and displaying of data. Sec-
ond, existing applications are mutually incompatible. One
cannot bring up a single map that shows both the housing
information and crime rates in an area. Third, existing so-
lutions allows showing data only as points (called PushPins)
over the map; they do not provide basic useful functionalities
such as querying live sensors based on location or aggregat-
ing results from a number of sensors in a useful manner.

The SenseWeb project at Microsoft Research aims to
address these challenges by providing a research web portal,
called SensorMap [6] (http://atom.research.microsoft.
com/sensormap) and a set of tools for data owners to easily
publish their data and for users to make useful queries over
the live data sources. SensorMap allows data owners to
easily make their data available on the map. The platform
also transparently provides mechanisms to archive and index
data, to process queries, to aggregate and present results
on geo-centric web interfaces such as Windows Live Local,
etc. We believe that such a platform will encourage the
community to publish more live data on web and to build
useful services on top of that data.

2. SENSORMAP ARCHITECTURE
The SensorMap portal consists of the following four com-

ponents (Figure 1): the GeoDB indexes static metadata
about sensors so that it can be queried efficiently, the DataHub
web service provides an interface for registration of new sen-
sor and archiving of real-time sensor data, the Aggregator
clusters geographically near-by sensors and summarizes data
from sensor clusters in useful ways, and the SensorMap GUI
lets users query data sources and view results on the map.

2.1 GeoDB
GeoDB is a database housing sensor metadata. The meta-

data includes information such as publisher name, sensor
location, sensor name, sensor type, data type, unit, sensor
data access methods, and free text descriptions. We envi-
sion that typical user queries will be based on sensor types,
descriptive keywords, and geographic locations; e.g., they



Figure 2: SensorMap interface for parking sensors.

may ask for a list of all cameras along a route or the av-
erage temperature reported by all the thermometers inside
a geographic region. To efficiently support these types of
queries, GeoDB indexes the metadata by using hierarchical
triangular mesh (HTM) indexing scheme [8] which is par-
ticularly suitable for geographic queries. The indexing is
implemented as table-valued functions in a SQL server.

2.2 DataHub
There are basically two ways to make real-time data avail-

able on SensorMap. For sensors that provide public web
interfaces, they can register their URL directly to GeoDB.
These URLs are used by the SensorMap client to fetch real-
time data. For sensors with Internet connection but no URL
(such as those behind firewalls), the DataHub web service
provides a simple interface to cache sensor data. The sen-
sors are clients for the DataHub web service, and can send in
real-time data using standard web service calls. The Aggre-
gator or the SensorMap GUI directly retrieve these cached
data from DataHub rather than trying to contact the sen-
sors. Section 3.1 discusses more on publishing sensor data
to DataHub and SensorMap.

2.3 Aggregator
The aggregator creates icons representing sensor data that

can be mashed up with maps. Depending on the sensor type,
an aggregator can reside either on the client side or on the
server side. It accepts queries from the client and redirects
the geographic components of the queries to the GeoDB. Af-
ter obtaining the metadata of a set of sensors that satisfy a
client query, it contacts the sensors for their real-time data.
It then aggregates the data accordingly (e.g., depending on
the zoom level of the underlying map shown to the client).
By doing so, SenseWeb provides useful summarization of
data to the client; for example, when a user is browsing at a
city level, instead of showing him hundreds of temperature
sensors in the city, SensorMap shows only one icon with
aggregated results. What aggregation is performed by the
aggregator depends on sensor types. For example, for data
collected from thermometers, average and standard devia-
tion of temperatures reported by thermometers in a neigh-
borhood are displayed.

2.4 SensorMap GUI
The GUI is based on Windows Live Local, and there-

fore shares its attractive features such as zooming, panning,

street maps, satellite images, etc. In addition, it lets end-
users to pose queries on available sensors. SensorMap cur-
rently supports three types of queries: i) geographic queries
specified by drawing geometric shapes (e.g., a region, a route)
directly on the map, ii) type queries specified by sensor types
within the viewport, and iii) free text queries specified by
keywords describing sensors. It overlays the results returned
from the aggregator on Windows Live Local. Note that the
GeoDB and the Aggregator are transparent to both the data
publishers and users. The interface also allows users to save
views (geographical region, sensor type filters, etc.) on the
client machine as cookies, which can be quickly retrieved
later. Figure 2 shows a snapshot of SensorMap showing
street parking data in part of San Francisco4.

3. CHALLENGES
This section describes a few key challenges in building a

web portal like SensorMap. These challenges are primarily
caused by the goal of collecting and presenting continuously
changing, diverse types of data, which pushes the limits of
current web technologies. We describe our current working
directions to address them in future releases.

3.1 Data Publishing
Aggregating data from vastly different sensors and ser-

vices on a shared Web portal poses a few fundamental chal-
lenges. First, data sources may have very different interfaces
such as proprietary communication protocols, data presenta-
tion, and accessibility. Networked sensors, even the Internet
ready ones, are typically behind firewalls due to manage-
ment boundaries and security concerns. Web services are
popular ways to tunnel through firewalls using HTTP ports
and XML encoding.

SensorMap uses web service interface for sensor regis-
tration and data caching. Before publishing data to Sen-
sorMap, a data publisher must first register the sensor by
providing its static description. This meta data describes
sensor name, sensing type, location, data type, units, URL,
as well as a free text description of the sensors, and is
used in searching sensors for a given user query. In Sen-
sorMap, we use a Sensor Description Markup Language
(SDML) to encode these properties. Unlike SensorML [2],
SDML only describes sensor data interfaces rather than the
internal structure of sensors. Thus, it is much simpler and
lighter-weight than SensorML. However, SDML syntax is
similar to SensorML’s; we can incorporate SensorML’s fea-
tures into SDML as we need and SensorMap can incorpo-
rate SensorML when it matures.

To further help data publishers to use these web services,
we extended the MSRSense [9] toolkit (can be downloaded
from http://research.microsoft.com/nec) with data pub-
lishing capabilities. MSRSense is a collection of software
tools that allow users to collect, process, archive, and visual-
ize data from a sensor network. It contains: a reconfigurable
microserver execution environment, an extensible library im-
plementing signal processing and event detection algorithms,
an extension to Excel 2003 (Senscel) to import, visualize and
processing sensor data, interface to SQL server to archive
and retrieve data, and a web-service interface to register and
publish sensor data to SensorMap. Using a SensorMap

4Street parking data is published by Streetline Networks,
Inc.



publishing component from the MSRSense library, a sen-
sor is automatically registered to the SensorMap DataHub,
and all sensor data received by the component is sent to the
DataHub for caching.

Secondly, the interoperability and extensibility of differ-
ent sensor types is challenging. For example, weather data
can be published by public web site like weather.com as well
as weather stations from hobbyists’ backyards. In order to
meaningfully aggregate data from multiple sources, we need
common representation of sensor types and units. As an
open sensor portal site, we must anticipate new sensor types
to be added. We cannot design SensorMap based only on
a fixed set of sensors.

We believe that using a standard ontology to publish data
is a key requirement, since it enables automation of process-
ing tasks within the portal. The ontology has to be exten-
sible such that data aggregation and presentation methods
can be standardized within SensorMap based on abstract
types. For example, we can define aggregation methods,
such as MIN, MAX, and AVERAGE, for all scalar sensor
data. When a new sensor type is added, as long as it is indi-
cated as a subtype of scalar, the same aggregation methods
can apply.

Currently, there is no lack of such web ontology frame-
works (e.g., NASA SWEET 5 and IEEE SUMO 6), however,
the biggest problem is that they are mutually incompatible.
Moreover, most of these standards are incomplete and have
no useful implementation which explains why they are not
used by most data publishers. The community needs to
work towards addressing this problem.

3.2 Scalable Data Management
The large amount of data provided by the portal poses

new data management problems. Consider a centralized so-
lution where the portal itself collects sensor data on demand,
computes clusters at required granularity, and aggregates
data within each cluster. This is different from traditional
data warehouse model where underlying data changes infre-
quently or from traditional data stream model where data is
continuously pushed and queries are long running. A more
appropriate model is to maintain an approximate view of
the database and to materialize the portion of interest on
demand. The materialization is done by using unexpired
cached data and by collecting additional data from a care-
fully chosen subset of sensors of the area of interest.

Several challenges arise in this model. First, query plan-
ning, optimizations, and cache management need to incor-
porate the cost of collecting data from the sensors. Second,
if the area of interest contains a large number of sensors, a
sample of them can be used to compute aggregate result.
Ideally, the sample should be roughly uniform over the area
of interest. However, depending on query workload, cached
data may become spatially skewed. Thus, the sensors to be
probed must be selected carefully to complement the cache
content. Third, if a flat cache is used, sensor data selected by
a query (cached data + collected data) need to be clustered
and aggregated for each query which can be very expen-
sive. A more desirable solution is to cache the aggregated
clusters and results. This is tricky, however, since aggre-
gated results are computed from multiple sensor data that

5NASA Semantic Web for Earth and Environmental Termi-
nology. http://sweet.jpl.nasa.gov/ontology/
6IEEEP1600.1 Suggested Upper Merged Ontology

may have different expiry times; without clever algorithm
an aggregated result may be invalid when any of the in-
put data expires, limiting the benefits of cached aggregate
results. SensorMap maintains a variant of R-tree, called
COLR-Tree, for efficient spatio-temporal query processing.
COLR-tree provides a natural way to index clusters and
cache aggregate results at different granularities. An ag-
gregate result is computed from partially aggregated data
in the cache and dynamically collected data from sensors.
COLR-Tree intelligently selects sensors to collect live data
from such that they and the unexpired sensors on the cache
spread uniformly over the area of interest. An aggregate
result at non-leaf nodes of the COLR-tree is maintained in
a data structure such that on expiration of an input sen-
sor data, only part of the aggregate result expires. Thus,
if two queries partially overlap in space, the latter one can
reuse the results computed by the first one if they are issued
within a short period of time. Our implementation within
SQL server and evaluation with real workload from Win-
dows Live Local shows that it scales to around 100 queries
per second over around 400,000 sensors. In case our central-
ized solution does not scale sufficiently, we will distribute the
R-tree nodes across multiple machines, similar to how Iris-
Net distributes an XML hierarchy over multiple organizing
agents [4].

Mobile clients such as cellphones browsing sensor data
pose bigger challenges since user queries need to be evalu-
ated in the context of users’ locations. Even if such contexts
can be extracted, context-specific queries reduce opportuni-
ties for sharing data and increase load of the backend.

3.3 Data Visualization
Variety of sensor data needs to be displayed on the portal

in meaningful ways. Current version of SensorMap shows
sensor data as points—each sensor or sensor-group is repre-
sented by an icon whose shape denotes the sensor type and
color denotes the sensor value. For many sensor data, such
simple display method is insufficient. For example, data
from a dense deployment of temperature sensors could be
better displayed as contour maps showing temperature gra-
dients, archived data of a traffic sensor could be displayed
in a way that highlights temporal congestion patterns, and
so on.

Moreover, when the amount of data to be displayed is
large, data needs to be summarized in useful ways so that
users can easily extract the useful information. Several geo-
metric or statistical summarization techniques can be used
for this purpose. For example, locations of a large num-
ber of sensors can be represented by an approximate con-
vex hull [5], or by a sensor cluster and a circle representing
the magnitude the cluster. Such summarization can often
be done in many different ways, with all summaries being
equally good. Such non-uniqueness of summaries can be a
problem in the context of a portal when underlying data
sets, queries, or client viewports change. Imagine a user
panning a rectangular window over a region of the US and
wanting to see summarized geometric information about the
contents of that window - for example temperature readings
from sensors. Depending on how the summarization algo-
rithm is implemented, small motions or small changes in
the window content may cause the algorithm to choose a
very different summarization. Even though this new sum-
marization may be equally good in terms of any error quality



metric, the sudden change may be distracting—especially
if continuous motion of the window causes high-frequency
oscillations between two solutions, especially near the bor-
ders of the viewport. The situation can be worse if the un-
derlying data is mobile. Existing geometric summarization
techniques overlook this property and further research is re-
quired to produce stable summaries that avoid the above
problems.

Addressing above problems is challenging in the context of
a web portal for several reasons. First, the solutions need to
be provided within the web service framework rather than a
stand alone application like Google Earth. Second, one can
not hope to provide all possible useful visualization methods
since many of those are specific to data domains. Rather we
need to identify and provide a small set of simple abstrac-
tions that can be used to compose a variety of more complex
visualization. Section 3.5 discusses more on this issue.

3.4 Sensor Discovery
Even though SensorMap provides tools to easily reg-

ister and publish sensor data, we cannot expect all data
publishers to proactively put their sensors on SensorMap.
Many useful sensors already exist on the Web; they are just
not linked from SensorMap. For example, many depart-
ments of transportation put traffic cameras on Web, USGS
puts real time stream gauge information on Web, and so on.
Just as existing Web portal such as Yahoo! automatically
crawls the Web to discover new web pages, a sensor portal
needs similar crawlers to automatically discover and index
live data sources on Web.

Although many existing sensors can be accessed through
their web pages, automatically discovering them is challeng-
ing for a few reasons. First, these pages typically do not
have a well-defined structure that could hint that a page
might represent a sensor. Second, unlike typical web pages,
these sensor web pages typically do not link to each other;
they are often isolated. Finally, even if a page representing
a sensor is found, extracting necessary metadata to describe
the sensor is nontrivial. One may require using natural lan-
guage processing techniques to extract such information.

Current version of SensorMap includes a crawler to au-
tomatically discover and annotate traffic cameras available
on the Web. The crawler exploits the facts that traffic cam-
era web pages are often maintained at various departments
of transportation web sites, camera web pages often contain
keywords like “live,” “camera,” “webcam,” etc., and almost
all traffic cameras are made available as .jpg images. To
annotate a camera with its location, the crawler extracts
keywords near the camera URL in its web page. The key-
words often describe locations such as “Camera at the I-405
South exit 2.” Inputting these location keywords into local
search engines such as Windows Live Local or Google Maps
return latitudes and longitudes of places such as restaurants,
shops etc. near the location. The location of the camera is
then approximated by removing outliers of these results and
taking the center of the remaining.

Note that the above crawler works in a relatively nar-
row domain, which vastly simplifies the problem. Writing
a crawler for general sensors is still an open problem. The
problem becomes more complicated when we consider mo-
bile sensors such as cellphones with cameras. Their locations
need to be updated consistently when they move, which is
not trivial to do in a scalable fashion.

3.5 Mash-up API
To realize the full potential of a portal like SensorMap,

it should be easily extensible and mashed-up with other ap-
plications and service. As example scenarios, a user should
be able visualize real time traffic data from SensorMap and
driving directions from Google Maps together or set a trig-
ger that sends him a mail when the traffic condition is good.
Providing a general mash up framework is tricky since it may
need to deal with the semantics of the underlying data. In
the second example above, the mash-up code needs to parse
and understand the traffic data from SensorMap.

However, we believe that by providing modular and com-
posable rendering API, some part of the mash-up process
can be automated. Consider the first example above—with
Google Maps and Windows Live Local API, it requires mul-
tiple JavaScript programs at the client, each of which does
the custom conversion of its raw data (traffic, driving di-
rections, etc.) to a visual representation. But, automatic
integration of multiple JavaScript parsers is hard.

We propose pushing the rendering API all the way out to
the data publisher based on abstract types. One possibility
is to have data publishers generates rendered representations
of data, rather than raw data. That is, instead of sending
(for example) driving directions in proprietary format (as is
done in Google Map and Windows Live Local mash-ups),
the publisher (through a publishing toolkit) does the inter-
pretation of this data into one of a small number of common
visual representations: points, lines, regions, and images. A
standard JavaScript at the client can then automatically
render these data types from different data sources to com-
pose more complex visualization. The JavaScript can also
handle functionalities like panning, zooming, etc. The client
can have controls to add and delete feeds, change the order
of the layers, and so forth.

While the flexibility of this architecture adds some cost to
the provider, the benefit of the composability will outweigh
the cost. Conceptually, the client program in this architec-
ture is similar to an RSS aggregator, except that visual map
data are being aggregated for display rather than textual
headlines. In some sense, the four fundamental data types
(points, lines, region, and image) represent a “narrow waist”
of this visual mash-up framework.

Note that since abstract and UI only data representations
lose the semantics of sensing types, this interface limits the
aggregation mechanisms we can apply. However, it can work
as a complement to known-type aggregation so that we can
quickly incorporate new kinds of sensors.

3.6 Other Challenges
Privacy and data ownership are big concerns for sharing

physical, real-time data. Sensor data may reveal other in-
formation about publishers and their surroundings. A pub-
lisher may want to control how the data are being used. Our
approach to this is to have an authentication framework and
to allow a publisher to decide the privacy level of his sensors:
a sensor may be viewed only by the publisher, or by a group
he creates, or by everyone. However, this is not sufficient in
many cases. A much deeper social issue is the data owner-
ship. For example, just because one can set up a web camera
from his apartment window to look at the restaurant across
the street, he may not have the right to publish the waiting
time of that restaurant on the web. These social concerns
are beyond the technical issues addressed in this paper, but



it may have profound implication of the success of web sites
like SensorMap.

4. EXPERIENCE AND STATUS
We have released the first version (V1) of SensorMap in

July 2006 (http://atom.research.microsoft.com/sensormap).
In addition to the data sources incorporated by us, a few
groups (e.g., parking spot availability in San Francisco by
StreetLine Networks Inc., soil data by John Hopkins Uni-
versity) have volunteered to publish data on SensorMap.
During the course of design, implementation, and deploy-
ment of this V1 version, we encountered a lot of difficulties,
some of which worth mentioning here.

We found that the web service framework, although sim-
ple and easy to develop new applications, is still very difficult
to debug, especially when the application depends on several
other components. The differences between the production
environment out side the firewall and the internal develop-
ment environment make the situation even worse. Most of
the time when we pushed SensorMap from our internal de-
velopment machine to the external production machine, we
broke some dependencies and figuring out the exact problem
still remains an art to us. In fact, our V1 release had fewer
features than our internally deployed version; mainly be-
cause porting them to the external machine was tricky. We
feel that more tools are needed to easily deploy and debug
web service.

In the beginning, we planned to host within SensorMap
the data collected from all sensors. However, it posed a le-
gal question: who will be responsible for the content of the
data? For example, who will be responsible if someone regis-
ters a webcam and shows copyrighted or obscene images via
SensorMap? After much discussion, we decided to move
to an architecture where the sensor data is owned by the
publishers and is downloaded directly from publisher’s site
to the client. Moreover, a publishers need to get an account
from us and authenticate each time he publishes data.

The architecture of downloading data from publisher to
client introduces new security concerns. In addition to pre-
defined data types (like temperature, image, traffic, etc.),
SensorMap also supports HTML documents as sensor data.
When a publisher wants to publish data beyond our pre-
specified data types, he can simply make an HTML page
containing his data. SensorMap displayed an icon for the
HTML data and showed HTML page as a pop up window
when user moused over the icon. We discovered that this
model was vulnerable, since malicious publisher could put
JavaScript code within the HTML page which could com-
promise a system when executed. To avoid this, we now only
automatically display the publisher name and the URL and
require users to click on the URL before we show the HTML
page in a new browser window. The effect is now equivalent
to browsing a new URL in a new browser window.

5. RELATED WORK
SensorMap combines the benefits of map-based portals

and query processing systems on wide-area sensors. We here
discuss the work related to these two areas.

5.1 Map-based Portals
The current versions of Google Maps (and Google Earth)

and Windows Live Local provide a simple API that allows
developers to create custom maps and draw their own data

on top of standard maps and satellite images. This has
enabled an array of applications that show static or semi-
static data on maps. Examples include real-time bus loca-
tor7, movie finder 8, James Reserve data management sys-
tems [1], etc. As mentioned before, these applications are
mutually incompatible to each other; it is not possible, for
example, to correlate the bus route to a theater showing
a movie. Moreover, Google Maps and Windows Live Local
API basically allows developer to put a point (PushPin) over
the map; it does not provide useful functionalities such as
query processing, clustering, summarization, etc. over the
data. SensorMap is aimed to address these limitations.

5.2 Query Processing over Internet-connected
Sensors

Several projects including IrisNet [4], HourGlass [7], Hi-
Fi [3], etc. aim to provide infrastructure support to process
complex queries over distributed Internet-connected sensors.
The focus of these projects is complimentary to that of
SenseWeb; one can imagine replacing our current query
processing component with a distributed one. Based on our
estimated workload in near future, we feel that our current
architecture will perform reasonably well. Moreover, most
distributed query processors require infrastructure support;
e.g., they require controls over different machines in the in-
frastructure to execute query processing components. Sen-
sorMap does not assume such infrastructure at this point.

6. CONCLUSION
SenseWeb is an ongoing project with the goal of creating

an online searchable portal of live data from the physical
world. The portal, called SensorMap, is publicly available
and allows data publishers to publish new data sources and
users to query the collection of data. We hope that simple
interface and useful features of SensorMap will encourage
the community to publish more data sources which can act
as seeds for world-wide sensor web.

7. REFERENCES
[1] James reserve data management systems.

http://dms.jamesreserve.edu/.
[2] Sensor Model Language (SensorML), by Open Geospatial

Consortium Inc. http://vast.nsstc.uah.edu/SensorML/.
[3] Cooper, O., Edakkunni, A., Franklin, M., Hong, W., Jeffery,

S., Krishnamurthy, S., Reiss, F., Rizvi, S., and Wu, E. Hifi: A
unified architecture for high fan-in systems. In VLDB (2004).

[4] Gibbons, P. B., Karp, B., Ke, Y., Nath, S., and Seshan, S.
Irisnet: An architecture for world-wide sensor web. IEEE
Pervasive Computing 2, 4 (2003).

[5] Hershberger, J., Shrivastava, N., and Suri, S. Cluster hulls: A
technique for maintaining the shape of a point stream. In ICDE
(2006).

[6] Nath, S., Liu, J., Miller, J., Zhao, F., and Santanche, A.
Sensormap: A web site for sensors world-wide. In Demo at ACM
SenSys (2006).

[7] Shneidman, J., Pietzuch, P., Ledlie, J., Roussopoulos, M.,
Seltzer, M., and Welsh, M. Hourglass: An infrastructure for
connecting sensor networks and applications. Tech. Rep.
TR-21-04, Harvard University, 2004.

[8] Szalay, A., Gray, J., Fekete, G., Kunszt, P., Kukol, P., and
Thakar, A. Indexing the sphere with the hierarchical triangular
mesh. Tech. Rep. MSR-TR-2005-123, Microsoft Research,
September 2005.

[9] Woo, A., Seth, S., Olson, T., Liu, J., and Zhao, F. A
spreadsheet approach to programming and managing sensor
networks. In IPSN/SPOTS (2006).

7http://www.busmonster.com/
8http://www.25hoursaday.com/MovieFinder


