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Abstract

Application-level multicast treesbuilt using reverse-
path forwarding (RPF) on overlay network routing
paths are a useful mechanism for scalable informa-
tion dissemination. One major drawback of this ap-
proach is that nodes that are not subscribers to a
multicast group can still be required to forward traf-
fic for that group if they happen to lie on an over-
lay routing path between a subscriber and the group
root node. This could serve as a disincentive for
nodes to participate in the overlay since they may
be required to perform substantial amounts of work
for which they receive no immediate benefit. This
paper presents Subscriber/Volunteer (SV) trees — a
new form of overlay multicast tree that removesthis
possible obstacle to deployment.

In SV trees, only nodes that are subscribers to a
multicast group, or that volunteer to do so, are re-
sponsible for forwarding content. SV trees are im-
plemented as RPF trees augmented by adding con-
tent forwarding links that route around nodes that
are not subscribers or volunteers. SV trees maintain
al the benefits of RPF trees, such as scalable de-
livery and join behavior, while also being polite to
non-subscribers. The RPF tree, used for node joins,
and the forwarding tree, used for content delivery,
are kept consistent even in the face of nodes leaving
and joining the multicast tree and/or overlay. Fi-
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nally, our results show that SV trees deliver content
more efficiently than RPF trees, since unnecessary
network hops have been grafted out of the delivery
trees.

1 Introduction

Scalable application-level multicast systems allow
information to be efficiently disseminated to arbi-
trary numbers of subscribers [6, 20, 2, 15, 13].
These systems typically organize participants into
one or more multicast trees, with each participant
receiving information from its parent in the tree and
forwarding it on to its children. Thus, the amount
of work required of each participant to multicast
a piece of content is bounded and is proportional
to the branching factor of the constructed multicast
tree times the size of the content.

Scalable overlay networks [23, 17, 19, 27, 12]
provide one means of constructing application-level
multicast trees, through the use of standard reverse-
path forwarding (RPF) techniques [7, 8]. Because
overlay routing tables are often optimized along
some metric (e.g., latency), a key benefit of this
technique is that the RPF trees are similarly opti-
mized. Systems such as Scribe [20] employ this
method and have demonstrated its effectiveness.
Reverse-path forwarding has the advantage that join
and leave operations are scalable; no central point of
coordination for tree membership isemployed. This
isin contrast to systems like CoopNet [15], where
membership operations could become a bottleneck.

To join an RPF overlay multicast tree a node
routes a join message towards the multicast tree



root. Each node along the overlay routing path
taken by the join message remembersthe node from
which the message arrived and the ID of the multi-
cast group. When the join message reaches a node
that is aready part of the multicast tree for the
group, the join has succeeded. When content is sent
from theroot it is routed down the tree aong routes
that are the reverse of the paths taken by the join
messages.

Despite their usefulness, RPF overlay multicast
trees face a potentially significant obstacle to their
adoption: overlay nodesthat are not interested in the
content being sent on a multicast tree are required
to bear the costs of forwarding that content if they
fall along an overlay route from a subscriber to the
root. Figure 1 shows an RPF overlay multicast tree
with three interior nodes that are not subscribers,
but which nonetheless must forward multicast traf-
fic for the tree. If the amount of traffic is significant
the node’'s owners may very well ask themselves
“Why should | be a member of the overlay when
it costs me more than | get from it?’. Seemingly
simple approaches to addressing this problem, such
as building a separate overlay for each group, intro-
duce other concerns such as high network load due
to the maintenance traffic for multiple overlays [4].

Subscriber/Volunteer trees (SV trees) are a new
kind of overlay multicast tree that eliminates this
problem. In SV trees, non-subscribers are never re-
quired to forward multicast traffic. Unless a non-
subscribing node explicitly volunteers to forward
traffic for a group, the multicast traffic for a group
is routed around that node, even if it is on an over-
lay routing path between a subscriber and the root.
Only subscribers and volunteers forward traffic in
SV trees — hence the name.

An SV tree is derived from the RPF tree for a
given group root and set of subscribers. Figure 2
shows an RPF tree and an SV tree derived from it.
In the SV tree, traffic is routed around the two non-
participating nodes N1 and N2 that would have
been required to forward traffic in the RPF tree; they
incur no forwarding costs. The non-subscribing vol-
unteer node V1 does forward traffic for the SV tree
because it indicated its willingness to do so.

Two benefits of SV trees are evident from this ex-
ample. First, they are polite: nodes not interested
in the content of a multicast group bear no costs

of forwarding traffic for that group. Second, they
provide efficient content delivery: the content for-
warding paths for SV trees may be shorter than the
paths for the RPF trees from which they are de-
rived. For instance, in the trees in Figure 2, the
RPF forwarding route between the root R and sub-
scriber S1 takesfour hops, whereasthe SV forward-
ing route between these nodes takes only two hops.
Both benefits are important to any practical deploy-
ment of systems employing application-level multi-
cast groups.

A challenge for adifferent aspect of efficient con-
tent delivery is this: Many overlay networks opti-
mize routes based on some metric (e.g., latency or
bandwidth or some combination of the two). Thus,
one benefit of RPF trees built using them is that the
content forwarding routes follow the reversed over-
lay routes, and are thus optimized. A key challenge
is constructing SV trees to be similarly optimized.

There are several additional important challenges
involved in building and maintaining SV trees. One
is scalable content delivery: ensuring that the con-
tent delivery load on each SV tree node is bounded,
just asitisfor RPFtrees. A second is scalable mem-
bership operations. enabling subscribers to effi-
ciently and scalably locate and join the SV tree even
though the overlay route between the subscriber and
the root may not pass through any other participat-
ing SV tree members — plus ensuring that when tree
or overlay members leave that these goals are till
met.

Note that in SV trees the underlying RPF tree
continues to be used to support join and leave op-
erations. Thus, non-subscribers will still incur a
dlight amount of overlay traffic for SV tree member-
ship operations — an amount that is bounded by the
branching factor of the tree times the rate of mem-
bership churn. This membership traffic will be sub-
stantially less than the content traffic for any active
multicast group.

A final key challenge is correctness. ensuring,
as overlay nodes and group members come and go,
that the SV tree continues working properly. Given
the possibility of routing loops and the need to keep
the RPF and content forwarding trees in sync, en-
suring correctness is non-trivial. Indeed, ensuring
correctness was the major design challenge for SV
trees. Many of our design choices were driven by
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Figure 1: Reverse-path forwarding (RPF) tree
containing three non-participant nodes.

the need to be able to reason about whether the sys-
tem would operate correctly in al circumstances,
rather than by other traditional concerns such as ab-
solute efficiency, etc.

We present results from an implementation of SV
trees built using the SkipNet [12] overlay network.
Our implementation runs both in a network simula-
tor and on a live network of machines. Our results
demonstrate that SV trees meet al the design chal-
lenges outlined above.

2 Related Work

Reverse Path Forwarding is awell-established tech-
nique for building multicast forwarding trees over a
network providing routing between nodes. It forms
the basis of several variations of Internet multicast
systems|[7, §].

Overlay networks [23, 17, 19, 27, 12] provide a
means for organizing network nodes into a commu-
nication mesh providing content-based routing of
messages between nodes. Two classes of mecha
nisms are used to implement application-level mul-
ticast trees for overlay networks. forming a sepa-
rate overlay for every multicast group, asis done by
the CAN multicast system [18], and using Reverse
Path Forwarding to build a multicast tree along the
overlay routes, asis done by Scribe [20]. Castro et
al. [4] showed that the single-overlay approach of-
fersthe significant advantages of decreased network
load and faster group creation. However, they aso
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Figure 2: SV tree and corresponding RPF tree
containing two non-participant nodes. Solid
lines represent RPF tree links and dashed lines
represent SV forwarding tree links.

point out the lack of politenessin the single overlay
approach.

SV treesretain the benefits of Scribe trees, while
also making them polite — meaning that they im-
pose no forwarding load on overlay nodes not inter-
ested in the content of a multicast tree. Like Scribe
trees, SV trees are more efficient than simple RPF
trees because both systems perform a kind of “path
compression”. Scribe trees bypass non-subscribing
links that only forward to a single node. SV trees
bypass al non-subscribing nodes that are not vol-
unteers.

SV tree are designed to scale to arbitrarily large
numbers of subscribers. One consequence of this
decision is that they have no coordinating node that
members must contact when joining because in any
sufficiently large system such a node would become
overloaded. This is one of the factors that distin-
guishes SV trees from systems such as End Sys-
tem Multicast [6], including its live Internet de-
ployment to broadcast conferences [13], NICE [1],
CoopNet [15], ScatterCast [5], and ALMI [16].

Other systems performing application-level con-
tent delivery are organized differently, with differ-
ent goals. For instance, the XML content-based
routing system described in [22], differs from SV
trees in at least four significant ways: First, it fil-
ters content, rather than delivering the full contents
of the multicast group to all subscribers. Second, it
distinguishes between clients and servers, whereas
SV trees have no clients that are not potentially



also content servers. Third, it implements redun-
dant delivery paths as an integral part of the service
— something that SV trees do not do. And finaly,
it relies on a manually constructed mesh of nodes,
whereas SV trees use the automatically constructed
mesh provided by an overlay network. Many such
examples of application-level content distribution
systems with different goals and characteristics are
possible.

Numerous other systems for application-level
multicast have been proposed reflecting these dif-
ferent goals. For instance, SplitStream [2] is scal-
able, but requiresthe participation of non-subscriber
nodes to forward content. The Overcast [14] system
also uses multicast for content distribution, however
unlike SV trees and many of the systems above, it
relies on having a set of dedicated servers for con-
tent distribution. SV trees also alow for the possi-
bility of dedicated servers by supporting volunteer
nodes, but do not require them. Yoid [10] defines a
distributed tree-building protocol among end-hosts
resulting in a source-specific tree per group not
based on any overlay.

Finally, it is worth pointing out that SV trees are
correct by construction, even in the face of changes
to overlay and tree membership. Routing loops can
not be constructed and local failures are discovered
in bounded time and repaired locally. Other sys
tems, such as Scribe (with the bottleneck remover
optimization enabled [3]), have algorithms to detect
inconsistencies such as routing loops and use a dif-
ferent algorithm that selects nodes to rejoin the tree
using arandomized route in an attempt to repair de-
tected inconsistencies. In contrast, SV trees have
no such need for a separate inconsistency repair al-
gorithm since SV trees, by construction, can never
enter an inconsistent state.

3 Subscriber/Volunteer Trees

Subscriber/Volunteer trees are designed to simul-
taneously meet several goals. politeness, efficient
content delivery, scalable content delivery, scalable
membership operations, and correctness. This sec-
tion presents the design of SV trees and describes
how each of these goalsis met.
Subscriber/Volunteer trees are derived from
reverse-path forwarding trees, and in fact, maintain

RPF trees as part of their implementation. Figure 2
shows both the RPF tree and the content forwarding
tree employed by an SV tree.

In the following description three related data
structures will be referenced by the following
names:

e SV Tree: All the data structures used to imple-
ment a Subscriber/\Volunteer tree. Includes the
RPF tree and the forwarding tree.

e Forwarding Tree: The set of links between
nodes used for forwarding content from the
root to the subscribers.

e RPF Tree: The reverse-path forwarding tree
used by an SV tree to help implement opera
tions such as subscriber joins.

There are four main kinds of operations that any
application-level multicast tree must support. Their
implementationsin SV trees are outlined below:

Content Forwarding: Content is sent down the
forwarding tree links from the root to the leaves.

Node Joins. As in standard RPF trees, nodes
route ajoin message towards the multicast tree root.
Each node traversed becomes part of the SV tree's
RPF tree. After reaching an RPF tree node an ad-
ditional step is required to make a forwarding tree
link from an existing forwarding tree member to the
joining node. Either (1) the node reached by the
join message was also a forwarding tree member,
in which case the link is made directly from that
node, or (2) the node reached is a non-participant
in the forwarding tree, in which case the link must
be made from a node that is part of the forwarding
tree. The precise means of finding such a node are
described in Section 3.1, but the core idea is this:
if a node along the RPF path doesn’'t wish to for-
ward traffic it instead remembers which nodes were
used to route content traffic around it, and has one
of them establish the forwarding link to the joining
node.

For example, in Figure 2, when node S3 joined,
it first routed a join message towards R. This mes-
sage reached V1, which was already a member of
the RPF tree, but which is a non-participant in the
forwardingtree. N1 remembered that nodesV'1 and
S1 are used to forward content traffic around it and



contacts one of them to establish a forwarding tree
link to S3. Inthiscase, S1 iscontacted and it com-
pletes the forwarding tree by making alink to S3.

Node Departures. There are several ways that
nodes that are participating in an SV tree can leave
the tree. They may stop subscribing to the multicast
tree but remain in the overlay, they may voluntarily
leave the multicast tree and the overlay, or they may
crash or become unable to communicate with the
overlay. An SV tree handles all of these casesin the
same way: It treats it as if the departing node had
failed, invoking the tree repair algorithm.

Tree Repairs. An SV tree node remembers all
the SV nodesthat affect itsrelationshipsto other SV
nodes. This includes its parent in the RPF tree, its
parent in the forwarding tree (if in the forwarding
tree), any nodes that forward content around it (if
not in the forwarding tree), and which subscribers
or volunteers caused it to be a member of the SV
tree. Furthermore, we employ liveness checking
functionality, which is described in Section 3.2.1,
to make sure that these nodes are still functioning
correctly. If any of these related nodes fail or with-
draw from the SV tree or overlay, the node liveness
checking code invokesthe SV treerepair algorithms
(see Section 3.2) to restore the SV tree invariants.

When nodes fail or withdraw only the local re-
gion of the SV tree around them must be repaired.
This is accomplished by having the subscribers or
volunteers immediately affected by the broken por-
tion of the treergjoin the SV tree. Note that thisisa
local operation and doesn’t cause al tree nodes be-
low the break to have to rejoin. For instance, nodes
below a rejoining node in the forwarding tree will
continue to have content forwarded to them after
their ancestor rejoins with no work upon their part.
Likewise, changes in the middle or near the root of
the tree don’'t cause the subtrees below them to be
rebuilt. Loca changes in the set of participating
nodes cause only local tree reconfigurations. This
locality is key to achieving our scalability goals.
Thetreerepair algorithm isdiscussed in Section 3.2.

As nodes come and go from the overlay, overlay
routes can change. Unless care is taken, this can
result in loops in the content forwarding routes (as
described in [3]). SV trees employ algorithms that
prevent routing loops from forming, such as having
each node maintain a partial order among its RPF

tree children of who forwards to who, as described
in Section 3.2.2. Maintaining these invariantsis key
to achieving our correctness goals.

3.1 Join

A nodeinitiatesasubscription to an SV tree by rout-
ing a join message towards the tree root (just asis
done for RPF trees). Depending upon what kinds
of nodes are traversed until a member of the SV
tree’s RPF tree is reached, there are several differ-
ent cases.

311 SimpleJoin Cases

In the simplest case, the message reaches another
member of the forwarding tree on its first hop. In
this case, a new forwarding tree link is established
from the node reached to the subscriber, an RPF
tree link is also established over the same hop, and
the join is complete (except for establishing a fail-
ure handling group for the subscriber, which is de-
scribed in Section 3.2).

In the next simplest case, the join message may
take severa overlay hops to reach an existing RPF
tree member and the node reached isalso aforward-
ing tree member. In this case, al nodes traversed
are marked as members of the RPF tree and a for-
warding tree link is established directly from the
node reached to the subscriber, bypassing the non-
subscribing nodes traversed.

Figures 3 and 4 depict a situation where a sub-
scription request is satisfied by ajoin request that is
forwarded up the RPF tree until a forwarding tree
node is reached. The new subscriber is attached to
the forwarding tree node reached when searching up
thetree. Figure 3 showsthejoin messages sent. Fig-
ure 4 showsthe SV tree after the join has completed.

As aspecial case, should a node that is traversed
be a volunteer node, then multiple forwarding hops
will be established so that it is included in the for-
warding tree. This case is handled by having the
volunteer node satisfy the initial join request. The
volunteer then joinsthe treeitself using its own join
request. For instance, in Figure 2, when S1 joined
its join reguest was satisfied at the volunteer node
V1, which itself then joined, connecting to the root
node R.
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Figure 3: Subscriber S3 joins an SV tree. S3
routes join message j1 towards root, reaching
subscriber S1 via non-subscriber N1. S1 sends
join candidate message j4 to S3. Thistells S3
that a forwarding tree link can be established
from S1.

3.1.2 Joinsthat Search the RPF Tree

The next situation isif the join message reaches an
RPF tree member that is not aforwarding tree mem-
ber. When this occurs, it is the responsibility of the
node reached to locate an appropriate forwarding
tree member for the subscriber to attach itself to.
It does so by relying on the fact that its membership
in the RPF tree means that (1) thereis aforwarding
tree member somewhere above it in the RPF tree
(possibly the tree root node) and (2) there are one
or more forwarding tree members below it in every
branch of the RPF tree. This means a forwarding
tree member could be found either above or below
the node reached by the join message to attach it to
the forwarding tree.

If join requests were always forwarded up the
RPF tree until a forwarding tree node was reached,
this would violate our scalability goals as it could
cause the branching factor for nodes higher up in
the tree to grow without bound. For example, all
subscribers whose overlay routing paths to the root
don't pass through other subscribers (or volunteers)
would be joined at the root — clearly a non-scalable
situation. Thus, we adopt the rule that each RPF
node forwards at most one join request up the RPF
tree before forwarding all others down.

Figures 5 and 6 depict the case where a subscrip-
tion request is satisfied by a join request that ini-
tially reaches an RPF tree node that is not in the

/,0 R
Forwarding [ | RPF tree link
tree link Y
e Si .
([ J
N1

Figure 4: Subscriber S3 has joined the SV tree.
A new forwarding tree link has been established
from S1 to S3. New RPF tree links have been
established from S1to N1 and N1 to S3.

forwarding tree. This node sends the request down
the RPF tree until it reaches one or more forwarding
tree nodes, which respond to the subscribing node.
Such ajoin occursin several phases.

Firgt, the initial join message ;1 is routed from
the subscriber S5 towards the root until the RPF tree
node N1 isreached. N1 decidesto search down the
RPF tree for a forwarding tree node to attach S5 to.

Second, N1 sends join probe messages ;52 to all
its RPF tree children. This replication allows multi-
ple choices for forwarding tree attachment points to
be considered.

Third, each of N1's children forwards the re-
ceived join probe messages ;3 to only one of their
RPF tree children, whichisrandomly chosen among
them. Having the children not send the messages
to al of their children prevents the message from
flooding the entire tree below N1. Likewise, any
further forwarding, as by N4, isto only one child.

Fourth, once the join probe messages reach for-
warding tree nodes, in this case S2 and S3, they
are forwarded directly to the subscribing node S5
as join candidate messages ;4.

Finaly, the subscriber S5 chooses among the
candidate join messages j4 received, and picks the
sender of one of them as its attachment point in the
forwarding tree. In our implementation we choose
the one that arrives first, helping to build a latency-
optimized forwarding tree. Figure 6 depictsthe case
in which the message from S2 to S5 arrived first
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Figure 5. Subscriber S5 joins the SV tree. S5
routes join message j1 towards root, reaching
N1. N1 sends join probe messages j2 to its
RPF tree children N2 and N3. N2 and N3 for-
ward the join probe messages ;3 to one of their
children, which do likewise, eventually reaching
forwarding tree members S3 and S2. S3 and
52 send join candidate messages j4 to S5. S5
choosesthefirst one of these to arrive and estab-
lishes a forwarding tree link from its sender.

and a forwarding tree link was established from 52
to S5.

3.2 FailureHandling and Detection

SV trees are designed to operate in highly dynamic
environments where nodes may fail or may join or
leave the overlay and multicast groups. Thus, it is
critical that SV trees are able to dynamically recon-
figure themselves to adapt to these changes. SV
trees use failure handling groups as a tool for ac-
complishing this goal. The idea behind failure han-
dling groups is to notify all nodes related to a for-
warding tree link whenever any of these nodes fail
or leave the SV tree, triggering a local tree repair
operation.

Each of these groups contain exactly those nodes
that were involved in the communication path to es-
tablish the forwarding treelink. For instance, in fig-
ure Figure 6, the failure handling group for the for-
warding link from S2 to S5 would have asits mem-
bers S5, N1, N3, and S2 —the members of thejoin
communication path in Figure 5 that established it.
If any of these membersfail that causes all the other
members to discard their state associated with this
forwarding tree link and for S5 to rejoin the group
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Figure 6: Subscriber S5 has joined the SV tree.
A new forwarding tree link has been established
from S2 to S5. A new RPF tree link has been
established from V1 to S5.

(assuming it wasn’t the node that failed).

3.2.1 FUSE Failure Detection

Failure handling groups are implemented via a sys-
tem called FUSE [9], which is a separate body of
work only summarized here. The design and im-
plementation of FUSE was moativated by the needs
of SV trees to reliably perform coordinated failure
handling when any of a set of related nodes fails.

FUSE implements a lightweight failure notifi-
cation service among groups of nodes organized
into failure handling groups called “FUSE groups’.
FUSE guarantees that failure notifications never
fail: Whenever afailure notification is triggered, all
live members of the FUSE group will be notified
within a bounded period of time, irrespective of any
node or communication failures. FUSE implements
this guarantee through active, efficient monitoring
of the liveness of FUSE group members.

FUSE group notifications can be triggered in two
ways: either explicitly by group members, for in-
stance, if one of them is voluntarily leaving the SV
tree, or implicitly by the FUSE failure detection ser-
vice, if one of the nodes has crashed or becomes un-
able to communicate with another node.



Using FUSE greatly simplifies the implementa-
tion of some aspects of SV trees because we are
guaranteed that all the nodes that play arolein a
forwarding treelink will be informed if any of them
die, withdraw, or become unable to communicate
with the others. Thus, all nodes will clean up the
state associated with any failed portions of the SV
tree and initiate recovery actions in a timely fash-
ion. This allows us to use a single failure detection
and handling strategy for all kinds of failures, rather
than different ones for different kinds. Using FUSE
made it significantly easier to ensure the correctness
of SV trees.

3.2.2 Preventing Routing L oops

Consider the SV tree depicted in Figure 7. If sub-
scriber S2 dies or withdraws from the SV tree the
temporary result will be the disconnected SV treein
Figure 8. Node S3 will have been in a FUSE group
containing itself, N1, and S2. S2'sfailure will no-
tify the remaining members of the group, causing
S3toinitiate ajoin to reattach itself and its children
tothe SV tree.

Naively, one might think that this would entail
sending ajointo N1, N1 sending join probe mes-
sagestoitsother RPF tree children S1 and 54, these
children sending join candidate messages to S3,
and S3 choosing whichever of them arrived first.
But suppose that ajoin candidate message was sent
from S4 to S3 and S3 selected it as its forwarding
tree attachment point. There would be a big prob-
lem: aforwarding tree loop where S3 forwards to
S4 and S4 forwards to S3 and nobody forwards to
either of them!

SV trees prevent this by maintaining a partial
order among children of non-forwarding-tree RPF
tree nodes, where the order is determined by which
children are forwarding to which other children. In
this example, N1 remembers, among other things,
that S3 forwards to S4. Therefore when S3 triesto
rejoin, the join probe message is not sent down the
RPF tree link to S4 because it is after S3'slink in
the partial order. Consequently, in thisexample, N1
sends ajoin probe message only to S1, resulting in
S3 rejoining the forwarding tree with a connection
to S1.

Other systems, such as Scribe, have handled this

problem in more ad-hoc manner by detecting loops
when they form, breaking them, and trying another
join using a “randomized route” that hopefully will
not result in another routing loop [3]. They de-
tect loops by storing the entire overlay path to the
root in each Scribe tree node and checking whether
the partial path from a joining node contains one of
those nodes already. (Note that loops do not formin
Scribe unless the bottleneck remover optimization
isenabled.)

In contrast, SV trees can not form routing loops
and so separate detection and stochastic retry mech-
anisms are not necessary. They are correct by con-
struction, even in the face of changes.

3.2.3 Cleanup ActionsUpon Failures

Recall that each node involved in establishing afor-
warding treelink is made amember of afailure han-
dling group associated with that link. When any
of these nodes dies (or removes itself from the SV
tree) al the members of the group are naotified and
perform compensating actions. Depending upon the
type of node, different actions are taken.

The subscriber node will try to resubscribe by
routing a new join message. The source node for
the forwarding tree link will delete the link. The
RPF nodes involved will clean up state associated
with establishing that link. Two kinds of such state
are maintained by RPF nodes.

First, RPF nodes remember whether or not they
have yet forwarded a join request up the RPF tree
for that group, and they remember which request it
was. This alows the invariant that each RPF node
forwards at most one join request up the RPF tree
before forwarding all others down, as explained in
Section 3.1.2. When the forwarding tree link es-
tablished by a request sent up the RPF tree is torn
down, one of the RPF tree node’s clean-up actions
isto clear the state saying it has already forwarded
areguest up the tree. Thus, it can forward the next
joinrequest that it receives up thetree. For instance,
in Figure 8, if S1 failed then N1 would clear its
“sent up” state, meaning that the next join request
to reach N1 would be forwarded up the tree, rather
than sent down to its RPF tree children.

Second, RPF nodes remember the partial order
among its RPF tree children of which branches are



.---® R
l RPF tree link

.Nl

Forwarding -~~~
tree link -~
7/

Figure 7: SV tree before node S2 fails.

forwarding to which others, as described in Sec-
tion 3.2.2. When one of these forwarding relation-
ships is torn down, this portion of the partial order
is aso removed.

3.24 TheRoleof Retries

Join requests may fail because of temporary incon-
sistencies in the SV tree state encountered during
the join. For instance, if a node traversed by one
of the messages dies before the join completes, this
will be discovered when the join process attempts
to establish a FUSE group containing all the nodes
involved in thejoin. This causes thejoin to fail.

Because FUSE groups reliably notify al their
members of the failure of the group within bounded
time such inconsistencies will not persist. Thus, re-
tries of failed joins will eventually be effective, and
are employed by the SV tree implementation.

3.3 Scalability

One of the most important properties of RPF trees
isthat they are scalable — meaning that the load im-
posed on each tree participant is independent of the
size of the tree. In practice, there are two kinds of
loads: the load caused by nodes joining the tree and
the load caused by content being forwarded through
the tree.

SV trees maintain these same scalability proper-
tiesintwo different ways. First, SV treesensurethat
thejoin load is scalable by keeping around their un-
derlying RPF trees and using them to intercept join
traffic for new subscribers. Essentialy, the SV join

.---® R
l RPF tree link

.Nl

Forwarding -~~~
tree link -~
7/

® S3
\

N
S~ -
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A

Figure 8: SV tree after node S2 fails. Note that
nodes.S3 and S4 aretemporarily disconnected from
the forwarding tree, causing 53 to need to rejoin.

operations are scalable because the underlying RPF
join operations are scalable, as described in more
detail in Section 3.1. To the first approximation,
both loads are proportional to the product of the
routing “fan-in" at that node —the number of distinct
overlay routes that pass through that node — times
the rate of overlay churn — the rate at which nodes
enter and leave the overlay. As long as the num-
ber of overlay routes through a node is bounded,
which is true for overlays such as Chord [23], Pas-
try [19], and SkipNet [12], this effectively means
that the join load on a node is proportional only to
the rate of overlay churn.

Second, SV trees ensure that the content forward-
ing load is scalable by ensuring that each node in
the SV tree will typically only have to forward to at
most as many other nodes as they would in a fully-
populated RPF tree, which is bounded by the over-
lay routing “fan-in” at that node. Since the fan-in
is bounded for the overlays of interest, this means
that for the same reasonsthat the content forwarding
load is scalable for RPF trees, it is also scalable for
SV trees. Each piece of content will typically only
need to be forwarded to at most fan-in children.

Since, as in Figure 5, join probe messages are
sent to randomly selected descendents of the RPF
tree's children, it is theoretically possible for all
these random choices to come out the same. Should
this unlikely event occur, it would mean that the
number of forwarding tree nodes attached to a leaf
node could rise to be on the order of log? NV, where
N isthe number of tree members, rather than log IV,
which is the expected value. Should a particular



node's branching factor be too large, load balancing
operations could be used to rebalance local regions
of the tree. We have not implemented such oper-
ations because we have found no need for them in
our usage.

4 Implementation and Methodol-

ogy

We implemented SV trees on top of the Skip-
Net [12] overlay network and concurrently built the
FUSE [9] implementation for SV trees to use. Our
experiments were performed in two different envi-
ronments. a scalable discrete event simulator, and
a live implementation with 400 virtual nodes run-
ning on a cluster of 40 workstations. For the cluster
experiments, our router uses Modelnet [25] to emu-
late wide-area I nternet-like network characteristics.
Each virtua node in the live system is a separate
process running an instance of our implementation.
In order to emulate nodes running on physically
separated machines, there is no explicit sharing of
state between these processes, and all communica-
tion between processes is forced to pass through the
Modelnet core. Our SkipNet, FUSE, and SV tree
implementations running on the live system and in
the simulator use identical code, except for the base
messaging layer.

Our SV tree implementation contains approxi-
mately 4000 lines of C# code, including comments
and whitespace. This compares to approximately
2500 lines for FUSE and 8000 for SkipNet.

4.1 Parameters

We configured the SkipNet overlay to employ a 60
second ping period, a base of size 8, a leaf set of
size 16, and R-Tableroutes. More details on theim-
plications of these parameter choices can be found
here [11]. For a 400 node overlay, this yielded an
average of 32.3 distinct neighbors per node.

Both our live and simulator experiments wererun
on a Mercator topology [24] with 102,639 nodes
and 142,303 links. Each node is assigned to one
of 2,662 Autonomous Systems (ASs). There are
4,851 links between ASs. The Mercator topology
does not include latency or bandwidth values, and
therefore we were forced to assign such values. To
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determine link latency and bandwidth, we assigned
97% of links to be OC3 and 3% to be T3. For each
OC3 link, we assigned the link latency uniformly
between 10 and 40 milliseconds and a bandwidth
of 155 Mbps. For each T3 link, we assigned the
link latency uniformly between 300 and 500 mil-
liseconds and a bandwidth of 45 Mbps. Thisled to
round-trip latencies with amedian value of 130 mil-
liseconds and a significant heavy-tail; in Section 5.1
we present the CDF of latencies in the context of a
simple RPC test. Paths traversing one or more T3
links are in the heavy-tail.

We emulated this topology on our cluster with
400 virtual nodes. We also used this topology in
our simulator, where we ran experiments with up
to 16,000 nodes, to model how our system would
scale to a much larger deployment. The simulator
used the same latency values, but does not model
bandwidth constraints.

5 Reaults

The two principal design goals of SV trees are that
they are polite and that they provide efficient con-
tent delivery. SV Trees are polite by construction
— non-subscriber nodes never have to perform con-
tent forwarding. The experimental results in Sec-
tion 5.2 show that SV trees do indeed provide ef-
ficient content delivery, and that both latencies and
link stresses are better than in the RPF overlay mul-
ticast approach.

In implementing SV trees, we found that main-
taining correctness in the face of failure and other
stresses greatly influenced our design. The exper-
iments we present measure our SUccess in meeting
this goal aswell: our resultsin Sections 5.3 and 5.4
show that SV Trees are correctly constructed even
during flash crowds, and that persistent disconnec-
tions are prevented even during periods of high
churn.

Finally, we present results in Section 5.5 from
running aflash crowd experiment on our live cluster.
Our SV tree implementation running on the cluster
shows the same ability to support large numbers of
simultaneous joins as the simul ator.
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Figure 9: RPC Latencies on simulator and cluster.

5.1 Calibration of Simulator and M odelnet

We used an experiment that performed RPC mes-
sage exchanges between randomly chosen nodes
on a 400-node overlay network to calibrate the
wide-area network topology model used in our ex-
periments and to make sure that results obtained
through simulation were comparable to those ob-
tained through running on the live cluster with Mod-
elnet.

Towards that end, we performed a simple RPC
test of 2400 RPCs on both our cluster and our sim-
ulator. Figure 9 shows a Cumulative Distribution
Function (CDF) of the RPC times measured for
three sets of RPCs: those obtained in the simula-
tor, and two kinds of RPC times obtained on the
cluster. Because the cluster code caches TCP con-
nections between pairs of nodes, the first commu-
nication between a pair of nodes takes longer than
subsequent communications, due to the additional
time required for connection establishment. Our ex-
periment performs two back-to-back RPCs between
pairs of nodes on the cluster and reports the dura-
tions of both the first RPC, which is likely to in-
cur connection setup overhead, and the second one,
which will not.

Ascan be seenin Figure 9, the values for the sec-
ond RPC on the cluster closely track those for the
simulator. This gives us confidence that both the
simulator and Modelnet are faithfully emulating the
chosen Mercator wide-area network topol ogy.
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Figure 10: Mean latency to deliver content over
SV, RPF, and IP-Multicast Trees for different group
sizes.

5.2 Efficiency

Figure 10 shows the latency of content delivery for
three different distribution architectures: IP mul-
ticast, overlay reverse-path forwarding (RPF), and
SV trees. Each data point is an average over 5 runs,
each with a differently chosen random seed. The
number of overlay participants was kept constant at
16,000 nodes, while the number of subscribers var-
ied over {16, 64, 256, 512, 1024, 4096}.

Thefirst observation we makeisthat SV treesno-
ticeably out-perform RPF trees when there are rela
tively few subscribers. In particular, RPF trees suf-
fer approximately afactor of five penalty relative to
IP multicast for even small group sizes, while the
SV tree penalty is quite small for small group sizes.
As the number of subscribers grows, this difference
diminishes. Thisis not surprising; the relative per-
formance gain of SV trees comes from routing con-
tent directly between subscribers, bypassing inter-
mediate non-subscriber nodes. The number of op-
portunities to bypass intermediate nodes is greatest
when the number of subscribers is a small fraction
of all nodesin the overlay.

It is aso worth comparing SV trees to an over-
lay multicast design such as Scribe [3] that is solely
focused on efficiency. Published evaluations of
Scribe use the Pastry overlay running on the GT-
ITM topology [26], whereas our evaluation of SV
Trees uses the SkipNet overlay running on the Mer-
cator topology. In spite of these differences, we see
that the published performance numbers are com-
parable: for a 4000 node group, the delay penalty
of SV relative to IP multicast is approximately 3.5,
while for Scribe the relative delay penalty is 2.5.
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Figure 11 shows a CDF of link stress for both
RPF treesand SV trees. The number of overlay par-
ticipantsisagain held constant at 16,000 nodes, and
the number of subscribers was set to 4096. We con-
catenated together the link stresses obtained over 5
runs of content forwarding on different trees, and
we used thisto construct asingle CDF for both RPF
and SV trees.

Figure 11 shows that SV treesincur link stresses
that are noticeably better than straightforward RPF
trees. In particular, SV trees cause 90% of links to
incur alink stress of 3 or less, while for RPF Trees
the 90% link stressis approximately 50. Thisis not
surprising, as SV trees reduce the number of inter-
mediate forwarding hops.

The absolute maximum link stresses incurred by
SV trees are comparable to published results for
Scribe [3]. This is good; SV trees meet the goal
of politeness without incurring alink stress penalty
relative to previous work that has focused on effi-
ciency.

5.3 Resilienceto Flash Crowds

Figure 12 shows the subscription latency during
flash crowds. Wetook 5 different runsfrom our sim-
ulator. For each run, we constructed both 1024 and
4096 subscriber trees. The x-axis of the graph isthe
time between when a node began subscribing and
when that same node received content being pub-
lished on the tree. The y-axis is a CDF over the
joint distribution of all 5 runs at the two different
sizes. We configured the root of the tree to publish
messages with sufficient frequency (once every 10
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Figure 12: Cumulative distribution of Subscription
Latency for SV treesduring a flash crowd, with 1024
and 4096 subscribers.

milliseconds) that the pipeline was always full of
messages.

Scalable overlays are good at distributing the
message traffic during simultaneous joins[3]. How-
ever, this does come at a cost: a subscribing node
might have a path to the root involving many hops,
and content might not arrive until every intermedi-
ate node had finished subscribing. During a flash
crowd, a number of additional events might occur
that could delay nodes from receiving content. For
example, race conditions might cause subscription
retries at some fraction of the nodes.

Our experiments show that the SV tree design
handles flash crowds well. For both distributions
of subscribing nodes, over 3/4 are receiving con-
tent within 2 seconds of starting to subscribe, and
al subscribers are receiving content by 5 seconds
from the beginning of the flash crowd.

Figure 12 also shows that SV trees meet their
stated design goa of scalable membership opera-
tions, the SV tree performance does not degrade
as the number of subscribers increases. The flash
crowd of 4096 nodes shows almost no slowdown
relative to the flash crowd of 1024 nodes.

5.4 Reslienceto Churn

Handling churn is difficult for application-layer
multicast systems. Because new nodes are aways
failing, large portions of the tree are frequently cut
off by the failure of nodes near the root. Addi-
tionally, SV trees do not implement queueing of
undeliverable messages (instead they are dropped).
Thisis a standard approach in application domains
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such as audio and video streaming. For example,
CoopNet, an application-layer multicast system for
video, employs forward error correction, not re-
transmission. However, when messages are deliv-
ered, they arrive with latencies like those in Fig-
ure 10.

The experiment in Figure 13 were obtained by
running two churn experiments. In both cases we
ran the experiment on a 4000 node overlay; at any
given point in time, exactly half the nodes were
failed. The first experiment uses a half-life of 15
minutes, and the second experiment uses a half-life
of 30 minutes. A haf-life of 15 minutesis shorter
than has been observed in any peer-to-peer client
population in the wild [21], and so it represents a
pessimistic worst case. In both cases, dightly less
than 1024 nodes were attempting to subscribe to the
SV treeat any given time. The exact number of sub-
scribers as afunction of timeis shown in the graph.
The experiment spanned a stretch of time sufficient
for every node in the system to have changed in sta-
tus once, either by joining the overlay or failing.

We choose to make all failuresin this experiment
be silent failures because this is the most difficult
case for our algorithm to handle. Silent failures
leave holes in other nodes' routing tables that they
may not discover until at least one overlay-layer
timeout — one minute in our configurations.

Figure 13 shows that for a 15 minute haf life,
more than half the nodes are receiving content at
any given time. For a 30 minute haf life, the re-
sults are even stronger. This shows that the SV
tree repair is managing to keep up with both churn
rates; persistent disconnections are not occurring, as
these would have manifested themselves through a
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steady downward trend in the number of subscribers
receiving messages. Of course, the tree is aways
closer to fully connected in the lower churn regime.

5.5 Live System Results
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Figure 14: Cumulative distribution of Subscription
Latency for SV trees during a flash crowd, with 100
subscribers running on the cluster with 400 overlay
participants on 40 machines.

Figure 14 depicts the CDF of subscription laten-
cies during a flash crowd on our live system. We
used an overlay consisting of 400 virtual nodes on
our 40 node cluster. We configured 100 of the nodes
to simultaneously subscribe to atopic. Publications
are sent only every 400 milliseconds so as not to
overload the Modelnet router.

For most nodes, dlightly more than a second
elapsed between when subscription was initiated
and when a content message was first received from
the tree. All nodes were receiving content in less
than 5 seconds from the initiation of subscription.
These results are consistent with the results of our
simulation experiments for flash crowds in Fig-
ure 12.



6 Conclusions and Future Work

Application-level multicast systems are apromising
technology for delivering on the potential of mul-
ticast. Prior systems combining reverse path for-
warding and scalable overlay networks have lacked
politeness. participating nodes might be required
to forward significant amounts of content in which
they have no interest. This could be a major obsta-
cle to the widespread adoption of application-level
multicast. By providing politeness, Subscriber/Vol-
unteer trees remove this potentially significant ob-
stacle.

In addition to achieving politeness, SV trees in-
herit the scalability properties of RPF trees on an
overlay network. SV trees also achieve greater ef-
ficiency that standard RPF trees by grafting unnec-
essary network hops out of the tree. Our simulation
experiments validate these claims at large scales.

Our experience building SV treesisthat avoiding
orphaned sub-trees dictated a number of our design
decisions. A key benefit of this design is that SV
trees do not require loop detection and repair mech-
anisms. Our smulation experiments validate that
the design decisions we made allowed usto achieve
an implementation that worked under stress, includ-
ing both flash crowds and churn.

Finaly, we evaluated our implementation in a
live system consisting of 400 virtual nodes running
on a 40 node cluster. We presented results from
subjecting our live system to a flash crowd, and
these results closely match our simulation results.
This evaluation makes the case for Subscriber/Vol-
unteer trees as an important technology for enabling
application-level multicast.

The focus of our larger research agenda has been
using application level multicast for scalable event
delivery, eg., instant messaging. Another com-
pelling use of application level multicast is stream-
ing video. While SV trees clearly offer some bene-
fit in the video context, the high bandwidth require-
ments may necessitate additional work to provide
finegranularity control over the outgoing bandwidth
consumed by forwarding. Thisis an exciting area
for future research.
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